You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

271 lines
10 KiB

/*
This file is part of cpp-ethereum.
cpp-ethereum is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Foobar is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Foobar. If not, see <http://www.gnu.org/licenses/>.
*/
/** @file State.h
* @author Gav Wood <i@gavwood.com>
* @date 2014
*/
#pragma once
#include <array>
#include <map>
#include <unordered_map>
#include "Common.h"
#include "RLP.h"
#include "TransactionQueue.h"
#include "Exceptions.h"
#include "BlockInfo.h"
#include "AddressState.h"
#include "Transaction.h"
#include "TrieDB.h"
#include "Dagger.h"
namespace eth
{
class BlockChain;
extern const u256 c_genesisDifficulty;
std::map<Address, AddressState> const& genesisState();
/**
* @brief Model of the current state of the ledger.
* Maintains current ledger (m_current) as a fast hash-map. This is hashed only when required (i.e. to create or verify a block).
* Should maintain ledger as of last N blocks, also, in case we end up on the wrong branch.
*/
class State
{
public:
/// Construct state object.
State(Address _coinbaseAddress, Overlay const& _db);
/// Set the coinbase address for any transactions we do.
/// This causes a complete reset of current block.
void setAddress(Address _coinbaseAddress) { m_ourAddress = _coinbaseAddress; resetCurrent(); }
Address address() const { return m_ourAddress; }
/// Open a DB - useful for passing into the constructor & keeping for other states that are necessary.
static Overlay openDB(std::string _path, bool _killExisting = false);
static Overlay openDB(bool _killExisting = false) { return openDB(std::string(), _killExisting); }
/// @returns the set containing all addresses currently in use in Ethereum.
std::map<Address, u256> addresses() const;
/// Cancels transactions and rolls back the state to the end of the previous block.
/// @warning This will only work for on any transactions after you called the last commitToMine().
/// It's one or the other.
void rollback() { m_cache.clear(); }
/// Prepares the current state for mining.
/// Commits all transactions into the trie, compiles uncles and transactions list, applies all
/// rewards and populates the current block header with the appropriate hashes.
/// The only thing left to do after this is to actually mine().
///
/// This may be called multiple times and without issue, however, until the current state is cleared,
/// calls after the first are ignored.
void commitToMine(BlockChain const& _bc);
/// Attempt to find valid nonce for block that this state represents.
/// @param _msTimeout Timeout before return in milliseconds.
/// @returns a non-empty byte array containing the block if it got lucky. In this case, call blockData()
/// to get the block if you need it later.
MineInfo mine(uint _msTimeout = 1000);
/// Get the complete current block, including valid nonce.
/// Only valid after mine() returns true.
bytes const& blockData() const { return m_currentBytes; }
/// Sync our state with the block chain.
/// This basically involves wiping ourselves if we've been superceded and rebuilding from the transaction queue.
bool sync(BlockChain const& _bc);
/// Sync with the block chain, but rather than synching to the latest block, instead sync to the given block.
bool sync(BlockChain const& _bc, h256 _blockHash);
/// Sync our transactions, killing those from the queue that we have and assimilating those that we don't.
bool sync(TransactionQueue& _tq);
/// Execute a given transaction.
void execute(bytes const& _rlp) { return execute(&_rlp); }
void execute(bytesConstRef _rlp);
/// Check if the address is a valid normal (non-contract) account address.
bool isNormalAddress(Address _address) const;
/// Check if the address is a valid contract's address.
bool isContractAddress(Address _address) const;
/// Get an account's balance.
/// @returns 0 if the address has never been used.
u256 balance(Address _id) const;
/// Add some amount to balance.
/// Will initialise the address if it has never been used.
void addBalance(Address _id, u256 _amount);
/** Subtract some amount from balance.
* @throws NotEnoughCash if balance of @a _id is less than @a _value (or has never been used).
* @note We use bigint here as we don't want any accidental problems with negative numbers.
*/
void subBalance(Address _id, bigint _value);
/// Get the value of a memory position of a contract.
/// @returns 0 if no contract exists at that address.
u256 contractMemory(Address _contract, u256 _memory) const;
/// Note that the given address is sending a transaction and thus increment the associated ticker.
void noteSending(Address _id);
/// Get the number of transactions a particular address has sent (used for the transaction nonce).
/// @returns 0 if the address has never been used.
u256 transactionsFrom(Address _address) const;
/// The hash of the root of our state tree.
h256 rootHash() const { return m_state.root(); }
/// Finalise the block, applying the earned rewards.
void applyRewards(Addresses const& _uncleAddresses);
/// Execute all transactions within a given block.
/// @returns the additional total difficulty.
/// If the _grandParent is passed, it will check the validity of each of the uncles.
/// This might throw.
u256 playback(bytesConstRef _block, BlockInfo const& _bi, BlockInfo const& _parent, BlockInfo const& _grandParent, bool _fullCommit);
private:
/// Fee-adder on destruction RAII class.
struct MinerFeeAdder
{
~MinerFeeAdder() { /*state->addBalance(state->m_currentBlock.coinbaseAddress, fee);*/ } // No fees paid now.
State* state;
u256 fee;
};
/// Retrieve all information about a given address into the cache.
/// If _requireMemory is true, grab the full memory should it be a contract item.
/// If _forceCreate is true, then insert a default item into the cache, in the case it doesn't
/// exist in the DB.
void ensureCached(Address _a, bool _requireMemory, bool _forceCreate) const;
/// Commit all changes waiting in the address cache to the DB.
void commit();
/// Execute the given block on our previous block. This will set up m_currentBlock first, then call the other playback().
/// Any failure will be critical.
u256 playback(bytesConstRef _block, bool _fullCommit);
/// Execute the given block, assuming it corresponds to m_currentBlock. If _grandParent is passed, it will be used to check the uncles.
/// Throws on failure.
u256 playback(bytesConstRef _block, BlockInfo const& _grandParent, bool _fullCommit);
/// Execute a decoded transaction object, given a sender.
/// This will append @a _t to the transaction list and change the state accordingly.
void executeBare(Transaction const& _t, Address _sender);
/// Execute a contract transaction.
void execute(Address _myAddress, Address _txSender, u256 _txValue, u256 _txFee, u256s const& _txData, u256* o_totalFee);
/// Sets m_currentBlock to a clean state, (i.e. no change from m_previousBlock).
void resetCurrent();
Overlay m_db; ///< Our overlay for the state tree.
TrieDB<Address, Overlay> m_state; ///< Our state tree, as an Overlay DB.
std::map<h256, Transaction> m_transactions; ///< The current list of transactions that we've included in the state.
mutable std::map<Address, AddressState> m_cache; ///< Our address cache. This stores the states of each address that has (or at least might have) been changed.
BlockInfo m_previousBlock; ///< The previous block's information.
BlockInfo m_currentBlock; ///< The current block's information.
bytes m_currentBytes; ///< The current block.
uint m_currentNumber;
bytes m_currentTxs;
bytes m_currentUncles;
Address m_ourAddress; ///< Our address (i.e. the address to which fees go).
Dagger m_dagger;
/// The fee structure. Values yet to be agreed on...
static const u256 c_stepFee;
static const u256 c_dataFee;
static const u256 c_memoryFee;
static const u256 c_extroFee;
static const u256 c_cryptoFee;
static const u256 c_newContractFee;
static const u256 c_txFee;
static const u256 c_blockReward;
static std::string c_defaultPath;
friend std::ostream& operator<<(std::ostream& _out, State const& _s);
};
inline std::ostream& operator<<(std::ostream& _out, State const& _s)
{
_out << "--- " << _s.rootHash() << std::endl;
std::set<Address> d;
for (auto const& i: TrieDB<Address, Overlay>(const_cast<Overlay*>(&_s.m_db), _s.m_currentBlock.stateRoot))
{
auto it = _s.m_cache.find(i.first);
if (it == _s.m_cache.end())
{
RLP r(i.second);
_out << "[ " << (r.itemCount() == 3 ? "CONTRACT] " : " NORMAL] ") << i.first << ": " << std::dec << r[1].toInt<u256>() << "@" << r[0].toInt<u256>() << std::endl;
}
else
d.insert(i.first);
}
for (auto i: _s.m_cache)
if (i.second.type() == AddressType::Dead)
_out << "[XXX " << i.first << std::endl;
else
_out << (d.count(i.first) ? "[ ! " : "[ * ") << (i.second.type() == AddressType::Contract ? "CONTRACT] " : " NORMAL] ") << i.first << ": " << std::dec << i.second.nonce() << "@" << i.second.balance() << std::endl;
return _out;
}
template <class DB>
void commit(std::map<Address, AddressState> const& _cache, DB& _db, TrieDB<Address, DB>& _state)
{
for (auto const& i: _cache)
if (i.second.type() == AddressType::Dead)
_state.remove(i.first);
else
{
RLPStream s(i.second.type() == AddressType::Contract ? 3 : 2);
s << i.second.balance() << i.second.nonce();
if (i.second.type() == AddressType::Contract)
{
if (i.second.haveMemory())
{
TrieDB<u256, DB> memdb(&_db);
memdb.init();
for (auto const& j: i.second.memory())
if (j.second)
memdb.insert(j.first, rlp(j.second));
s << memdb.root();
}
else
s << i.second.oldRoot();
}
_state.insert(i.first, &s.out());
}
}
}