You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

588 lines
16 KiB

// author Tim Hughes <tim@twistedfury.com>
// Tested on Radeon HD 7850
// Hashrate: 15940347 hashes/s
// Bandwidth: 124533 MB/s
// search kernel should fit in <= 84 VGPRS (3 wavefronts)
#define THREADS_PER_HASH (128 / 16)
#define HASHES_PER_LOOP (GROUP_SIZE / THREADS_PER_HASH)
#define FNV_PRIME 0x01000193
__constant uint2 const Keccak_f1600_RC[24] = {
(uint2)(0x00000001, 0x00000000),
(uint2)(0x00008082, 0x00000000),
(uint2)(0x0000808a, 0x80000000),
(uint2)(0x80008000, 0x80000000),
(uint2)(0x0000808b, 0x00000000),
(uint2)(0x80000001, 0x00000000),
(uint2)(0x80008081, 0x80000000),
(uint2)(0x00008009, 0x80000000),
(uint2)(0x0000008a, 0x00000000),
(uint2)(0x00000088, 0x00000000),
(uint2)(0x80008009, 0x00000000),
(uint2)(0x8000000a, 0x00000000),
(uint2)(0x8000808b, 0x00000000),
(uint2)(0x0000008b, 0x80000000),
(uint2)(0x00008089, 0x80000000),
(uint2)(0x00008003, 0x80000000),
(uint2)(0x00008002, 0x80000000),
(uint2)(0x00000080, 0x80000000),
(uint2)(0x0000800a, 0x00000000),
(uint2)(0x8000000a, 0x80000000),
(uint2)(0x80008081, 0x80000000),
(uint2)(0x00008080, 0x80000000),
(uint2)(0x80000001, 0x00000000),
(uint2)(0x80008008, 0x80000000),
};
void keccak_f1600_round(uint2* a, uint r, uint out_size)
{
#if !__ENDIAN_LITTLE__
for (uint i = 0; i != 25; ++i)
a[i] = a[i].yx;
#endif
uint2 b[25];
uint2 t;
// Theta
b[0] = a[0] ^ a[5] ^ a[10] ^ a[15] ^ a[20];
b[1] = a[1] ^ a[6] ^ a[11] ^ a[16] ^ a[21];
b[2] = a[2] ^ a[7] ^ a[12] ^ a[17] ^ a[22];
b[3] = a[3] ^ a[8] ^ a[13] ^ a[18] ^ a[23];
b[4] = a[4] ^ a[9] ^ a[14] ^ a[19] ^ a[24];
t = b[4] ^ (uint2)(b[1].x << 1 | b[1].y >> 31, b[1].y << 1 | b[1].x >> 31);
a[0] ^= t;
a[5] ^= t;
a[10] ^= t;
a[15] ^= t;
a[20] ^= t;
t = b[0] ^ (uint2)(b[2].x << 1 | b[2].y >> 31, b[2].y << 1 | b[2].x >> 31);
a[1] ^= t;
a[6] ^= t;
a[11] ^= t;
a[16] ^= t;
a[21] ^= t;
t = b[1] ^ (uint2)(b[3].x << 1 | b[3].y >> 31, b[3].y << 1 | b[3].x >> 31);
a[2] ^= t;
a[7] ^= t;
a[12] ^= t;
a[17] ^= t;
a[22] ^= t;
t = b[2] ^ (uint2)(b[4].x << 1 | b[4].y >> 31, b[4].y << 1 | b[4].x >> 31);
a[3] ^= t;
a[8] ^= t;
a[13] ^= t;
a[18] ^= t;
a[23] ^= t;
t = b[3] ^ (uint2)(b[0].x << 1 | b[0].y >> 31, b[0].y << 1 | b[0].x >> 31);
a[4] ^= t;
a[9] ^= t;
a[14] ^= t;
a[19] ^= t;
a[24] ^= t;
// Rho Pi
b[0] = a[0];
b[10] = (uint2)(a[1].x << 1 | a[1].y >> 31, a[1].y << 1 | a[1].x >> 31);
b[7] = (uint2)(a[10].x << 3 | a[10].y >> 29, a[10].y << 3 | a[10].x >> 29);
b[11] = (uint2)(a[7].x << 6 | a[7].y >> 26, a[7].y << 6 | a[7].x >> 26);
b[17] = (uint2)(a[11].x << 10 | a[11].y >> 22, a[11].y << 10 | a[11].x >> 22);
b[18] = (uint2)(a[17].x << 15 | a[17].y >> 17, a[17].y << 15 | a[17].x >> 17);
b[3] = (uint2)(a[18].x << 21 | a[18].y >> 11, a[18].y << 21 | a[18].x >> 11);
b[5] = (uint2)(a[3].x << 28 | a[3].y >> 4, a[3].y << 28 | a[3].x >> 4);
b[16] = (uint2)(a[5].y << 4 | a[5].x >> 28, a[5].x << 4 | a[5].y >> 28);
b[8] = (uint2)(a[16].y << 13 | a[16].x >> 19, a[16].x << 13 | a[16].y >> 19);
b[21] = (uint2)(a[8].y << 23 | a[8].x >> 9, a[8].x << 23 | a[8].y >> 9);
b[24] = (uint2)(a[21].x << 2 | a[21].y >> 30, a[21].y << 2 | a[21].x >> 30);
b[4] = (uint2)(a[24].x << 14 | a[24].y >> 18, a[24].y << 14 | a[24].x >> 18);
b[15] = (uint2)(a[4].x << 27 | a[4].y >> 5, a[4].y << 27 | a[4].x >> 5);
b[23] = (uint2)(a[15].y << 9 | a[15].x >> 23, a[15].x << 9 | a[15].y >> 23);
b[19] = (uint2)(a[23].y << 24 | a[23].x >> 8, a[23].x << 24 | a[23].y >> 8);
b[13] = (uint2)(a[19].x << 8 | a[19].y >> 24, a[19].y << 8 | a[19].x >> 24);
b[12] = (uint2)(a[13].x << 25 | a[13].y >> 7, a[13].y << 25 | a[13].x >> 7);
b[2] = (uint2)(a[12].y << 11 | a[12].x >> 21, a[12].x << 11 | a[12].y >> 21);
b[20] = (uint2)(a[2].y << 30 | a[2].x >> 2, a[2].x << 30 | a[2].y >> 2);
b[14] = (uint2)(a[20].x << 18 | a[20].y >> 14, a[20].y << 18 | a[20].x >> 14);
b[22] = (uint2)(a[14].y << 7 | a[14].x >> 25, a[14].x << 7 | a[14].y >> 25);
b[9] = (uint2)(a[22].y << 29 | a[22].x >> 3, a[22].x << 29 | a[22].y >> 3);
b[6] = (uint2)(a[9].x << 20 | a[9].y >> 12, a[9].y << 20 | a[9].x >> 12);
b[1] = (uint2)(a[6].y << 12 | a[6].x >> 20, a[6].x << 12 | a[6].y >> 20);
// Chi
a[0] = bitselect(b[0] ^ b[2], b[0], b[1]);
a[1] = bitselect(b[1] ^ b[3], b[1], b[2]);
a[2] = bitselect(b[2] ^ b[4], b[2], b[3]);
a[3] = bitselect(b[3] ^ b[0], b[3], b[4]);
if (out_size >= 4)
{
a[4] = bitselect(b[4] ^ b[1], b[4], b[0]);
a[5] = bitselect(b[5] ^ b[7], b[5], b[6]);
a[6] = bitselect(b[6] ^ b[8], b[6], b[7]);
a[7] = bitselect(b[7] ^ b[9], b[7], b[8]);
a[8] = bitselect(b[8] ^ b[5], b[8], b[9]);
if (out_size >= 8)
{
a[9] = bitselect(b[9] ^ b[6], b[9], b[5]);
a[10] = bitselect(b[10] ^ b[12], b[10], b[11]);
a[11] = bitselect(b[11] ^ b[13], b[11], b[12]);
a[12] = bitselect(b[12] ^ b[14], b[12], b[13]);
a[13] = bitselect(b[13] ^ b[10], b[13], b[14]);
a[14] = bitselect(b[14] ^ b[11], b[14], b[10]);
a[15] = bitselect(b[15] ^ b[17], b[15], b[16]);
a[16] = bitselect(b[16] ^ b[18], b[16], b[17]);
a[17] = bitselect(b[17] ^ b[19], b[17], b[18]);
a[18] = bitselect(b[18] ^ b[15], b[18], b[19]);
a[19] = bitselect(b[19] ^ b[16], b[19], b[15]);
a[20] = bitselect(b[20] ^ b[22], b[20], b[21]);
a[21] = bitselect(b[21] ^ b[23], b[21], b[22]);
a[22] = bitselect(b[22] ^ b[24], b[22], b[23]);
a[23] = bitselect(b[23] ^ b[20], b[23], b[24]);
a[24] = bitselect(b[24] ^ b[21], b[24], b[20]);
}
}
// Iota
a[0] ^= Keccak_f1600_RC[r];
#if !__ENDIAN_LITTLE__
for (uint i = 0; i != 25; ++i)
a[i] = a[i].yx;
#endif
}
void keccak_f1600_no_absorb(ulong* a, uint in_size, uint out_size, uint isolate)
{
for (uint i = in_size; i != 25; ++i)
{
a[i] = 0;
}
#if __ENDIAN_LITTLE__
a[in_size] ^= 0x0000000000000001;
a[24-out_size*2] ^= 0x8000000000000000;
#else
a[in_size] ^= 0x0100000000000000;
a[24-out_size*2] ^= 0x0000000000000080;
#endif
// Originally I unrolled the first and last rounds to interface
// better with surrounding code, however I haven't done this
// without causing the AMD compiler to blow up the VGPR usage.
uint r = 0;
do
{
// This dynamic branch stops the AMD compiler unrolling the loop
// and additionally saves about 33% of the VGPRs, enough to gain another
// wavefront. Ideally we'd get 4 in flight, but 3 is the best I can
// massage out of the compiler. It doesn't really seem to matter how
// much we try and help the compiler save VGPRs because it seems to throw
// that information away, hence the implementation of keccak here
// doesn't bother.
if (isolate)
{
keccak_f1600_round((uint2*)a, r++, 25);
}
}
while (r < 23);
// final round optimised for digest size
keccak_f1600_round((uint2*)a, r++, out_size);
}
#define copy(dst, src, count) for (uint i = 0; i != count; ++i) { (dst)[i] = (src)[i]; }
#define countof(x) (sizeof(x) / sizeof(x[0]))
uint fnv(uint x, uint y)
{
return x * FNV_PRIME ^ y;
}
uint4 fnv4(uint4 x, uint4 y)
{
return x * FNV_PRIME ^ y;
}
uint fnv_reduce(uint4 v)
{
return fnv(fnv(fnv(v.x, v.y), v.z), v.w);
}
typedef union
{
ulong ulongs[32 / sizeof(ulong)];
uint uints[32 / sizeof(uint)];
} hash32_t;
typedef union
{
ulong ulongs[64 / sizeof(ulong)];
uint4 uint4s[64 / sizeof(uint4)];
} hash64_t;
typedef union
{
uint uints[128 / sizeof(uint)];
uint4 uint4s[128 / sizeof(uint4)];
} hash128_t;
hash64_t init_hash(__constant hash32_t const* header, ulong nonce, uint isolate)
{
hash64_t init;
uint const init_size = countof(init.ulongs);
uint const hash_size = countof(header->ulongs);
// sha3_512(header .. nonce)
ulong state[25];
copy(state, header->ulongs, hash_size);
state[hash_size] = nonce;
keccak_f1600_no_absorb(state, hash_size + 1, init_size, isolate);
copy(init.ulongs, state, init_size);
return init;
}
uint inner_loop_chunks(uint4 init, uint thread_id, __local uint* share, __global hash128_t const* g_dag, __global hash128_t const* g_dag1, __global hash128_t const* g_dag2, __global hash128_t const* g_dag3, uint isolate)
{
uint4 mix = init;
// share init0
if (thread_id == 0)
*share = mix.x;
barrier(CLK_LOCAL_MEM_FENCE);
uint init0 = *share;
uint a = 0;
do
{
bool update_share = thread_id == (a/4) % THREADS_PER_HASH;
#pragma unroll
for (uint i = 0; i != 4; ++i)
{
if (update_share)
{
uint m[4] = { mix.x, mix.y, mix.z, mix.w };
*share = fnv(init0 ^ (a+i), m[i]) % DAG_SIZE;
}
barrier(CLK_LOCAL_MEM_FENCE);
mix = fnv4(mix, *share>=3 * DAG_SIZE / 4 ? g_dag3[*share - 3 * DAG_SIZE / 4].uint4s[thread_id] : *share>=DAG_SIZE / 2 ? g_dag2[*share - DAG_SIZE / 2].uint4s[thread_id] : *share>=DAG_SIZE / 4 ? g_dag1[*share - DAG_SIZE / 4].uint4s[thread_id]:g_dag[*share].uint4s[thread_id]);
}
} while ((a += 4) != (ACCESSES & isolate));
return fnv_reduce(mix);
}
uint inner_loop(uint4 init, uint thread_id, __local uint* share, __global hash128_t const* g_dag, uint isolate)
{
uint4 mix = init;
// share init0
if (thread_id == 0)
*share = mix.x;
barrier(CLK_LOCAL_MEM_FENCE);
uint init0 = *share;
uint a = 0;
do
{
bool update_share = thread_id == (a/4) % THREADS_PER_HASH;
#pragma unroll
for (uint i = 0; i != 4; ++i)
{
if (update_share)
{
uint m[4] = { mix.x, mix.y, mix.z, mix.w };
*share = fnv(init0 ^ (a+i), m[i]) % DAG_SIZE;
}
barrier(CLK_LOCAL_MEM_FENCE);
mix = fnv4(mix, g_dag[*share].uint4s[thread_id]);
}
}
while ((a += 4) != (ACCESSES & isolate));
return fnv_reduce(mix);
}
hash32_t final_hash(hash64_t const* init, hash32_t const* mix, uint isolate)
{
ulong state[25];
hash32_t hash;
uint const hash_size = countof(hash.ulongs);
uint const init_size = countof(init->ulongs);
uint const mix_size = countof(mix->ulongs);
// keccak_256(keccak_512(header..nonce) .. mix);
copy(state, init->ulongs, init_size);
copy(state + init_size, mix->ulongs, mix_size);
keccak_f1600_no_absorb(state, init_size+mix_size, hash_size, isolate);
// copy out
copy(hash.ulongs, state, hash_size);
return hash;
}
hash32_t compute_hash_simple(
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong nonce,
uint isolate
)
{
hash64_t init = init_hash(g_header, nonce, isolate);
hash128_t mix;
for (uint i = 0; i != countof(mix.uint4s); ++i)
{
mix.uint4s[i] = init.uint4s[i % countof(init.uint4s)];
}
uint mix_val = mix.uints[0];
uint init0 = mix.uints[0];
uint a = 0;
do
{
uint pi = fnv(init0 ^ a, mix_val) % DAG_SIZE;
uint n = (a+1) % countof(mix.uints);
#pragma unroll
for (uint i = 0; i != countof(mix.uints); ++i)
{
mix.uints[i] = fnv(mix.uints[i], g_dag[pi].uints[i]);
mix_val = i == n ? mix.uints[i] : mix_val;
}
}
while (++a != (ACCESSES & isolate));
// reduce to output
hash32_t fnv_mix;
for (uint i = 0; i != countof(fnv_mix.uints); ++i)
{
fnv_mix.uints[i] = fnv_reduce(mix.uint4s[i]);
}
return final_hash(&init, &fnv_mix, isolate);
}
typedef union
{
struct
{
hash64_t init;
uint pad; // avoid lds bank conflicts
};
hash32_t mix;
} compute_hash_share;
hash32_t compute_hash(
__local compute_hash_share* share,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong nonce,
uint isolate
)
{
uint const gid = get_global_id(0);
// Compute one init hash per work item.
hash64_t init = init_hash(g_header, nonce, isolate);
// Threads work together in this phase in groups of 8.
uint const thread_id = gid % THREADS_PER_HASH;
uint const hash_id = (gid % GROUP_SIZE) / THREADS_PER_HASH;
hash32_t mix;
uint i = 0;
do
{
// share init with other threads
if (i == thread_id)
share[hash_id].init = init;
barrier(CLK_LOCAL_MEM_FENCE);
uint4 thread_init = share[hash_id].init.uint4s[thread_id % (64 / sizeof(uint4))];
barrier(CLK_LOCAL_MEM_FENCE);
uint thread_mix = inner_loop(thread_init, thread_id, share[hash_id].mix.uints, g_dag, isolate);
share[hash_id].mix.uints[thread_id] = thread_mix;
barrier(CLK_LOCAL_MEM_FENCE);
if (i == thread_id)
mix = share[hash_id].mix;
barrier(CLK_LOCAL_MEM_FENCE);
}
while (++i != (THREADS_PER_HASH & isolate));
return final_hash(&init, &mix, isolate);
}
hash32_t compute_hash_chunks(
__local compute_hash_share* share,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
__global hash128_t const* g_dag1,
__global hash128_t const* g_dag2,
__global hash128_t const* g_dag3,
ulong nonce,
uint isolate
)
{
uint const gid = get_global_id(0);
// Compute one init hash per work item.
hash64_t init = init_hash(g_header, nonce, isolate);
// Threads work together in this phase in groups of 8.
uint const thread_id = gid % THREADS_PER_HASH;
uint const hash_id = (gid % GROUP_SIZE) / THREADS_PER_HASH;
hash32_t mix;
uint i = 0;
do
{
// share init with other threads
if (i == thread_id)
share[hash_id].init = init;
barrier(CLK_LOCAL_MEM_FENCE);
uint4 thread_init = share[hash_id].init.uint4s[thread_id % (64 / sizeof(uint4))];
barrier(CLK_LOCAL_MEM_FENCE);
uint thread_mix = inner_loop_chunks(thread_init, thread_id, share[hash_id].mix.uints, g_dag, g_dag1, g_dag2, g_dag3, isolate);
share[hash_id].mix.uints[thread_id] = thread_mix;
barrier(CLK_LOCAL_MEM_FENCE);
if (i == thread_id)
mix = share[hash_id].mix;
barrier(CLK_LOCAL_MEM_FENCE);
}
while (++i != (THREADS_PER_HASH & isolate));
return final_hash(&init, &mix, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_hash_simple(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
{
uint const gid = get_global_id(0);
g_hashes[gid] = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_search_simple(
__global volatile uint* restrict g_output,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
ulong target,
uint isolate
)
{
uint const gid = get_global_id(0);
hash32_t hash = compute_hash_simple(g_header, g_dag, start_nonce + gid, isolate);
if (hash.ulongs[countof(hash.ulongs)-1] < target)
{
uint slot = min(convert_uint(MAX_OUTPUTS), convert_uint(atomic_inc(&g_output[0]) + 1));
g_output[slot] = gid;
}
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_hash(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
g_hashes[gid] = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_search(
__global volatile uint* restrict g_output,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
ulong start_nonce,
ulong target,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
hash32_t hash = compute_hash(share, g_header, g_dag, start_nonce + gid, isolate);
if (as_ulong(as_uchar8(hash.ulongs[0]).s76543210) < target)
{
uint slot = min(MAX_OUTPUTS, atomic_inc(&g_output[0]) + 1);
g_output[slot] = gid;
}
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_hash_chunks(
__global hash32_t* g_hashes,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
__global hash128_t const* g_dag1,
__global hash128_t const* g_dag2,
__global hash128_t const* g_dag3,
ulong start_nonce,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
g_hashes[gid] = compute_hash_chunks(share, g_header, g_dag, g_dag1, g_dag2, g_dag3,start_nonce + gid, isolate);
}
__attribute__((reqd_work_group_size(GROUP_SIZE, 1, 1)))
__kernel void ethash_search_chunks(
__global volatile uint* restrict g_output,
__constant hash32_t const* g_header,
__global hash128_t const* g_dag,
__global hash128_t const* g_dag1,
__global hash128_t const* g_dag2,
__global hash128_t const* g_dag3,
ulong start_nonce,
ulong target,
uint isolate
)
{
__local compute_hash_share share[HASHES_PER_LOOP];
uint const gid = get_global_id(0);
hash32_t hash = compute_hash_chunks(share, g_header, g_dag, g_dag1, g_dag2, g_dag3, start_nonce + gid, isolate);
if (as_ulong(as_uchar8(hash.ulongs[0]).s76543210) < target)
{
uint slot = min(convert_uint(MAX_OUTPUTS), convert_uint(atomic_inc(&g_output[0]) + 1));
g_output[slot] = gid;
}
}