You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

946 lines
23 KiB

#include "Compiler.h"
#include <functional>
#include <fstream>
#include <chrono>
#include <boost/dynamic_bitset.hpp>
#include <llvm/ADT/PostOrderIterator.h>
#include <llvm/IR/CFG.h>
#include <llvm/IR/Module.h>
#include <llvm/IR/IntrinsicInst.h>
#include <llvm/PassManager.h>
#include <llvm/Transforms/Scalar.h>
#include "Instruction.h"
#include "Type.h"
#include "Memory.h"
#include "Stack.h"
#include "Ext.h"
#include "GasMeter.h"
#include "Utils.h"
#include "Endianness.h"
#include "Arith256.h"
#include "RuntimeManager.h"
namespace dev
{
namespace eth
{
namespace jit
{
Compiler::Compiler(Options const& _options):
m_options(_options),
m_builder(llvm::getGlobalContext())
{
Type::init(m_builder.getContext());
}
void Compiler::createBasicBlocks(bytes const& _bytecode)
{
std::set<ProgramCounter> splitPoints; // Sorted collections of instruction indices where basic blocks start/end
std::map<ProgramCounter, ProgramCounter> directJumpTargets;
std::vector<ProgramCounter> indirectJumpTargets;
boost::dynamic_bitset<> validJumpTargets(std::max(_bytecode.size(), size_t(1)));
splitPoints.insert(0); // First basic block
validJumpTargets[0] = true;
for (auto curr = _bytecode.begin(); curr != _bytecode.end(); ++curr)
{
ProgramCounter currentPC = curr - _bytecode.begin();
validJumpTargets[currentPC] = true;
auto inst = Instruction(*curr);
switch (inst)
{
case Instruction::ANY_PUSH:
{
auto val = readPushData(curr, _bytecode.end());
auto next = curr + 1;
if (next == _bytecode.end())
break;
auto nextInst = Instruction(*next);
if (nextInst == Instruction::JUMP || nextInst == Instruction::JUMPI)
{
// Create a block for the JUMP target.
ProgramCounter targetPC = val.ult(_bytecode.size()) ? val.getZExtValue() : _bytecode.size();
splitPoints.insert(targetPC);
ProgramCounter jumpPC = (next - _bytecode.begin());
directJumpTargets[jumpPC] = targetPC;
}
break;
}
case Instruction::JUMPDEST:
{
// A basic block starts here.
splitPoints.insert(currentPC);
indirectJumpTargets.push_back(currentPC);
break;
}
case Instruction::JUMP:
case Instruction::JUMPI:
case Instruction::RETURN:
case Instruction::STOP:
case Instruction::SUICIDE:
{
// Create a basic block starting at the following instruction.
if (curr + 1 < _bytecode.end())
splitPoints.insert(currentPC + 1);
break;
}
default:
break;
}
}
// Remove split points generated from jumps out of code or into data.
for (auto it = splitPoints.cbegin(); it != splitPoints.cend();)
{
if (*it > _bytecode.size() || !validJumpTargets[*it])
it = splitPoints.erase(it);
else
++it;
}
for (auto it = splitPoints.cbegin(); it != splitPoints.cend();)
{
auto beginInstIdx = *it;
++it;
auto endInstIdx = it != splitPoints.cend() ? *it : _bytecode.size();
basicBlocks.emplace(std::piecewise_construct, std::forward_as_tuple(beginInstIdx), std::forward_as_tuple(beginInstIdx, endInstIdx, m_mainFunc, m_builder));
}
m_stopBB = llvm::BasicBlock::Create(m_mainFunc->getContext(), "Stop", m_mainFunc);
m_badJumpBlock = std::unique_ptr<BasicBlock>(new BasicBlock("BadJumpBlock", m_mainFunc, m_builder));
m_jumpTableBlock = std::unique_ptr<BasicBlock>(new BasicBlock("JumpTableBlock", m_mainFunc, m_builder));
for (auto it = directJumpTargets.cbegin(); it != directJumpTargets.cend(); ++it)
{
if (it->second >= _bytecode.size())
{
// Jumping out of code means STOP
m_directJumpTargets[it->first] = m_stopBB;
continue;
}
auto blockIter = basicBlocks.find(it->second);
if (blockIter != basicBlocks.end())
{
m_directJumpTargets[it->first] = blockIter->second.llvm();
}
else
{
clog(JIT) << "Bad JUMP at PC " << it->first
<< ": " << it->second << " is not a valid PC";
m_directJumpTargets[it->first] = m_badJumpBlock->llvm();
}
}
for (auto it = indirectJumpTargets.cbegin(); it != indirectJumpTargets.cend(); ++it)
m_indirectJumpTargets.push_back(&basicBlocks.find(*it)->second);
}
std::unique_ptr<llvm::Module> Compiler::compile(bytes const& _bytecode)
{
// TODO: Better hash of code needed, probably SHA3
std::string code{reinterpret_cast<char const*>(_bytecode.data()), _bytecode.size()};
auto hash = std::hash<std::string>{}(code);
auto strHash = std::to_string(hash);
auto compilationStartTime = std::chrono::high_resolution_clock::now();
auto module = std::unique_ptr<llvm::Module>(new llvm::Module(strHash, m_builder.getContext()));
// Create main function
auto mainFuncType = llvm::FunctionType::get(Type::MainReturn, Type::RuntimePtr, false);
m_mainFunc = llvm::Function::Create(mainFuncType, llvm::Function::ExternalLinkage, "main", module.get());
m_mainFunc->getArgumentList().front().setName("rt");
// Create the basic blocks.
auto entryBlock = llvm::BasicBlock::Create(m_builder.getContext(), "entry", m_mainFunc);
m_builder.SetInsertPoint(entryBlock);
createBasicBlocks(_bytecode);
// Init runtime structures.
RuntimeManager runtimeManager(m_builder);
GasMeter gasMeter(m_builder, runtimeManager);
Memory memory(runtimeManager, gasMeter);
Ext ext(runtimeManager, memory);
Stack stack(m_builder, runtimeManager);
Arith256 arith(m_builder);
m_builder.CreateBr(basicBlocks.begin()->second);
for (auto basicBlockPairIt = basicBlocks.begin(); basicBlockPairIt != basicBlocks.end(); ++basicBlockPairIt)
{
auto& basicBlock = basicBlockPairIt->second;
auto iterCopy = basicBlockPairIt;
++iterCopy;
auto nextBasicBlock = (iterCopy != basicBlocks.end()) ? iterCopy->second.llvm() : nullptr;
compileBasicBlock(basicBlock, _bytecode, runtimeManager, arith, memory, ext, gasMeter, nextBasicBlock);
}
// Code for special blocks:
// TODO: move to separate function.
m_builder.SetInsertPoint(m_stopBB);
m_builder.CreateRet(Constant::get(ReturnCode::Stop));
m_builder.SetInsertPoint(m_badJumpBlock->llvm());
m_builder.CreateRet(Constant::get(ReturnCode::BadJumpDestination));
m_builder.SetInsertPoint(m_jumpTableBlock->llvm());
if (m_indirectJumpTargets.size() > 0)
{
auto dest = m_jumpTableBlock->localStack().pop();
auto switchInstr = m_builder.CreateSwitch(dest, m_badJumpBlock->llvm(),
m_indirectJumpTargets.size());
for (auto it = m_indirectJumpTargets.cbegin(); it != m_indirectJumpTargets.cend(); ++it)
{
auto& bb = *it;
auto dest = Constant::get(bb->begin());
switchInstr->addCase(dest, bb->llvm());
}
}
else
m_builder.CreateBr(m_badJumpBlock->llvm());
removeDeadBlocks();
dumpCFGifRequired("blocks-init.dot");
if (m_options.optimizeStack)
{
std::vector<BasicBlock*> blockList;
for (auto& entry : basicBlocks)
blockList.push_back(&entry.second);
if (m_jumpTableBlock)
blockList.push_back(m_jumpTableBlock.get());
BasicBlock::linkLocalStacks(blockList, m_builder);
dumpCFGifRequired("blocks-opt.dot");
}
for (auto& entry : basicBlocks)
entry.second.synchronizeLocalStack(stack);
if (m_jumpTableBlock)
m_jumpTableBlock->synchronizeLocalStack(stack);
dumpCFGifRequired("blocks-sync.dot");
if (m_jumpTableBlock && m_options.rewriteSwitchToBranches)
{
llvm::FunctionPassManager fpManager(module.get());
fpManager.add(llvm::createLowerSwitchPass());
fpManager.doInitialization();
fpManager.run(*m_mainFunc);
}
auto compilationEndTime = std::chrono::high_resolution_clock::now();
clog(JIT) << "JIT: " << std::chrono::duration_cast<std::chrono::milliseconds>(compilationEndTime - compilationStartTime).count();
return module;
}
void Compiler::compileBasicBlock(BasicBlock& _basicBlock, bytes const& _bytecode, RuntimeManager& _runtimeManager,
Arith256& _arith, Memory& _memory, Ext& _ext, GasMeter& _gasMeter, llvm::BasicBlock* _nextBasicBlock)
{
if (!_nextBasicBlock) // this is the last block in the code
_nextBasicBlock = m_stopBB;
m_builder.SetInsertPoint(_basicBlock.llvm());
auto& stack = _basicBlock.localStack();
for (auto currentPC = _basicBlock.begin(); currentPC != _basicBlock.end(); ++currentPC)
{
auto inst = static_cast<Instruction>(_bytecode[currentPC]);
_gasMeter.count(inst);
switch (inst)
{
case Instruction::ADD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = m_builder.CreateAdd(lhs, rhs);
stack.push(result);
break;
}
case Instruction::SUB:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto result = m_builder.CreateSub(lhs, rhs);
stack.push(result);
break;
}
case Instruction::MUL:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = _arith.mul(lhs, rhs);
stack.push(res);
break;
}
case Instruction::DIV:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = _arith.div(lhs, rhs);
stack.push(res);
break;
}
case Instruction::SDIV:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = _arith.sdiv(lhs, rhs);
stack.push(res);
break;
}
case Instruction::MOD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = _arith.mod(lhs, rhs);
stack.push(res);
break;
}
case Instruction::SMOD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = _arith.smod(lhs, rhs);
stack.push(res);
break;
}
case Instruction::EXP:
{
auto base = stack.pop();
auto exponent = stack.pop();
_gasMeter.countExp(exponent);
auto ret = _arith.exp(base, exponent);
stack.push(ret);
break;
}
case Instruction::NOT:
{
auto value = stack.pop();
auto ret = m_builder.CreateXor(value, Constant::get(-1), "bnot");
stack.push(ret);
break;
}
case Instruction::LT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpULT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::GT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpUGT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::SLT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpSLT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::SGT:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpSGT(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::EQ:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res1 = m_builder.CreateICmpEQ(lhs, rhs);
auto res256 = m_builder.CreateZExt(res1, Type::Word);
stack.push(res256);
break;
}
case Instruction::ISZERO:
{
auto top = stack.pop();
auto iszero = m_builder.CreateICmpEQ(top, Constant::get(0), "iszero");
auto result = m_builder.CreateZExt(iszero, Type::Word);
stack.push(result);
break;
}
case Instruction::AND:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateAnd(lhs, rhs);
stack.push(res);
break;
}
case Instruction::OR:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateOr(lhs, rhs);
stack.push(res);
break;
}
case Instruction::XOR:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto res = m_builder.CreateXor(lhs, rhs);
stack.push(res);
break;
}
case Instruction::BYTE:
{
const auto byteNum = stack.pop();
auto value = stack.pop();
value = Endianness::toBE(m_builder, value);
auto bytes = m_builder.CreateBitCast(value, llvm::VectorType::get(Type::Byte, 32), "bytes");
auto byte = m_builder.CreateExtractElement(bytes, byteNum, "byte");
value = m_builder.CreateZExt(byte, Type::Word);
auto byteNumValid = m_builder.CreateICmpULT(byteNum, Constant::get(32));
value = m_builder.CreateSelect(byteNumValid, value, Constant::get(0));
stack.push(value);
break;
}
case Instruction::ADDMOD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto mod = stack.pop();
auto res = _arith.addmod(lhs, rhs, mod);
stack.push(res);
break;
}
case Instruction::MULMOD:
{
auto lhs = stack.pop();
auto rhs = stack.pop();
auto mod = stack.pop();
auto res = _arith.mulmod(lhs, rhs, mod);
stack.push(res);
break;
}
case Instruction::SIGNEXTEND:
{
auto idx = stack.pop();
auto word = stack.pop();
auto k32_ = m_builder.CreateTrunc(idx, m_builder.getIntNTy(5), "k_32");
auto k32 = m_builder.CreateZExt(k32_, Type::Word);
auto k32x8 = m_builder.CreateMul(k32, Constant::get(8), "kx8");
// test for word >> (k * 8 + 7)
auto bitpos = m_builder.CreateAdd(k32x8, Constant::get(7), "bitpos");
auto bitval = m_builder.CreateLShr(word, bitpos, "bitval");
auto bittest = m_builder.CreateTrunc(bitval, Type::Bool, "bittest");
auto mask_ = m_builder.CreateShl(Constant::get(1), bitpos);
auto mask = m_builder.CreateSub(mask_, Constant::get(1), "mask");
auto negmask = m_builder.CreateXor(mask, llvm::ConstantInt::getAllOnesValue(Type::Word), "negmask");
auto val1 = m_builder.CreateOr(word, negmask);
auto val0 = m_builder.CreateAnd(word, mask);
auto kInRange = m_builder.CreateICmpULE(idx, llvm::ConstantInt::get(Type::Word, 30));
auto result = m_builder.CreateSelect(kInRange,
m_builder.CreateSelect(bittest, val1, val0),
word);
stack.push(result);
break;
}
case Instruction::SHA3:
{
auto inOff = stack.pop();
auto inSize = stack.pop();
_memory.require(inOff, inSize);
_gasMeter.countSha3Data(inSize);
auto hash = _ext.sha3(inOff, inSize);
stack.push(hash);
break;
}
case Instruction::POP:
{
auto val = stack.pop();
static_cast<void>(val);
// Generate a dummy use of val to make sure that a get(0) will be emitted at this point,
// so that StackTooSmall will be thrown
// m_builder.CreateICmpEQ(val, val, "dummy");
break;
}
case Instruction::ANY_PUSH:
{
auto curr = _bytecode.begin() + currentPC; // TODO: replace currentPC with iterator
auto value = readPushData(curr, _bytecode.end());
currentPC = curr - _bytecode.begin();
stack.push(Constant::get(value));
break;
}
case Instruction::ANY_DUP:
{
auto index = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::DUP1);
stack.dup(index);
break;
}
case Instruction::ANY_SWAP:
{
auto index = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::SWAP1) + 1;
stack.swap(index);
break;
}
case Instruction::MLOAD:
{
auto addr = stack.pop();
auto word = _memory.loadWord(addr);
stack.push(word);
break;
}
case Instruction::MSTORE:
{
auto addr = stack.pop();
auto word = stack.pop();
_memory.storeWord(addr, word);
break;
}
case Instruction::MSTORE8:
{
auto addr = stack.pop();
auto word = stack.pop();
_memory.storeByte(addr, word);
break;
}
case Instruction::MSIZE:
{
auto word = _memory.getSize();
stack.push(word);
break;
}
case Instruction::SLOAD:
{
auto index = stack.pop();
auto value = _ext.sload(index);
stack.push(value);
break;
}
case Instruction::SSTORE:
{
auto index = stack.pop();
auto value = stack.pop();
_gasMeter.countSStore(_ext, index, value);
_ext.sstore(index, value);
break;
}
case Instruction::JUMP:
case Instruction::JUMPI:
{
// Generate direct jump iff:
// 1. this is not the first instruction in the block
// 2. m_directJumpTargets[currentPC] is defined (meaning that the previous instruction is a PUSH)
// Otherwise generate a indirect jump (a switch).
llvm::BasicBlock* targetBlock = nullptr;
if (currentPC != _basicBlock.begin())
{
auto pairIter = m_directJumpTargets.find(currentPC);
if (pairIter != m_directJumpTargets.end())
targetBlock = pairIter->second;
}
if (inst == Instruction::JUMP)
{
if (targetBlock)
{
// The target address is computed at compile time,
// just pop it without looking...
stack.pop();
m_builder.CreateBr(targetBlock);
}
else
m_builder.CreateBr(m_jumpTableBlock->llvm());
}
else // JUMPI
{
stack.swap(1);
auto val = stack.pop();
auto zero = Constant::get(0);
auto cond = m_builder.CreateICmpNE(val, zero, "nonzero");
if (targetBlock)
{
stack.pop();
m_builder.CreateCondBr(cond, targetBlock, _nextBasicBlock);
}
else
m_builder.CreateCondBr(cond, m_jumpTableBlock->llvm(), _nextBasicBlock);
}
break;
}
case Instruction::JUMPDEST:
{
// Nothing to do
break;
}
case Instruction::PC:
{
auto value = Constant::get(currentPC);
stack.push(value);
break;
}
case Instruction::GAS:
case Instruction::ADDRESS:
case Instruction::CALLER:
case Instruction::ORIGIN:
case Instruction::CALLVALUE:
case Instruction::CALLDATASIZE:
case Instruction::CODESIZE:
case Instruction::GASPRICE:
case Instruction::PREVHASH:
case Instruction::COINBASE:
case Instruction::TIMESTAMP:
case Instruction::NUMBER:
case Instruction::DIFFICULTY:
case Instruction::GASLIMIT:
{
// Pushes an element of runtime data on stack
stack.push(_runtimeManager.get(inst));
break;
}
case Instruction::BALANCE:
{
auto address = stack.pop();
auto value = _ext.balance(address);
stack.push(value);
break;
}
case Instruction::EXTCODESIZE:
{
auto addr = stack.pop();
auto codeRef = _ext.getExtCode(addr);
stack.push(codeRef.size);
break;
}
case Instruction::CALLDATACOPY:
{
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto srcPtr = _runtimeManager.getCallData();
auto srcSize = _runtimeManager.get(RuntimeData::CallDataSize);
_memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::CODECOPY:
{
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto srcPtr = _runtimeManager.getCode(); // TODO: Code & its size are constants, feature #80814234
auto srcSize = _runtimeManager.get(RuntimeData::CodeSize);
_memory.copyBytes(srcPtr, srcSize, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::EXTCODECOPY:
{
auto addr = stack.pop();
auto destMemIdx = stack.pop();
auto srcIdx = stack.pop();
auto reqBytes = stack.pop();
auto codeRef = _ext.getExtCode(addr);
_memory.copyBytes(codeRef.ptr, codeRef.size, srcIdx, destMemIdx, reqBytes);
break;
}
case Instruction::CALLDATALOAD:
{
auto index = stack.pop();
auto value = _ext.calldataload(index);
stack.push(value);
break;
}
case Instruction::CREATE:
{
auto endowment = stack.pop();
auto initOff = stack.pop();
auto initSize = stack.pop();
_memory.require(initOff, initSize);
_gasMeter.commitCostBlock();
auto gas = _runtimeManager.getGas();
auto address = _ext.create(gas, endowment, initOff, initSize);
_runtimeManager.setGas(gas);
stack.push(address);
break;
}
case Instruction::CALL:
case Instruction::CALLCODE:
{
auto gas = stack.pop();
auto codeAddress = stack.pop();
auto value = stack.pop();
auto inOff = stack.pop();
auto inSize = stack.pop();
auto outOff = stack.pop();
auto outSize = stack.pop();
_gasMeter.commitCostBlock(gas);
// Require memory for in and out buffers
_memory.require(outOff, outSize); // Out buffer first as we guess it will be after the in one
_memory.require(inOff, inSize);
auto receiveAddress = codeAddress;
if (inst == Instruction::CALLCODE)
receiveAddress = _runtimeManager.get(RuntimeData::Address);
auto ret = _ext.call(gas, receiveAddress, value, inOff, inSize, outOff, outSize, codeAddress);
_gasMeter.giveBack(gas);
stack.push(ret);
break;
}
case Instruction::RETURN:
{
auto index = stack.pop();
auto size = stack.pop();
_memory.require(index, size);
_runtimeManager.registerReturnData(index, size);
m_builder.CreateRet(Constant::get(ReturnCode::Return));
break;
}
case Instruction::SUICIDE:
case Instruction::STOP:
{
if (inst == Instruction::SUICIDE)
{
auto address = stack.pop();
_ext.suicide(address);
}
m_builder.CreateRet(Constant::get(ReturnCode::Stop));
break;
}
case Instruction::LOG0:
case Instruction::LOG1:
case Instruction::LOG2:
case Instruction::LOG3:
case Instruction::LOG4:
{
auto beginIdx = stack.pop();
auto numBytes = stack.pop();
_memory.require(beginIdx, numBytes);
// This will commit the current cost block
_gasMeter.countLogData(numBytes);
std::array<llvm::Value*, 4> topics{{}};
auto numTopics = static_cast<size_t>(inst) - static_cast<size_t>(Instruction::LOG0);
for (size_t i = 0; i < numTopics; ++i)
topics[i] = stack.pop();
_ext.log(beginIdx, numBytes, topics);
break;
}
default: // Invalid instruction - runtime exception
{
_runtimeManager.raiseException(ReturnCode::BadInstruction);
}
}
}
_gasMeter.commitCostBlock();
// Block may have no terminator if the next instruction is a jump destination.
if (!_basicBlock.llvm()->getTerminator())
m_builder.CreateBr(_nextBasicBlock);
}
void Compiler::removeDeadBlocks()
{
// Remove dead basic blocks
auto sthErased = false;
do
{
sthErased = false;
for (auto it = basicBlocks.begin(); it != basicBlocks.end();)
{
auto llvmBB = it->second.llvm();
if (llvm::pred_begin(llvmBB) == llvm::pred_end(llvmBB))
{
llvmBB->eraseFromParent();
basicBlocks.erase(it++);
sthErased = true;
}
else
++it;
}
}
while (sthErased);
// Remove jump table block if no predecessors
if (llvm::pred_begin(m_jumpTableBlock->llvm()) == llvm::pred_end(m_jumpTableBlock->llvm()))
{
m_jumpTableBlock->llvm()->eraseFromParent();
m_jumpTableBlock.reset();
}
}
void Compiler::dumpCFGifRequired(std::string const& _dotfilePath)
{
if (! m_options.dumpCFG)
return;
// TODO: handle i/o failures
std::ofstream ofs(_dotfilePath);
dumpCFGtoStream(ofs);
ofs.close();
}
void Compiler::dumpCFGtoStream(std::ostream& _out)
{
_out << "digraph BB {\n"
<< " node [shape=record, fontname=Courier, fontsize=10];\n"
<< " entry [share=record, label=\"entry block\"];\n";
std::vector<BasicBlock*> blocks;
for (auto& pair : basicBlocks)
blocks.push_back(&pair.second);
if (m_jumpTableBlock)
blocks.push_back(m_jumpTableBlock.get());
if (m_badJumpBlock)
blocks.push_back(m_badJumpBlock.get());
// std::map<BasicBlock*,int> phiNodesPerBlock;
// Output nodes
for (auto bb : blocks)
{
std::string blockName = bb->llvm()->getName();
std::ostringstream oss;
bb->dump(oss, true);
_out << " \"" << blockName << "\" [shape=record, label=\" { " << blockName << "|" << oss.str() << "} \"];\n";
}
// Output edges
for (auto bb : blocks)
{
std::string blockName = bb->llvm()->getName();
auto end = llvm::pred_end(bb->llvm());
for (llvm::pred_iterator it = llvm::pred_begin(bb->llvm()); it != end; ++it)
{
_out << " \"" << (*it)->getName().str() << "\" -> \"" << blockName << "\" ["
<< ((m_jumpTableBlock.get() && *it == m_jumpTableBlock.get()->llvm()) ? "style = dashed, " : "")
<< "];\n";
}
}
_out << "}\n";
}
void Compiler::dump()
{
for (auto& entry : basicBlocks)
entry.second.dump();
if (m_jumpTableBlock != nullptr)
m_jumpTableBlock->dump();
}
}
}
}