You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1112 lines
26 KiB

#include "Compiler.h"
#include <boost/dynamic_bitset.hpp>
#include <llvm/IR/Module.h>
#include <llvm/IR/CFG.h>
#include <llvm/ADT/PostOrderIterator.h>
#include <llvm/IR/IntrinsicInst.h>
#include <libevmface/Instruction.h>
#include "Type.h"
#include "Memory.h"
#include "Stack.h"
#include "Ext.h"
#include "GasMeter.h"
#include "Utils.h"
#include "Endianness.h"
namespace dev
{
namespace eth
{
namespace jit
{
Compiler::Compiler():
m_builder(llvm::getGlobalContext())
{
Type::init(m_builder.getContext());
}
void Compiler::createBasicBlocks(bytesConstRef bytecode)
{
std::set<ProgramCounter> splitPoints; // Sorted collections of instruction indices where basic blocks start/end
std::map<ProgramCounter, ProgramCounter> directJumpTargets;
std::vector<ProgramCounter> indirectJumpTargets;
boost::dynamic_bitset<> validJumpTargets(std::max(bytecode.size(), size_t(1)));
splitPoints.insert(0); // First basic block
validJumpTargets[0] = true;
for (auto curr = bytecode.begin(); curr != bytecode.end(); ++curr)
{
ProgramCounter currentPC = curr - bytecode.begin();
validJumpTargets[currentPC] = true;
auto inst = static_cast<Instruction>(*curr);
switch (inst)
{
case Instruction::ANY_PUSH:
{
auto numBytes = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::PUSH1) + 1;
auto next = curr + numBytes + 1;
if (next >= bytecode.end())
break;
auto nextInst = static_cast<Instruction>(*next);
if (nextInst == Instruction::JUMP || nextInst == Instruction::JUMPI)
{
// Compute target PC of the jump.
u256 val = 0;
for (auto iter = curr + 1; iter < next; ++iter)
{
val <<= 8;
val |= *iter;
}
// Create a block for the JUMP target.
ProgramCounter targetPC = val < bytecode.size() ? val.convert_to<ProgramCounter>() : bytecode.size();
splitPoints.insert(targetPC);
ProgramCounter jumpPC = (next - bytecode.begin());
directJumpTargets[jumpPC] = targetPC;
}
curr += numBytes;
break;
}
case Instruction::JUMPDEST:
{
// A basic block starts here.
splitPoints.insert(currentPC);
indirectJumpTargets.push_back(currentPC);
break;
}
case Instruction::JUMP:
case Instruction::JUMPI:
case Instruction::RETURN:
case Instruction::STOP:
case Instruction::SUICIDE:
{
// Create a basic block starting at the following instruction.
if (curr + 1 < bytecode.end())
{
splitPoints.insert(currentPC + 1);
}
break;
}
default:
break;
}
}
// Remove split points generated from jumps out of code or into data.
for (auto it = splitPoints.cbegin(); it != splitPoints.cend(); )
{
if (*it > bytecode.size() || !validJumpTargets[*it])
it = splitPoints.erase(it);
else
++it;
}
for (auto it = splitPoints.cbegin(); it != splitPoints.cend(); )
{
auto beginInstIdx = *it;
++it;
auto endInstIdx = it != splitPoints.cend() ? *it : bytecode.size();
basicBlocks.emplace(std::piecewise_construct, std::forward_as_tuple(beginInstIdx), std::forward_as_tuple(beginInstIdx, endInstIdx, m_mainFunc, m_builder));
}
m_stopBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Stop", m_mainFunc);
m_badJumpBlock = std::make_unique<BasicBlock>("BadJumpBlock", m_mainFunc, m_builder);
m_jumpTableBlock = std::make_unique<BasicBlock>("JumpTableBlock", m_mainFunc, m_builder);
for (auto it = directJumpTargets.cbegin(); it != directJumpTargets.cend(); ++it)
{
if (it->second >= bytecode.size())
{
// Jumping out of code means STOP
m_directJumpTargets[it->first] = m_stopBB;
continue;
}
auto blockIter = basicBlocks.find(it->second);
if (blockIter != basicBlocks.end())
{
m_directJumpTargets[it->first] = blockIter->second.llvm();
}
else
{
std::cerr << "Bad JUMP at PC " << it->first
<< ": " << it->second << " is not a valid PC\n";
m_directJumpTargets[it->first] = m_badJumpBlock->llvm();
}
}
for (auto it = indirectJumpTargets.cbegin(); it != indirectJumpTargets.cend(); ++it)
{
m_indirectJumpTargets.push_back(&basicBlocks.find(*it)->second);
}
}
std::unique_ptr<llvm::Module> Compiler::compile(bytesConstRef bytecode)
{
auto module = std::make_unique<llvm::Module>("main", m_builder.getContext());
// Create main function
m_mainFunc = llvm::Function::Create(llvm::FunctionType::get(Type::MainReturn, false), llvm::Function::ExternalLinkage, "main", module.get());
// Create the basic blocks.
auto entryBlock = llvm::BasicBlock::Create(m_builder.getContext(), "entry", m_mainFunc);
m_builder.SetInsertPoint(entryBlock);
createBasicBlocks(bytecode);
// Init runtime structures.
GasMeter gasMeter(m_builder);
Memory memory(m_builder, gasMeter);
Ext ext(m_builder);
Stack stack(m_builder);
m_builder.CreateBr(basicBlocks.begin()->second);
for (auto basicBlockPairIt = basicBlocks.begin(); basicBlockPairIt != basicBlocks.end(); ++basicBlockPairIt)
{
auto& basicBlock = basicBlockPairIt->second;
auto iterCopy = basicBlockPairIt;
++iterCopy;
auto nextBasicBlock = (iterCopy != basicBlocks.end()) ? iterCopy->second.llvm() : nullptr;
compileBasicBlock(basicBlock, bytecode, memory, ext, gasMeter, nextBasicBlock);
if (getenv("EVMCC_DEBUG_BLOCKS"))
basicBlock.dump();
basicBlock.localStack().synchronize(stack);
}
// Code for special blocks:
// TODO: move to separate function.
// Note: Right now the codegen for special blocks depends only on createBasicBlock(),
// not on the codegen for 'regular' blocks. But it has to be done before linkBasicBlocks().
m_builder.SetInsertPoint(m_stopBB);
m_builder.CreateRet(Constant::get(ReturnCode::Stop));
m_builder.SetInsertPoint(m_badJumpBlock->llvm());
m_builder.CreateRet(Constant::get(ReturnCode::BadJumpDestination));
m_builder.SetInsertPoint(m_jumpTableBlock->llvm());
if (m_indirectJumpTargets.size() > 0)
{
// auto& stack = m_jumpTableBlock->getStack();
auto dest = m_jumpTableBlock->localStack().pop(); //m_jumpTableBlock->localGet(0); // stack.pop();
auto switchInstr = m_builder.CreateSwitch(dest, m_badJumpBlock->llvm(),
m_indirectJumpTargets.size());
for (auto it = m_indirectJumpTargets.cbegin(); it != m_indirectJumpTargets.cend(); ++it)
{
auto& bb = *it;
auto dest = Constant::get(bb->begin());
switchInstr->addCase(dest, bb->llvm());
}
}
else
{
m_builder.CreateBr(m_badJumpBlock->llvm());
}
m_jumpTableBlock->localStack().synchronize(stack);
linkBasicBlocks();
return module;
}
void Compiler::compileBasicBlock(BasicBlock& basicBlock, bytesConstRef bytecode, Memory& memory, Ext& ext, GasMeter& gasMeter, llvm::BasicBlock* nextBasicBlock)
{
m_builder.SetInsertPoint(basicBlock.llvm());
auto& stack = basicBlock.localStack();
for (auto currentPC = basicBlock.begin(); currentPC != basicBlock.end(); ++currentPC)
{
auto inst = static_cast<Instruction>(bytecode[currentPC]);
gasMeter.count(inst);
switch (inst)
{
case Instruction::ADD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = m_builder.CreateAdd(lhs, rhs);
stack.push(result);
break;
}
case Instruction::SUB:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = m_builder.CreateSub(lhs, rhs);
stack.push(result);
break;
}
case Instruction::MUL:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision);
auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision);
auto res128 = m_builder.CreateMul(lhs128, rhs128);
auto res256 = m_builder.CreateZExt(res128, Type::i256);
stack.push(res256);
break;
}
case Instruction::DIV:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision);
auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision);
auto res128 = m_builder.CreateUDiv(lhs128, rhs128);
auto res256 = m_builder.CreateZExt(res128, Type::i256);
stack.push(res256);
break;
}
case Instruction::SDIV:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision);
auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision);
auto res128 = m_builder.CreateSDiv(lhs128, rhs128);
auto res256 = m_builder.CreateSExt(res128, Type::i256);
stack.push(res256);
break;
}
case Instruction::MOD:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision);
auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision);
auto res128 = m_builder.CreateURem(lhs128, rhs128);
auto res256 = m_builder.CreateZExt(res128, Type::i256);
stack.push(res256);
break;
}
case Instruction::SMOD:
{
auto lhs256 = stack.pop();
auto rhs256 = stack.pop();
auto lhs128 = m_builder.CreateTrunc(lhs256, Type::lowPrecision);
auto rhs128 = m_builder.CreateTrunc(rhs256, Type::lowPrecision);
auto res128 = m_builder.CreateSRem(lhs128, rhs128);
auto res256 = m_builder.CreateSExt(res128, Type::i256);
stack.push(res256);
break;
}
case Instruction::EXP:
{
auto left = stack.pop();
auto right = stack.pop();
auto ret = ext.exp(left, right);
stack.push(ret);
break;
}
case Instruction::NEG:
{
auto top = stack.pop();
auto zero = Constant::get(0);
auto res = m_builder.CreateSub(zero, top);
stack.push(res);
break;
}
case Instruction::LT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpULT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::i256);
stack.push(res256);
break;
}
case Instruction::GT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpUGT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::i256);
stack.push(res256);
break;
}
case Instruction::SLT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpSLT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::i256);
stack.push(res256);
break;
}
case Instruction::SGT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpSGT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::i256);
stack.push(res256);
break;
}
case Instruction::EQ:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpEQ(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::i256);
stack.push(res256);
break;
}
case Instruction::NOT:
{
auto top = stack.pop();
auto iszero = m_builder.CreateICmpEQ(top, Constant::get(0), "iszero");
auto result = m_builder.CreateZExt(iszero, Type::i256);
stack.push(result);
break;
}
case Instruction::AND:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateAnd(lhs, rhs);
stack.push(res);
break;
}
case Instruction::OR:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateOr(lhs, rhs);
stack.push(res);
break;
}
case Instruction::XOR:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateXor(lhs, rhs);
stack.push(res);
break;
}
case Instruction::BYTE:
{
const auto byteNum = stack.pop();
auto value = stack.pop();
//
value = Endianness::toBE(m_builder, value);
auto bytes = m_builder.CreateBitCast(value, llvm::VectorType::get(Type::Byte, 32), "bytes");
auto byte = m_builder.CreateExtractElement(bytes, byteNum, "byte");
value = m_builder.CreateZExt(byte, Type::i256);
auto byteNumValid = m_builder.CreateICmpULT(byteNum, Constant::get(32));
value = m_builder.CreateSelect(byteNumValid, value, Constant::get(0));
stack.push(value);
break;
}
case Instruction::ADDMOD:
{
auto val1 = stack.pop();
auto val2 = stack.pop();
auto sum = m_builder.CreateAdd(val1, val2);
auto mod = stack.pop();
auto sum128 = m_builder.CreateTrunc(sum, Type::lowPrecision);
auto mod128 = m_builder.CreateTrunc(mod, Type::lowPrecision);
auto res128 = m_builder.CreateURem(sum128, mod128);
auto res256 = m_builder.CreateZExt(res128, Type::i256);
stack.push(res256);
break;
}
case Instruction::MULMOD:
{
auto val1 = stack.pop();
auto val2 = stack.pop();
auto prod = m_builder.CreateMul(val1, val2);
auto mod = stack.pop();
auto prod128 = m_builder.CreateTrunc(prod, Type::lowPrecision);
auto mod128 = m_builder.CreateTrunc(mod, Type::lowPrecision);
auto res128 = m_builder.CreateURem(prod128, mod128);
auto res256 = m_builder.CreateZExt(res128, Type::i256);
stack.push(res256);
break;
}
case Instruction::SHA3:
{
auto inOff = stack.pop();
auto inSize = stack.pop();
memory.require(inOff, inSize);
auto hash = ext.sha3(inOff, inSize);
stack.push(hash);
break;
}
case Instruction::POP:
{
stack.pop();
break;
}
case Instruction::ANY_PUSH:
{
auto numBytes = static_cast<size_t>(inst)-static_cast<size_t>(Instruction::PUSH1) + 1;
auto value = llvm::APInt(256, 0);
for (decltype(numBytes) i = 0; i < numBytes; ++i) // TODO: Use pc as iterator
{
++currentPC;
value <<= 8;
value |= bytecode[currentPC];
}
auto c = m_builder.getInt(value);
stack.push(c);
break;
}
case Instruction::ANY_DUP:
{
auto index = static_cast<size_t>(inst)-static_cast<size_t>(Instruction::DUP1);
stack.dup(index);
break;
}
case Instruction::ANY_SWAP:
{
auto index = static_cast<size_t>(inst)-static_cast<size_t>(Instruction::SWAP1) + 1;
stack.swap(index);
break;
}
case Instruction::MLOAD:
{
auto addr = stack.pop();
auto word = memory.loadWord(addr);
stack.push(word);
break;
}
case Instruction::MSTORE:
{
auto addr = stack.pop();
auto word = stack.pop();
memory.storeWord(addr, word);
break;
}
case Instruction::MSTORE8:
{
auto addr = stack.pop();
auto word = stack.pop();
memory.storeByte(addr, word);
break;
}
case Instruction::MSIZE:
{
auto word = memory.getSize();
stack.push(word);
break;
}
case Instruction::SLOAD:
{
auto index = stack.pop();
auto value = ext.store(index);
stack.push(value);
break;
}
case Instruction::SSTORE:
{
auto index = stack.pop();
auto value = stack.pop();
gasMeter.countSStore(ext, index, value);
ext.setStore(index, value);
break;
}
case Instruction::JUMP:
case Instruction::JUMPI:
{
// Generate direct jump iff:
// 1. this is not the first instruction in the block
// 2. m_directJumpTargets[currentPC] is defined (meaning that the previous instruction is a PUSH)
// Otherwise generate a indirect jump (a switch).
llvm::BasicBlock* targetBlock = nullptr;
if (currentPC != basicBlock.begin())
{
auto pairIter = m_directJumpTargets.find(currentPC);
if (pairIter != m_directJumpTargets.end())
{
targetBlock = pairIter->second;
}
}
if (inst == Instruction::JUMP)
{
if (targetBlock)
{
// The target address is computed at compile time,
// just pop it without looking...
stack.pop();
m_builder.CreateBr(targetBlock);
}
else
{
m_builder.CreateBr(m_jumpTableBlock->llvm());
}
}
else // JUMPI
{
stack.swap(1);
auto val = stack.pop();
auto zero = Constant::get(0);
auto cond = m_builder.CreateICmpNE(val, zero, "nonzero");
// Assume the basic blocks are properly ordered:
assert(nextBasicBlock); // FIXME: JUMPI can be last instruction
if (targetBlock)
{
stack.pop();
m_builder.CreateCondBr(cond, targetBlock, nextBasicBlock);
}
else
{
m_builder.CreateCondBr(cond, m_jumpTableBlock->llvm(), nextBasicBlock);
}
}
break;
}
case Instruction::JUMPDEST:
{
// Extra asserts just in case.
assert(currentPC == basicBlock.begin());
break;
}
case Instruction::PC:
{
auto value = Constant::get(currentPC);
stack.push(value);
break;
}
case Instruction::GAS:
{
stack.push(gasMeter.getGas());
break;
}
case Instruction::ADDRESS:
{
auto value = ext.address();
stack.push(value);
break;
}
case Instruction::BALANCE:
{
auto address = stack.pop();
auto value = ext.balance(address);
stack.push(value);
break;
}
case Instruction::CALLER:
{
auto value = ext.caller();
stack.push(value);
break;
}
case Instruction::ORIGIN:
{
auto value = ext.origin();
stack.push(value);
break;
}
case Instruction::CALLVALUE:
{
auto value = ext.callvalue();
stack.push(value);
break;
}
case Instruction::CALLDATASIZE:
{
auto value = ext.calldatasize();
stack.push(value);
break;
}
case Instruction::CODESIZE:
{
auto value = ext.codesize();
stack.push(value);
break;
}
case Instruction::EXTCODESIZE:
{
auto addr = stack.pop();
auto value = ext.codesizeAt(addr);
stack.push(value);
break;
}
case Instruction::CALLDATACOPY:
{
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto srcPtr = ext.calldata();
auto srcSize = ext.calldatasize();
memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::CODECOPY:
{
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto srcPtr = ext.code(); // TODO: Code & its size are constants, feature #80814234
auto srcSize = ext.codesize();
memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::EXTCODECOPY:
{
auto extAddr = stack.pop();
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto srcPtr = ext.codeAt(extAddr);
auto srcSize = ext.codesizeAt(extAddr);
memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::CALLDATALOAD:
{
auto index = stack.pop();
auto value = ext.calldataload(index);
stack.push(value);
break;
}
case Instruction::GASPRICE:
{
auto value = ext.gasprice();
stack.push(value);
break;
}
case Instruction::PREVHASH:
{
auto value = ext.prevhash();
stack.push(value);
break;
}
case Instruction::COINBASE:
{
auto value = ext.coinbase();
stack.push(value);
break;
}
case Instruction::TIMESTAMP:
{
auto value = ext.timestamp();
stack.push(value);
break;
}
case Instruction::NUMBER:
{
auto value = ext.number();
stack.push(value);
break;
}
case Instruction::DIFFICULTY:
{
auto value = ext.difficulty();
stack.push(value);
break;
}
case Instruction::GASLIMIT:
{
auto value = ext.gaslimit();
stack.push(value);
break;
}
case Instruction::CREATE:
{
auto endowment = stack.pop();
auto initOff = stack.pop();
auto initSize = stack.pop();
memory.require(initOff, initSize);
auto address = ext.create(endowment, initOff, initSize);
stack.push(address);
break;
}
case Instruction::CALL:
case Instruction::CALLCODE:
{
auto gas = stack.pop();
auto codeAddress = stack.pop();
auto value = stack.pop();
auto inOff = stack.pop();
auto inSize = stack.pop();
auto outOff = stack.pop();
auto outSize = stack.pop();
gasMeter.commitCostBlock(gas);
// Require memory for the max of in and out buffers
auto inSizeReq = m_builder.CreateAdd(inOff, inSize, "inSizeReq");
auto outSizeReq = m_builder.CreateAdd(outOff, outSize, "outSizeReq");
auto cmp = m_builder.CreateICmpUGT(inSizeReq, outSizeReq);
auto sizeReq = m_builder.CreateSelect(cmp, inSizeReq, outSizeReq, "sizeReq");
memory.require(sizeReq);
auto receiveAddress = codeAddress;
if (inst == Instruction::CALLCODE)
receiveAddress = ext.address();
auto ret = ext.call(gas, receiveAddress, value, inOff, inSize, outOff, outSize, codeAddress);
gasMeter.giveBack(gas);
stack.push(ret);
break;
}
case Instruction::RETURN:
{
auto index = stack.pop();
auto size = stack.pop();
memory.registerReturnData(index, size);
m_builder.CreateRet(Constant::get(ReturnCode::Return));
break;
}
case Instruction::SUICIDE:
{
auto address = stack.pop();
ext.suicide(address);
// Fall through
}
case Instruction::STOP:
{
m_builder.CreateRet(Constant::get(ReturnCode::Stop));
break;
}
}
}
gasMeter.commitCostBlock();
if (!basicBlock.llvm()->getTerminator()) // If block not terminated
{
if (nextBasicBlock)
m_builder.CreateBr(nextBasicBlock); // Branch to the next block
else
m_builder.CreateRet(Constant::get(ReturnCode::Stop)); // Return STOP code
}
}
void Compiler::linkBasicBlocks() // Stack& stack)
{
// Remove dead basic blocks
auto sthErased = false;
do
{
sthErased = false;
for (auto it = basicBlocks.begin(); it != basicBlocks.end();)
{
auto llvmBB = it->second.llvm();
if (llvm::pred_begin(llvmBB) == llvm::pred_end(llvmBB))
{
llvmBB->eraseFromParent();
basicBlocks.erase(it++);
sthErased = true;
}
else
++it;
}
}
while (sthErased);
// Remove jump table block if no predecessors
if (llvm::pred_begin(m_jumpTableBlock->llvm()) == llvm::pred_end(m_jumpTableBlock->llvm()))
{
m_jumpTableBlock->llvm()->eraseFromParent();
m_jumpTableBlock.reset();
}
/*
struct BBInfo
{
BasicBlock& bblock;
std::vector<BBInfo*> predecessors;
size_t inputItems;
size_t outputItems;
std::vector<llvm::PHINode*> phisToRewrite;
BBInfo(BasicBlock& _bblock)
: bblock(_bblock),
predecessors(),
inputItems(_bblock.getStack().initialSize()),
outputItems(_bblock.getStack().size())
{}
};
std::map<llvm::BasicBlock*, BBInfo> cfg;
// Create nodes in cfg
for (auto& pair : this->basicBlocks)
{
auto& bb = pair.second;
cfg.emplace(bb.llvm(), bb);
}
// Insert jump table block into cfg
if (m_jumpTableBlock)
cfg.emplace(m_jumpTableBlock->llvm(), *m_jumpTableBlock);
auto& entryBlock = m_mainFunc->getEntryBlock();
// Create edges in cfg
for (auto& pair : cfg)
{
auto bbPtr = pair.first;
auto& bbInfo = pair.second;
for (auto predIt = llvm::pred_begin(bbPtr); predIt != llvm::pred_end(bbPtr); ++predIt)
{
if (*predIt != &entryBlock)
{
auto predInfoEntry = cfg.find(*predIt);
assert(predInfoEntry != cfg.end());
bbInfo.predecessors.push_back(&predInfoEntry->second);
}
}
}
// Iteratively compute inputs and outputs of each block, until reaching fixpoint.
bool valuesChanged = true;
while (valuesChanged)
{
valuesChanged = false;
for (auto& pair : cfg)
{
auto& bbInfo = pair.second;
if (bbInfo.predecessors.empty())
bbInfo.inputItems = 0; // no consequences for other blocks, so leave valuesChanged false
for (auto predInfo : bbInfo.predecessors)
{
if (predInfo->outputItems < bbInfo.inputItems)
{
bbInfo.inputItems = predInfo->outputItems;
valuesChanged = true;
}
else if (predInfo->outputItems > bbInfo.inputItems)
{
predInfo->outputItems = bbInfo.inputItems;
valuesChanged = true;
}
}
}
}
// std::map<llvm::Instruction*, llvm::Value*> phiReplacements;
// std::vector<llvm::Instruction*> phiNodesToRewrite;
// Propagate values between blocks.
for (auto& pair : cfg)
{
auto llbb = pair.first;
auto& bbInfo = pair.second;
auto& bblock = bbInfo.bblock;
// Complete phi nodes for the top bbInfo.inputItems placeholder values
auto instrIter = llbb->begin();
for (size_t valueIdx = 0; valueIdx < bbInfo.inputItems; ++instrIter, ++valueIdx)
{
auto phi = llvm::cast<llvm::PHINode>(instrIter);
for (auto predIt : bbInfo.predecessors)
{
assert(valueIdx < predIt->bblock.getStack().size());
auto value = predIt->bblock.getStack().get(valueIdx);
phi->addIncoming(value, predIt->bblock.llvm());
}
}
// Turn the remaining phi nodes into stack.pop's.
// m_builder.SetInsertPoint(llbb, llvm::BasicBlock::iterator(llbb->getFirstNonPHI()));
for (; llvm::isa<llvm::PHINode>(*instrIter); ++instrIter)
{
auto phi = llvm::cast<llvm::PHINode>(instrIter);
// auto value = stack.popWord();
// Don't delete the phi node yet. It may still be stored in a local stack of some block.
// phiReplacements[phi] = value;
bbInfo.phisToRewrite.push_back(phi);
}
// Emit stack push's at the end of the block, just before the terminator;
m_builder.SetInsertPoint(llbb, -- llbb->end());
auto localStackSize = bblock.getStack().size();
assert(localStackSize >= bbInfo.outputItems);
for (size_t i = 0; i < localStackSize - bbInfo.outputItems; ++i)
stack.pushWord(bblock.getStack().get(localStackSize - 1 - i));
}
for (auto& entry : cfg)
{
// Where was the last stack.pop() inserted
auto lastPopIt = entry.first->begin();
for (auto phi : entry.second.phisToRewrite)
{
// Insert stack.pop() before the first use of phi,
// then replace all uses of phi with the popped val.
if (phi->use_begin() == phi->use_end())
{
// For a phi with no uses, insert pop just after the previous one
}
std::cout << "*** PHI node " << phi->getName().str() << " has no uses!\n";
}
else
{
assert(llvm::isa<llvm::Instruction>(phi->use_begin()->getUser()));
m_builder.SetInsertPoint(*phi->use_begin());
auto popVal = stack.popWord();
phi->replaceAllUsesWith(popVal);
phi->eraseFromParent();
}
}
*/
}
void Compiler::dumpBasicBlockGraph(std::ostream& out)
{
out << "digraph BB {\n"
<< " node [shape=record];\n"
<< " entry [share=record, label=\"entry block\"];\n";
/*
std::vector<BasicBlock*> blocks;
for (auto& pair : this->basicBlocks)
blocks.push_back(&pair.second);
if (m_jumpTableBlock)
blocks.push_back(m_jumpTableBlock.get());
if (m_badJumpBlock)
blocks.push_back(m_badJumpBlock.get());
std::map<BasicBlock*,int> phiNodesPerBlock;
// Output nodes
for (auto bb : blocks)
{
std::string blockName = bb->llvm()->getName();
int numOfPhiNodes = 0;
auto firstNonPhiPtr = bb->llvm()->getFirstNonPHI();
for (auto instrIter = bb->llvm()->begin(); &*instrIter != firstNonPhiPtr; ++instrIter, ++numOfPhiNodes);
phiNodesPerBlock[bb] = numOfPhiNodes;
auto initStackSize = bb->getStack().initialSize();
auto endStackSize = bb->getStack().size();
out << " \"" << blockName << "\" [shape=record, label=\""
<< initStackSize << "|" << blockName << "|" << endStackSize
<< "\"];\n";
}
// Output edges
for (auto bb : blocks)
{
std::string blockName = bb->llvm()->getName();
auto end = llvm::pred_end(bb->llvm());
for (llvm::pred_iterator it = llvm::pred_begin(bb->llvm()); it != end; ++it)
{
out << " \"" << (*it)->getName().str() << "\" -> \"" << blockName << "\" ["
<< ((m_jumpTableBlock.get() && *it == m_jumpTableBlock.get()->llvm()) ? "style = dashed, " : "")
<< "label = \""
<< phiNodesPerBlock[bb]
<< "\"];\n";
}
}
out << "}\n";
*/
}
}
}
}