You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1277 lines
33 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
cpp-ethereum is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with cpp-ethereum. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file State.cpp
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#include "State.h"
#include <boost/filesystem.hpp>
#include <time.h>
#include <random>
#include <secp256k1/secp256k1.h>
#include <libevmface/Instruction.h>
#include <libethcore/Exceptions.h>
#include <libethcore/Dagger.h>
#include <libevm/VM.h>
#include "BlockChain.h"
#include "Defaults.h"
#include "ExtVM.h"
using namespace std;
using namespace eth;
#define ctrace clog(StateTrace)
static const u256 c_blockReward = 1500 * finney;
OverlayDB State::openDB(std::string _path, bool _killExisting)
{
if (_path.empty())
_path = Defaults::get()->m_dbPath;
boost::filesystem::create_directory(_path);
if (_killExisting)
boost::filesystem::remove_all(_path + "/state");
ldb::Options o;
o.create_if_missing = true;
ldb::DB* db = nullptr;
ldb::DB::Open(o, _path + "/state", &db);
if (!db)
throw DatabaseAlreadyOpen();
cnote << "Opened state DB.";
return OverlayDB(db);
}
State::State(Address _coinbaseAddress, OverlayDB const& _db):
m_db(_db),
m_state(&m_db),
m_ourAddress(_coinbaseAddress),
m_blockReward(c_blockReward)
{
secp256k1_start();
// Initialise to the state entailed by the genesis block; this guarantees the trie is built correctly.
m_state.init();
paranoia("beginning of normal construction.", true);
eth::commit(genesisState(), m_db, m_state);
m_db.commit();
paranoia("after DB commit of normal construction.", true);
m_previousBlock = BlockChain::genesis();
resetCurrent();
assert(m_state.root() == m_previousBlock.stateRoot);
paranoia("end of normal construction.", true);
}
State::State(OverlayDB const& _db, BlockChain const& _bc, h256 _h):
m_db(_db),
m_state(&m_db),
m_blockReward(c_blockReward)
{
secp256k1_start();
// TODO THINK: is this necessary?
m_state.init();
auto b = _bc.block(_h);
BlockInfo bi;
BlockInfo bip;
if (_h)
bi.populate(b);
if (bi && bi.number)
bip.populate(_bc.block(bi.parentHash));
if (!_h || !bip)
return;
m_ourAddress = bi.coinbaseAddress;
sync(_bc, bi.parentHash, bip);
enact(&b);
}
State::State(State const& _s):
m_db(_s.m_db),
m_state(&m_db, _s.m_state.root()),
m_transactions(_s.m_transactions),
m_transactionSet(_s.m_transactionSet),
m_cache(_s.m_cache),
m_previousBlock(_s.m_previousBlock),
m_currentBlock(_s.m_currentBlock),
m_ourAddress(_s.m_ourAddress),
m_blockReward(_s.m_blockReward)
{
paranoia("after state cloning (copy cons).", true);
}
void State::paranoia(std::string const& _when, bool _enforceRefs) const
{
#if ETH_PARANOIA
// TODO: variable on context; just need to work out when there should be no leftovers
// [in general this is hard since contract alteration will result in nodes in the DB that are no directly part of the state DB].
if (!isTrieGood(_enforceRefs, false))
{
cwarn << "BAD TRIE" << _when;
throw InvalidTrie();
}
#else
(void)_when;
(void)_enforceRefs;
#endif
}
State& State::operator=(State const& _s)
{
m_db = _s.m_db;
m_state.open(&m_db, _s.m_state.root());
m_transactions = _s.m_transactions;
m_transactionSet = _s.m_transactionSet;
m_cache = _s.m_cache;
m_previousBlock = _s.m_previousBlock;
m_currentBlock = _s.m_currentBlock;
m_ourAddress = _s.m_ourAddress;
m_blockReward = _s.m_blockReward;
paranoia("after state cloning (assignment op)", true);
return *this;
}
struct CachedAddressState
{
CachedAddressState(std::string const& _rlp, AddressState const* _s, OverlayDB const* _o): rS(_rlp), r(rS), s(_s), o(_o) {}
bool exists() const
{
return (r && (!s || s->isAlive())) || (s && s->isAlive());
}
u256 balance() const
{
return r ? s ? s->balance() : r[1].toInt<u256>() : 0;
}
u256 nonce() const
{
return r ? s ? s->nonce() : r[0].toInt<u256>() : 0;
}
bytes code() const
{
if (s && s->codeCacheValid())
return s->code();
h256 h = r ? s ? s->codeHash() : r[3].toHash<h256>() : EmptySHA3;
return h == EmptySHA3 ? bytes() : asBytes(o->lookup(h));
}
std::map<u256, u256> storage() const
{
std::map<u256, u256> ret;
if (r)
{
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(o), r[2].toHash<h256>()); // promise we won't alter the overlay! :)
for (auto const& j: memdb)
ret[j.first] = RLP(j.second).toInt<u256>();
}
if (s)
for (auto const& j: s->storage())
if ((!ret.count(j.first) && j.second) || (ret.count(j.first) && ret.at(j.first) != j.second))
ret[j.first] = j.second;
return ret;
}
AccountDiff diff(CachedAddressState const& _c)
{
AccountDiff ret;
ret.exist = Diff<bool>(exists(), _c.exists());
ret.balance = Diff<u256>(balance(), _c.balance());
ret.nonce = Diff<u256>(nonce(), _c.nonce());
ret.code = Diff<bytes>(code(), _c.code());
auto st = storage();
auto cst = _c.storage();
auto it = st.begin();
auto cit = cst.begin();
while (it != st.end() || cit != cst.end())
{
if (it != st.end() && cit != cst.end() && it->first == cit->first && (it->second || cit->second) && (it->second != cit->second))
ret.storage[it->first] = Diff<u256>(it->second, cit->second);
else if (it != st.end() && (cit == cst.end() || it->first < cit->first) && it->second)
ret.storage[it->first] = Diff<u256>(it->second, 0);
else if (cit != cst.end() && (it == st.end() || it->first > cit->first) && cit->second)
ret.storage[cit->first] = Diff<u256>(0, cit->second);
if (it == st.end())
++cit;
else if (cit == cst.end())
++it;
else if (it->first < cit->first)
++it;
else if (it->first > cit->first)
++cit;
else
++it, ++cit;
}
return ret;
}
std::string rS;
RLP r;
AddressState const* s;
OverlayDB const* o;
};
StateDiff State::diff(State const& _c) const
{
StateDiff ret;
std::set<Address> ads;
std::set<Address> trieAds;
std::set<Address> trieAdsD;
auto trie = TrieDB<Address, OverlayDB>(const_cast<OverlayDB*>(&m_db), rootHash());
auto trieD = TrieDB<Address, OverlayDB>(const_cast<OverlayDB*>(&_c.m_db), _c.rootHash());
for (auto i: trie)
ads.insert(i.first), trieAds.insert(i.first);
for (auto i: trieD)
ads.insert(i.first), trieAdsD.insert(i.first);
for (auto i: m_cache)
ads.insert(i.first);
for (auto i: _c.m_cache)
ads.insert(i.first);
for (auto i: ads)
{
auto it = m_cache.find(i);
auto itD = _c.m_cache.find(i);
CachedAddressState source(trieAds.count(i) ? trie.at(i) : "", it != m_cache.end() ? &it->second : nullptr, &m_db);
CachedAddressState dest(trieAdsD.count(i) ? trieD.at(i) : "", itD != _c.m_cache.end() ? &itD->second : nullptr, &_c.m_db);
AccountDiff acd = source.diff(dest);
if (acd.changed())
ret.accounts[i] = acd;
}
return ret;
}
void State::ensureCached(Address _a, bool _requireCode, bool _forceCreate) const
{
ensureCached(m_cache, _a, _requireCode, _forceCreate);
}
void State::ensureCached(std::map<Address, AddressState>& _cache, Address _a, bool _requireCode, bool _forceCreate) const
{
auto it = _cache.find(_a);
if (it == _cache.end())
{
// populate basic info.
string stateBack = m_state.at(_a);
if (stateBack.empty() && !_forceCreate)
return;
RLP state(stateBack);
AddressState s;
if (state.isNull())
s = AddressState(0, 0, h256(), EmptySHA3);
else
s = AddressState(state[0].toInt<u256>(), state[1].toInt<u256>(), state[2].toHash<h256>(), state[3].isEmpty() ? EmptySHA3 : state[3].toHash<h256>());
bool ok;
tie(it, ok) = _cache.insert(make_pair(_a, s));
}
if (_requireCode && it != _cache.end() && !it->second.isFreshCode() && !it->second.codeCacheValid())
it->second.noteCode(it->second.codeHash() == EmptySHA3 ? bytesConstRef() : bytesConstRef(m_db.lookup(it->second.codeHash())));
}
void State::commit()
{
eth::commit(m_cache, m_db, m_state);
m_cache.clear();
}
bool State::sync(BlockChain const& _bc)
{
return sync(_bc, _bc.currentHash());
}
bool State::sync(BlockChain const& _bc, h256 _block, BlockInfo const& _bi)
{
bool ret = false;
// BLOCK
BlockInfo bi = _bi;
try
{
if (!bi)
{
auto b = _bc.block(_block);
bi.populate(b);
// bi.verifyInternals(_bc.block(_block)); // Unneeded - we already verify on import into the blockchain.
}
}
catch (...)
{
// TODO: Slightly nicer handling? :-)
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
exit(1);
}
if (bi == m_currentBlock)
{
// We mined the last block.
// Our state is good - we just need to move on to next.
m_previousBlock = m_currentBlock;
resetCurrent();
ret = true;
}
else if (bi == m_previousBlock)
{
// No change since last sync.
// Carry on as we were.
}
else
{
// New blocks available, or we've switched to a different branch. All change.
// Find most recent state dump and replay what's left.
// (Most recent state dump might end up being genesis.)
std::vector<h256> chain;
while (bi.stateRoot != BlockChain::genesis().hash && m_db.lookup(bi.stateRoot).empty()) // while we don't have the state root of the latest block...
{
chain.push_back(bi.hash); // push back for later replay.
bi.populate(_bc.block(bi.parentHash)); // move to parent.
}
m_previousBlock = bi;
resetCurrent();
// Iterate through in reverse, playing back each of the blocks.
try
{
for (auto it = chain.rbegin(); it != chain.rend(); ++it)
{
auto b = _bc.block(*it);
enact(&b);
cleanup(true);
}
}
catch (...)
{
// TODO: Slightly nicer handling? :-)
cerr << "ERROR: Corrupt block-chain! Delete your block-chain DB and restart." << endl;
exit(1);
}
resetCurrent();
ret = true;
}
return ret;
}
u256 State::enactOn(bytesConstRef _block, BlockInfo const& _bi, BlockChain const& _bc)
{
// Check family:
BlockInfo biParent(_bc.block(_bi.parentHash));
_bi.verifyParent(biParent);
BlockInfo biGrandParent;
if (biParent.number)
biGrandParent.populate(_bc.block(biParent.parentHash));
sync(_bc, _bi.parentHash);
resetCurrent();
m_previousBlock = biParent;
return enact(_block, &_bc);
}
map<Address, u256> State::addresses() const
{
map<Address, u256> ret;
for (auto i: m_cache)
if (i.second.isAlive())
ret[i.first] = i.second.balance();
for (auto const& i: m_state)
if (m_cache.find(i.first) == m_cache.end())
ret[i.first] = RLP(i.second)[1].toInt<u256>();
return ret;
}
void State::resetCurrent()
{
m_transactions.clear();
m_transactionSet.clear();
m_cache.clear();
m_currentBlock = BlockInfo();
m_currentBlock.coinbaseAddress = m_ourAddress;
m_currentBlock.timestamp = time(0);
m_currentBlock.transactionsRoot = h256();
m_currentBlock.sha3Uncles = h256();
m_currentBlock.minGasPrice = 10 * szabo;
m_currentBlock.populateFromParent(m_previousBlock);
// Update timestamp according to clock.
// TODO: check.
m_lastTx = m_db;
m_state.setRoot(m_previousBlock.stateRoot);
paranoia("begin resetCurrent", true);
}
bool State::cull(TransactionQueue& _tq) const
{
bool ret = false;
auto ts = _tq.transactions();
for (auto const& i: ts)
{
if (!m_transactionSet.count(i.first))
{
try
{
Transaction t(i.second);
if (t.nonce <= transactionsFrom(t.sender()))
{
_tq.drop(i.first);
ret = true;
}
}
catch (...)
{
_tq.drop(i.first);
ret = true;
}
}
}
return ret;
}
h256s State::sync(TransactionQueue& _tq, bool* o_transactionQueueChanged)
{
// TRANSACTIONS
h256s ret;
auto ts = _tq.transactions();
for (int goodTxs = 1; goodTxs;)
{
goodTxs = 0;
for (auto const& i: ts)
if (!m_transactionSet.count(i.first))
{
// don't have it yet! Execute it now.
try
{
uncommitToMine();
execute(i.second);
ret.push_back(m_transactions.back().changes.bloom());
_tq.noteGood(i);
++goodTxs;
}
catch (InvalidNonce const& in)
{
if (in.required > in.candidate)
{
// too old
_tq.drop(i.first);
if (o_transactionQueueChanged)
*o_transactionQueueChanged = true;
}
else
_tq.setFuture(i);
}
catch (std::exception const&)
{
// Something else went wrong - drop it.
_tq.drop(i.first);
if (o_transactionQueueChanged)
*o_transactionQueueChanged = true;
}
}
}
return ret;
}
u256 State::enact(bytesConstRef _block, BlockChain const* _bc, bool _checkNonce)
{
// m_currentBlock is assumed to be prepopulated and reset.
#if !ETH_RELEASE
BlockInfo bi(_block);
assert(m_previousBlock.hash == bi.parentHash);
assert(m_currentBlock.parentHash == bi.parentHash);
assert(rootHash() == m_previousBlock.stateRoot);
#endif
if (m_currentBlock.parentHash != m_previousBlock.hash)
throw InvalidParentHash();
// Populate m_currentBlock with the correct values.
m_currentBlock.populate(_block, _checkNonce);
m_currentBlock.verifyInternals(_block);
// cnote << "playback begins:" << m_state.root();
// cnote << m_state;
MemoryDB tm;
GenericTrieDB<MemoryDB> transactionManifest(&tm);
transactionManifest.init();
// All ok with the block generally. Play back the transactions now...
unsigned i = 0;
for (auto const& tr: RLP(_block)[1])
{
// cnote << m_state.root() << m_state;
// cnote << *this;
execute(tr[0].data());
if (tr[1].toHash<h256>() != m_state.root())
{
// Invalid state root
cnote << m_state.root() << "\n" << m_state;
cnote << *this;
cnote << "INVALID: " << tr[1].toHash<h256>();
throw InvalidTransactionStateRoot();
}
if (tr[2].toInt<u256>() != gasUsed())
throw InvalidTransactionGasUsed();
bytes k = rlp(i);
transactionManifest.insert(&k, tr.data());
++i;
}
if (m_currentBlock.transactionsRoot && transactionManifest.root() != m_currentBlock.transactionsRoot)
{
cwarn << "Bad transactions state root!";
throw InvalidTransactionStateRoot();
}
// Initialise total difficulty calculation.
u256 tdIncrease = m_currentBlock.difficulty;
// Check uncles & apply their rewards to state.
set<h256> nonces = { m_currentBlock.nonce };
Addresses rewarded;
set<h256> knownUncles = _bc ? _bc->allUnclesFrom(m_currentBlock.parentHash) : set<h256>();
for (auto const& i: RLP(_block)[2])
{
BlockInfo uncle = BlockInfo::fromHeader(i.data());
if (nonces.count(uncle.nonce))
throw DuplicateUncleNonce();
if (_bc)
{
BlockInfo uncleParent(_bc->block(uncle.parentHash));
if ((bigint)uncleParent.number < (bigint)m_currentBlock.number - 6)
throw UncleTooOld();
if (knownUncles.count(sha3(i.data())))
throw UncleInChain();
uncle.verifyParent(uncleParent);
}
nonces.insert(uncle.nonce);
tdIncrease += uncle.difficulty;
rewarded.push_back(uncle.coinbaseAddress);
}
applyRewards(rewarded);
// Commit all cached state changes to the state trie.
commit();
// Hash the state trie and check against the state_root hash in m_currentBlock.
if (m_currentBlock.stateRoot != m_previousBlock.stateRoot && m_currentBlock.stateRoot != rootHash())
{
cwarn << "Bad state root!";
cnote << "Given to be:" << m_currentBlock.stateRoot;
cnote << TrieDB<Address, OverlayDB>(&m_db, m_currentBlock.stateRoot);
cnote << "Calculated to be:" << rootHash();
cnote << m_state;
cnote << *this;
// Rollback the trie.
m_db.rollback();
throw InvalidStateRoot();
}
return tdIncrease;
}
void State::cleanup(bool _fullCommit)
{
if (_fullCommit)
{
paranoia("immediately before database commit", true);
// Commit the new trie to disk.
m_db.commit();
paranoia("immediately after database commit", true);
m_previousBlock = m_currentBlock;
}
else
{
m_db.rollback();
}
resetCurrent();
}
void State::uncommitToMine()
{
if (m_currentBlock.sha3Uncles)
{
m_cache.clear();
if (!m_transactions.size())
m_state.setRoot(m_previousBlock.stateRoot);
else
m_state.setRoot(m_transactions[m_transactions.size() - 1].stateRoot);
m_db = m_lastTx;
paranoia("Uncommited to mine", true);
m_currentBlock.sha3Uncles = h256();
}
}
bool State::amIJustParanoid(BlockChain const& _bc)
{
commitToMine(_bc);
// Update difficulty according to timestamp.
m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock);
// Compile block:
RLPStream block;
block.appendList(3);
m_currentBlock.fillStream(block, true);
block.appendRaw(m_currentTxs);
block.appendRaw(m_currentUncles);
State s(*this);
s.resetCurrent();
try
{
cnote << "PARANOIA root:" << s.rootHash();
// s.m_currentBlock.populate(&block.out(), false);
// s.m_currentBlock.verifyInternals(&block.out());
s.enact(&block.out(), &_bc, false); // don't check nonce for this since we haven't mined it yet.
s.cleanup(false);
return true;
}
catch (Exception const& e)
{
cwarn << "Bad block: " << e.description();
}
catch (std::exception const& e)
{
cwarn << "Bad block: " << e.what();
}
return false;
}
h256 State::bloom() const
{
h256 ret = m_currentBlock.coinbaseAddress.bloom();
for (auto const& i: m_transactions)
ret |= i.changes.bloom();
return ret;
}
// @returns the block that represents the difference between m_previousBlock and m_currentBlock.
// (i.e. all the transactions we executed).
void State::commitToMine(BlockChain const& _bc)
{
uncommitToMine();
cnote << "Committing to mine on block" << m_previousBlock.hash.abridged();
#ifdef ETH_PARANOIA
commit();
cnote << "Pre-reward stateRoot:" << m_state.root();
#endif
m_lastTx = m_db;
Addresses uncleAddresses;
RLPStream unclesData;
unsigned unclesCount = 0;
if (m_previousBlock != BlockChain::genesis())
{
// Find great-uncles (or second-cousins or whatever they are) - children of great-grandparents, great-great-grandparents... that were not already uncles in previous generations.
// cout << "Checking " << m_previousBlock.hash << ", parent=" << m_previousBlock.parentHash << endl;
set<h256> knownUncles = _bc.allUnclesFrom(m_currentBlock.parentHash);
auto p = m_previousBlock.parentHash;
for (unsigned gen = 0; gen < 6 && p != _bc.genesisHash(); ++gen, p = _bc.details(p).parent)
{
auto us = _bc.details(p).children;
assert(us.size() >= 1); // must be at least 1 child of our grandparent - it's our own parent!
for (auto const& u: us)
if (!knownUncles.count(BlockInfo::headerHash(_bc.block(u)))) // ignore any uncles/mainline blocks that we know about. We use header-hash for this.
{
BlockInfo ubi(_bc.block(u));
ubi.fillStream(unclesData, true);
++unclesCount;
uncleAddresses.push_back(ubi.coinbaseAddress);
}
}
}
MemoryDB tm;
GenericTrieDB<MemoryDB> transactionReceipts(&tm);
transactionReceipts.init();
RLPStream txs;
txs.appendList(m_transactions.size());
for (unsigned i = 0; i < m_transactions.size(); ++i)
{
RLPStream k;
k << i;
RLPStream v;
m_transactions[i].fillStream(v);
transactionReceipts.insert(&k.out(), &v.out());
txs.appendRaw(v.out());
}
txs.swapOut(m_currentTxs);
RLPStream(unclesCount).appendRaw(unclesData.out(), unclesCount).swapOut(m_currentUncles);
m_currentBlock.transactionsRoot = transactionReceipts.root();
m_currentBlock.sha3Uncles = sha3(m_currentUncles);
// Apply rewards last of all.
applyRewards(uncleAddresses);
// Commit any and all changes to the trie that are in the cache, then update the state root accordingly.
commit();
cnote << "Post-reward stateRoot:" << m_state.root().abridged();
// cnote << m_state;
// cnote << *this;
m_currentBlock.gasUsed = gasUsed();
m_currentBlock.stateRoot = m_state.root();
m_currentBlock.parentHash = m_previousBlock.hash;
}
MineInfo State::mine(uint _msTimeout, bool _turbo)
{
// Update difficulty according to timestamp.
m_currentBlock.difficulty = m_currentBlock.calculateDifficulty(m_previousBlock);
// TODO: Miner class that keeps dagger between mine calls (or just non-polling mining).
auto ret = m_dagger.mine(/*out*/m_currentBlock.nonce, m_currentBlock.headerHashWithoutNonce(), m_currentBlock.difficulty, _msTimeout, true, _turbo);
if (!ret.completed)
m_currentBytes.clear();
return ret;
}
void State::completeMine()
{
cdebug << "Completing mine!";
// Got it!
// Compile block:
RLPStream ret;
ret.appendList(3);
m_currentBlock.fillStream(ret, true);
ret.appendRaw(m_currentTxs);
ret.appendRaw(m_currentUncles);
ret.swapOut(m_currentBytes);
m_currentBlock.hash = sha3(m_currentBytes);
cnote << "Mined " << m_currentBlock.hash.abridged() << "(parent: " << m_currentBlock.parentHash.abridged() << ")";
// Quickly reset the transactions.
// TODO: Leave this in a better state than this limbo, or at least record that it's in limbo.
m_transactions.clear();
m_transactionSet.clear();
m_lastTx = m_db;
}
bool State::addressInUse(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return false;
return true;
}
bool State::addressHasCode(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return false;
return it->second.isFreshCode() || it->second.codeHash() != EmptySHA3;
}
u256 State::balance(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return 0;
return it->second.balance();
}
void State::noteSending(Address _id)
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
m_cache[_id] = AddressState(1, 0, h256(), EmptySHA3);
else
it->second.incNonce();
}
void State::addBalance(Address _id, u256 _amount)
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
m_cache[_id] = AddressState(0, _amount, h256(), EmptySHA3);
else
it->second.addBalance(_amount);
}
void State::subBalance(Address _id, bigint _amount)
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end() || (bigint)it->second.balance() < _amount)
throw NotEnoughCash();
else
it->second.addBalance(-_amount);
}
u256 State::transactionsFrom(Address _id) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it == m_cache.end())
return 0;
else
return it->second.nonce();
}
u256 State::storage(Address _id, u256 _memory) const
{
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
// Account doesn't exist - exit now.
if (it == m_cache.end())
return 0;
// See if it's in the account's storage cache.
auto mit = it->second.storage().find(_memory);
if (mit != it->second.storage().end())
return mit->second;
// Not in the storage cache - go to the DB.
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(&m_db), it->second.baseRoot()); // promise we won't change the overlay! :)
string payload = memdb.at(_memory);
u256 ret = payload.size() ? RLP(payload).toInt<u256>() : 0;
it->second.setStorage(_memory, ret);
return ret;
}
map<u256, u256> State::storage(Address _id) const
{
map<u256, u256> ret;
ensureCached(_id, false, false);
auto it = m_cache.find(_id);
if (it != m_cache.end())
{
// Pull out all values from trie storage.
if (it->second.baseRoot())
{
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(&m_db), it->second.baseRoot()); // promise we won't alter the overlay! :)
for (auto const& i: memdb)
ret[i.first] = RLP(i.second).toInt<u256>();
}
// Then merge cached storage over the top.
for (auto const& i: it->second.storage())
if (i.second)
ret[i.first] = i.second;
else
ret.erase(i.first);
}
return ret;
}
h256 State::storageRoot(Address _id) const
{
string s = m_state.at(_id);
if (s.size())
{
RLP r(s);
return r[2].toHash<h256>();
}
return h256();
}
bytes const& State::code(Address _contract) const
{
if (!addressHasCode(_contract))
return NullBytes;
ensureCached(_contract, true, false);
return m_cache[_contract].code();
}
bool State::isTrieGood(bool _enforceRefs, bool _requireNoLeftOvers) const
{
for (int e = 0; e < (_enforceRefs ? 2 : 1); ++e)
try
{
EnforceRefs r(m_db, !!e);
auto lo = m_state.leftOvers();
if (!lo.empty() && _requireNoLeftOvers)
{
cwarn << "LEFTOVERS" << (e ? "[enforced" : "[unenforced") << "refs]";
cnote << "Left:" << lo;
cnote << "Keys:" << m_db.keys();
m_state.debugStructure(cerr);
return false;
}
// TODO: Enable once fixed.
for (auto const& i: m_state)
{
RLP r(i.second);
TrieDB<h256, OverlayDB> storageDB(const_cast<OverlayDB*>(&m_db), r[2].toHash<h256>()); // promise not to alter OverlayDB.
for (auto const& j: storageDB) { (void)j; }
if (!e && r[3].toHash<h256>() != EmptySHA3 && m_db.lookup(r[3].toHash<h256>()).empty())
return false;
}
}
catch (InvalidTrie)
{
cwarn << "BAD TRIE" << (e ? "[enforced" : "[unenforced") << "refs]";
cnote << m_db.keys();
m_state.debugStructure(cerr);
return false;
}
return true;
}
// TODO: maintain node overlay revisions for stateroots -> each commit gives a stateroot + OverlayDB; allow overlay copying for rewind operations.
u256 State::execute(bytesConstRef _rlp, bytes* o_output, bool _commit)
{
#ifndef ETH_RELEASE
commit(); // get an updated hash
#endif
paranoia("start of execution.", true);
State old(*this);
#if ETH_PARANOIA
auto h = rootHash();
#endif
Manifest ms;
Executive e(*this, &ms);
e.setup(_rlp);
u256 startGasUsed = gasUsed();
#if ETH_PARANOIA
ctrace << "Executing" << e.t() << "on" << h;
ctrace << toHex(e.t().rlp(true));
#endif
e.go();
e.finalize();
#if ETH_PARANOIA
ctrace << "Ready for commit;";
ctrace << old.diff(*this);
#endif
if (o_output)
*o_output = e.out().toBytes();
if (!_commit)
{
m_cache.clear();
return e.gasUsed();
}
commit();
#if ETH_PARANOIA
ctrace << "Executed; now" << rootHash();
ctrace << old.diff(*this);
paranoia("after execution commit.", true);
if (e.t().receiveAddress)
{
EnforceRefs r(m_db, true);
if (storageRoot(e.t().receiveAddress) && m_db.lookup(storageRoot(e.t().receiveAddress)).empty())
{
cwarn << "TRIE immediately after execution; no node for receiveAddress";
throw InvalidTrie();
}
}
#endif
// TODO: CHECK TRIE after level DB flush to make sure exactly the same.
// Add to the user-originated transactions that we've executed.
m_transactions.push_back(TransactionReceipt(e.t(), rootHash(), startGasUsed + e.gasUsed(), ms));
m_transactionSet.insert(e.t().sha3());
return e.gasUsed();
}
bool State::call(Address _receiveAddress, Address _senderAddress, u256 _value, u256 _gasPrice, bytesConstRef _data, u256* _gas, bytesRef _out, Address _originAddress, std::set<Address>* o_suicides, PostList* o_posts, Manifest* o_ms, OnOpFunc const& _onOp, unsigned _level)
{
if (!_originAddress)
_originAddress = _senderAddress;
// cnote << "Transferring" << formatBalance(_value) << "to receiver.";
addBalance(_receiveAddress, _value);
if (o_ms)
{
o_ms->from = _senderAddress;
o_ms->to = _receiveAddress;
o_ms->value = _value;
o_ms->input = _data.toBytes();
}
if (addressHasCode(_receiveAddress))
{
VM vm(*_gas);
ExtVM evm(*this, _receiveAddress, _senderAddress, _originAddress, _value, _gasPrice, _data, &code(_receiveAddress), o_ms, _level);
bool revert = false;
try
{
auto out = vm.go(evm, _onOp);
memcpy(_out.data(), out.data(), std::min(out.size(), _out.size()));
if (o_suicides)
for (auto i: evm.suicides)
o_suicides->insert(i);
if (o_posts)
for (auto i: evm.posts)
o_posts->push_back(i);
if (o_ms)
o_ms->output = out.toBytes();
}
catch (OutOfGas const& /*_e*/)
{
clog(StateChat) << "Out of Gas! Reverting.";
revert = true;
}
catch (VMException const& _e)
{
clog(StateChat) << "VM Exception: " << _e.description();
}
catch (Exception const& _e)
{
clog(StateChat) << "Exception in VM: " << _e.description();
}
catch (std::exception const& _e)
{
clog(StateChat) << "std::exception in VM: " << _e.what();
}
// Write state out only in the case of a non-excepted transaction.
if (revert)
evm.revert();
*_gas = vm.gas();
return !revert;
}
return true;
}
h160 State::create(Address _sender, u256 _endowment, u256 _gasPrice, u256* _gas, bytesConstRef _code, Address _origin, std::set<Address>* o_suicides, PostList* o_posts, Manifest* o_ms, OnOpFunc const& _onOp, unsigned _level)
{
if (!_origin)
_origin = _sender;
if (o_ms)
{
o_ms->from = _sender;
o_ms->to = Address();
o_ms->value = _endowment;
o_ms->input = _code.toBytes();
}
Address newAddress = right160(sha3(rlpList(_sender, transactionsFrom(_sender) - 1)));
while (addressInUse(newAddress))
newAddress = (u160)newAddress + 1;
// Set up new account...
m_cache[newAddress] = AddressState(0, _endowment, h256(), h256());
// Execute init code.
VM vm(*_gas);
ExtVM evm(*this, newAddress, _sender, _origin, _endowment, _gasPrice, bytesConstRef(), _code, o_ms, _level);
bool revert = false;
bytesConstRef out;
try
{
out = vm.go(evm, _onOp);
if (o_ms)
o_ms->output = out.toBytes();
if (o_suicides)
for (auto i: evm.suicides)
o_suicides->insert(i);
if (o_posts)
for (auto i: evm.posts)
o_posts->push_back(i);
}
catch (OutOfGas const& /*_e*/)
{
clog(StateChat) << "Out of Gas! Reverting.";
revert = true;
}
catch (VMException const& _e)
{
clog(StateChat) << "VM Exception: " << _e.description();
}
catch (Exception const& _e)
{
clog(StateChat) << "Exception in VM: " << _e.description();
}
catch (std::exception const& _e)
{
clog(StateChat) << "std::exception in VM: " << _e.what();
}
// TODO: CHECK: IS THIS CORRECT?! (esp. given account created prior to revertion init.)
// Write state out only in the case of a non-out-of-gas transaction.
if (revert)
evm.revert();
// Set code.
if (addressInUse(newAddress))
m_cache[newAddress].setCode(out);
*_gas = vm.gas();
return newAddress;
}
State State::fromPending(unsigned _i) const
{
State ret = *this;
ret.m_cache.clear();
_i = min<unsigned>(_i, m_transactions.size());
if (!_i)
ret.m_state.setRoot(m_previousBlock.stateRoot);
else
ret.m_state.setRoot(m_transactions[_i - 1].stateRoot);
while (ret.m_transactions.size() > _i)
{
ret.m_transactionSet.erase(ret.m_transactions.back().transaction.sha3());
ret.m_transactions.pop_back();
}
return ret;
}
void State::applyRewards(Addresses const& _uncleAddresses)
{
u256 r = m_blockReward;
for (auto const& i: _uncleAddresses)
{
addBalance(i, m_blockReward * 15 / 16);
r += m_blockReward / 32;
}
addBalance(m_currentBlock.coinbaseAddress, r);
}
std::ostream& eth::operator<<(std::ostream& _out, State const& _s)
{
_out << "--- " << _s.rootHash() << std::endl;
std::set<Address> d;
std::set<Address> dtr;
auto trie = TrieDB<Address, OverlayDB>(const_cast<OverlayDB*>(&_s.m_db), _s.rootHash());
for (auto i: trie)
d.insert(i.first), dtr.insert(i.first);
for (auto i: _s.m_cache)
d.insert(i.first);
for (auto i: d)
{
auto it = _s.m_cache.find(i);
AddressState* cache = it != _s.m_cache.end() ? &it->second : nullptr;
auto rlpString = trie.at(i);
RLP r(dtr.count(i) ? rlpString : "");
assert(cache || r);
if (cache && !cache->isAlive())
_out << "XXX " << i << std::endl;
else
{
string lead = (cache ? r ? " * " : " + " : " ");
if (cache && r && cache->nonce() == r[0].toInt<u256>() && cache->balance() == r[1].toInt<u256>())
lead = " . ";
stringstream contout;
if ((!cache || cache->codeBearing()) && (!r || r[3].toHash<h256>() != EmptySHA3))
{
std::map<u256, u256> mem;
std::set<u256> back;
std::set<u256> delta;
std::set<u256> cached;
if (r)
{
TrieDB<h256, OverlayDB> memdb(const_cast<OverlayDB*>(&_s.m_db), r[2].toHash<h256>()); // promise we won't alter the overlay! :)
for (auto const& j: memdb)
mem[j.first] = RLP(j.second).toInt<u256>(), back.insert(j.first);
}
if (cache)
for (auto const& j: cache->storage())
{
if ((!mem.count(j.first) && j.second) || (mem.count(j.first) && mem.at(j.first) != j.second))
mem[j.first] = j.second, delta.insert(j.first);
else if (j.second)
cached.insert(j.first);
}
if (delta.size())
lead = (lead == " . ") ? "*.* " : "*** ";
contout << " @:";
if (delta.size())
contout << "???";
else
contout << r[2].toHash<h256>();
if (cache && cache->isFreshCode())
contout << " $" << cache->code();
else
contout << " $" << (cache ? cache->codeHash() : r[3].toHash<h256>());
for (auto const& j: mem)
if (j.second)
contout << std::endl << (delta.count(j.first) ? back.count(j.first) ? " * " : " + " : cached.count(j.first) ? " . " : " ") << std::hex << nouppercase << std::setw(64) << j.first << ": " << std::setw(0) << j.second ;
else
contout << std::endl << "XXX " << std::hex << nouppercase << std::setw(64) << j.first << "";
}
else
contout << " [SIMPLE]";
_out << lead << i << ": " << std::dec << (cache ? cache->nonce() : r[0].toInt<u256>()) << " #:" << (cache ? cache->balance() : r[1].toInt<u256>()) << contout.str() << std::endl;
}
}
return _out;
}