You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2008 lines
70 KiB

/*~ Welcome to the hsm daemon: keeper of our secrets!
*
* This is a separate daemon which keeps a root secret from which all others
* are generated. It starts with one client: lightningd, which can ask for
* new sockets for other clients. Each client has a simple capability map
* which indicates what it's allowed to ask for. We're entirely driven
* by request, response.
*/
#include <bitcoin/address.h>
#include <bitcoin/privkey.h>
#include <bitcoin/pubkey.h>
#include <bitcoin/script.h>
#include <bitcoin/tx.h>
#include <ccan/array_size/array_size.h>
#include <ccan/cast/cast.h>
#include <ccan/container_of/container_of.h>
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/fdpass/fdpass.h>
#include <ccan/intmap/intmap.h>
#include <ccan/io/fdpass/fdpass.h>
#include <ccan/io/io.h>
#include <ccan/noerr/noerr.h>
#include <ccan/ptrint/ptrint.h>
#include <ccan/read_write_all/read_write_all.h>
#include <ccan/take/take.h>
#include <ccan/tal/str/str.h>
#include <common/daemon_conn.h>
#include <common/derive_basepoints.h>
#include <common/funding_tx.h>
#include <common/hash_u5.h>
#include <common/key_derive.h>
#include <common/memleak.h>
#include <common/node_id.h>
#include <common/status.h>
#include <common/subdaemon.h>
#include <common/type_to_string.h>
#include <common/utils.h>
#include <common/version.h>
#include <common/withdraw_tx.h>
#include <errno.h>
#include <fcntl.h>
#include <hsmd/capabilities.h>
/*~ All gen_ files are autogenerated; in this case by tools/generate-wire.py */
#include <hsmd/gen_hsm_wire.h>
#include <inttypes.h>
#include <secp256k1_ecdh.h>
#include <sodium.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <wally_bip32.h>
#include <wire/gen_peer_wire.h>
#include <wire/wire_io.h>
/*~ Each subdaemon is started with stdin connected to lightningd (for status
* messages), and stderr untouched (for emergency printing). File descriptors
* 3 and beyond are set up on other sockets: for hsmd, fd 3 is the request
* stream from lightningd. */
#define REQ_FD 3
/*~ Nobody will ever find it here! hsm_secret is our root secret, the bip32
* tree is derived from that, and cached here. */
static struct {
struct secret hsm_secret;
struct ext_key bip32;
} secretstuff;
/* Version codes for BIP32 extended keys in libwally-core.
* It's not suitable to add this struct into client struct,
* so set it static.*/
static struct bip32_key_version bip32_key_version;
#if DEVELOPER
/* If they specify --dev-force-privkey it ends up in here. */
static struct privkey *dev_force_privkey;
/* If they specify --dev-force-bip32-seed it ends up in here. */
static struct secret *dev_force_bip32_seed;
#endif
/*~ We keep track of clients, but there's not much to keep. */
struct client {
/* The ccan/io async io connection for this client: it closes, we die. */
struct io_conn *conn;
/*~ io_read_wire needs a pointer to store incoming messages until
* it has the complete thing; this is it. */
u8 *msg_in;
/*~ Useful for logging, but also used to derive the per-channel seed. */
struct node_id id;
/*~ This is a unique value handed to us from lightningd, used for
* per-channel seed generation (a single id may have multiple channels
* over time).
*
* It's actually zero for the initial lightningd client connection and
* the ones for gossipd and connectd, which don't have channels
* associated. */
u64 dbid;
/* What is this client allowed to ask for? */
u64 capabilities;
/* Params to apply to all transactions for this client */
const struct chainparams *chainparams;
};
/*~ We keep a map of nonzero dbid -> clients, mainly for leak detection.
* This is ccan/uintmap, which maps u64 to some (non-NULL) pointer.
* I really dislike these kinds of declaration-via-magic macro things, as
* tags can't find them without special hacks, but the payoff here is that
* the map is typesafe: the compiler won't let you put anything in but a
* struct client pointer. */
static UINTMAP(struct client *) clients;
/*~ Plus the three zero-dbid clients: master, gossipd and connnectd. */
static struct client *dbid_zero_clients[3];
static size_t num_dbid_zero_clients;
/*~ We need this deep inside bad_req_fmt, and for memleak, so we make it a
* global. */
static struct daemon_conn *status_conn;
/* This is used for various assertions and error cases. */
static bool is_lightningd(const struct client *client)
{
return client == dbid_zero_clients[0];
}
/* FIXME: This is used by debug.c. Doesn't apply to us, but lets us link. */
extern void dev_disconnect_init(int fd);
void dev_disconnect_init(int fd UNUSED) { }
/* Pre-declare this, due to mutual recursion */
static struct io_plan *handle_client(struct io_conn *conn, struct client *c);
/*~ ccan/compiler.h defines PRINTF_FMT as the gcc compiler hint so it will
* check that fmt and other trailing arguments really are the correct type.
*
* This is a convenient helper to tell lightningd we've received a bad request
* and closes the client connection. This should never happen, of course, but
* we definitely want to log if it does.
*/
static struct io_plan *bad_req_fmt(struct io_conn *conn,
struct client *c,
const u8 *msg_in,
const char *fmt, ...)
PRINTF_FMT(4,5);
static struct io_plan *bad_req_fmt(struct io_conn *conn,
struct client *c,
const u8 *msg_in,
const char *fmt, ...)
{
va_list ap;
char *str;
va_start(ap, fmt);
str = tal_fmt(tmpctx, fmt, ap);
va_end(ap);
/*~ If the client was actually lightningd, it's Game Over; we actually
* fail in this case, and it will too. */
if (is_lightningd(c)) {
status_broken("%s", str);
master_badmsg(fromwire_peektype(msg_in), msg_in);
}
/*~ Nobody should give us bad requests; it's a sign something is broken */
status_broken("%s: %s", type_to_string(tmpctx, struct node_id, &c->id), str);
/*~ Note the use of NULL as the ctx arg to towire_hsmstatus_: only
* use NULL as the allocation when we're about to immediately free it
* or hand it off with take(), as here. That makes it clear we don't
* expect it to linger, and in fact our memleak detection will
* complain if it does (unlike using the deliberately-transient
* tmpctx). */
daemon_conn_send(status_conn,
take(towire_hsmstatus_client_bad_request(NULL,
&c->id,
str,
msg_in)));
/*~ The way ccan/io works is that you return the "plan" for what to do
* next (eg. io_read). io_close() is special: it means to close the
* connection. */
return io_close(conn);
}
/* Convenience wrapper for when we simply can't parse. */
static struct io_plan *bad_req(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
return bad_req_fmt(conn, c, msg_in, "could not parse request");
}
/*~ This plan simply says: read the next packet into 'c->msg_in' (parent 'c'),
* and then call handle_client with argument 'c' */
static struct io_plan *client_read_next(struct io_conn *conn, struct client *c)
{
return io_read_wire(conn, c, &c->msg_in, handle_client, c);
}
/*~ This is the destructor on our client: we may call it manually, but
* generally it's called because the io_conn associated with the client is
* closed by the other end. */
static void destroy_client(struct client *c)
{
if (!uintmap_del(&clients, c->dbid))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed to remove client dbid %"PRIu64, c->dbid);
}
static struct client *new_client(const tal_t *ctx,
const struct chainparams *chainparams,
const struct node_id *id,
u64 dbid,
const u64 capabilities,
int fd)
{
struct client *c = tal(ctx, struct client);
/*~ All-zero pubkey is used for the initial master connection */
if (id) {
c->id = *id;
if (!node_id_valid(id))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Invalid node id %s",
type_to_string(tmpctx, struct node_id,
id));
} else {
memset(&c->id, 0, sizeof(c->id));
}
c->dbid = dbid;
c->capabilities = capabilities;
c->chainparams = chainparams;
/*~ This is the core of ccan/io: the connection creation calls a
* callback which returns the initial plan to execute: in our case,
* read a message.*/
c->conn = io_new_conn(ctx, fd, client_read_next, c);
/*~ tal_steal() moves a pointer to a new parent. At this point, the
* hierarchy is:
*
* ctx -> c
* ctx -> c->conn
*
* We want to the c->conn to own 'c', so that if the io_conn closes,
* the client is freed:
*
* ctx -> c->conn -> c.
*/
tal_steal(c->conn, c);
/* We put the special zero-db HSM connections into an array, the rest
* go into the map. */
if (dbid == 0) {
assert(num_dbid_zero_clients < ARRAY_SIZE(dbid_zero_clients));
dbid_zero_clients[num_dbid_zero_clients++] = c;
} else {
struct client *old_client = uintmap_get(&clients, dbid);
/* Close conn and free any old client of this dbid. */
if (old_client)
io_close(old_client->conn);
if (!uintmap_add(&clients, dbid, c))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed inserting dbid %"PRIu64, dbid);
tal_add_destructor(c, destroy_client);
}
return c;
}
/* This is the common pattern for the tail of each handler in this file. */
static struct io_plan *req_reply(struct io_conn *conn,
struct client *c,
const u8 *msg_out TAKES)
{
/*~ Write this out, then read the next one. This works perfectly for
* a simple request/response system like this.
*
* Internally, the ccan/io subsystem gathers all the file descriptors,
* figures out which want to write and read, asks the OS which ones
* are available, and for those file descriptors, tries to do the
* reads/writes we've asked it. It handles retry in the case where a
* read or write is done partially.
*
* Since the OS does buffering internally (on my system, over 100k
* worth) writes will normally succeed immediately. However, if the
* client is slow or malicious, and doesn't read from the socket as
* fast as we're writing, eventually the socket buffer will fill up;
* we don't care, because ccan/io will wait until there's room to
* write this reply before it will read again. The client just hurts
* themselves, and there's no Denial of Service on us.
*
* If we were to queue outgoing messages ourselves, we *would* have to
* consider such scenarios; this is why our daemons generally avoid
* buffering from untrusted parties. */
return io_write_wire(conn, msg_out, client_read_next, c);
}
/*~ This returns the secret and/or public key for this node. */
static void node_key(struct privkey *node_privkey, struct pubkey *node_id)
{
u32 salt = 0;
struct privkey unused_s;
struct pubkey unused_k;
/* If caller specifies NULL, they don't want the results. */
if (node_privkey == NULL)
node_privkey = &unused_s;
else if (node_id == NULL)
node_id = &unused_k;
/*~ So, there is apparently a 1 in 2^127 chance that a random value is
* not a valid private key, so this never actually loops. */
do {
/*~ ccan/crypto/hkdf_sha256 implements RFC5869 "Hardened Key
* Derivation Functions". That means that if a derived key
* leaks somehow, the other keys are not compromised. */
hkdf_sha256(node_privkey, sizeof(*node_privkey),
&salt, sizeof(salt),
&secretstuff.hsm_secret,
sizeof(secretstuff.hsm_secret),
"nodeid", 6);
salt++;
} while (!secp256k1_ec_pubkey_create(secp256k1_ctx, &node_id->pubkey,
node_privkey->secret.data));
#if DEVELOPER
/* In DEVELOPER mode, we can override with --dev-force-privkey */
if (dev_force_privkey) {
*node_privkey = *dev_force_privkey;
if (!secp256k1_ec_pubkey_create(secp256k1_ctx, &node_id->pubkey,
node_privkey->secret.data))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Failed to derive pubkey for dev_force_privkey");
}
#endif
}
/*~ This secret is the basis for all per-channel secrets: the per-channel seeds
* will be generated by mixing in the dbid and the peer node_id. */
static void hsm_channel_secret_base(struct secret *channel_seed_base)
{
hkdf_sha256(channel_seed_base, sizeof(struct secret), NULL, 0,
&secretstuff.hsm_secret, sizeof(secretstuff.hsm_secret),
/*~ Initially, we didn't support multiple channels per
* peer at all: a channel had to be completely forgotten
* before another could exist. That was slightly relaxed,
* but the phrase "peer seed" is wired into the seed
* generation here, so we need to keep it that way for
* existing clients, rather than using "channel seed". */
"peer seed", strlen("peer seed"));
}
/*~ This gets the seed for this particular channel. */
static void get_channel_seed(const struct node_id *peer_id, u64 dbid,
struct secret *channel_seed)
{
struct secret channel_base;
u8 input[sizeof(peer_id->k) + sizeof(dbid)];
/*~ Again, "per-peer" should be "per-channel", but Hysterical Raisins */
const char *info = "per-peer seed";
/*~ We use the DER encoding of the pubkey, because it's platform
* independent. Since the dbid is unique, however, it's completely
* unnecessary, but again, existing users can't be broken. */
/* FIXME: lnd has a nicer BIP32 method for deriving secrets which we
* should migrate to. */
hsm_channel_secret_base(&channel_base);
memcpy(input, peer_id->k, sizeof(peer_id->k));
BUILD_ASSERT(sizeof(peer_id->k) == PUBKEY_CMPR_LEN);
/*~ For all that talk about platform-independence, note that this
* field is endian-dependent! But let's face it, little-endian won.
* In related news, we don't support EBCDIC or middle-endian. */
memcpy(input + PUBKEY_CMPR_LEN, &dbid, sizeof(dbid));
hkdf_sha256(channel_seed, sizeof(*channel_seed),
input, sizeof(input),
&channel_base, sizeof(channel_base),
info, strlen(info));
}
/*~ Called at startup to derive the bip32 field. */
static void populate_secretstuff(void)
{
u8 bip32_seed[BIP32_ENTROPY_LEN_256];
u32 salt = 0;
struct ext_key master_extkey, child_extkey;
assert(bip32_key_version.bip32_pubkey_version == BIP32_VER_MAIN_PUBLIC
|| bip32_key_version.bip32_pubkey_version == BIP32_VER_TEST_PUBLIC);
assert(bip32_key_version.bip32_privkey_version == BIP32_VER_MAIN_PRIVATE
|| bip32_key_version.bip32_privkey_version == BIP32_VER_TEST_PRIVATE);
/* Fill in the BIP32 tree for bitcoin addresses. */
/* In libwally-core, the version BIP32_VER_TEST_PRIVATE is for testnet/regtest,
* and BIP32_VER_MAIN_PRIVATE is for mainnet. For litecoin, we also set it like
* bitcoin else.*/
do {
hkdf_sha256(bip32_seed, sizeof(bip32_seed),
&salt, sizeof(salt),
&secretstuff.hsm_secret,
sizeof(secretstuff.hsm_secret),
"bip32 seed", strlen("bip32 seed"));
salt++;
} while (bip32_key_from_seed(bip32_seed, sizeof(bip32_seed),
bip32_key_version.bip32_privkey_version,
0, &master_extkey) != WALLY_OK);
#if DEVELOPER
/* In DEVELOPER mode, we can override with --dev-force-bip32-seed */
if (dev_force_bip32_seed) {
if (bip32_key_from_seed(dev_force_bip32_seed->data,
sizeof(dev_force_bip32_seed->data),
bip32_key_version.bip32_privkey_version,
0, &master_extkey) != WALLY_OK)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive bip32 master key");
}
#endif /* DEVELOPER */
/* BIP 32:
*
* The default wallet layout
*
* An HDW is organized as several 'accounts'. Accounts are numbered,
* the default account ("") being number 0. Clients are not required
* to support more than one account - if not, they only use the
* default account.
*
* Each account is composed of two keypair chains: an internal and an
* external one. The external keychain is used to generate new public
* addresses, while the internal keychain is used for all other
* operations (change addresses, generation addresses, ..., anything
* that doesn't need to be communicated). Clients that do not support
* separate keychains for these should use the external one for
* everything.
*
* - m/iH/0/k corresponds to the k'th keypair of the external chain of
* account number i of the HDW derived from master m.
*/
/* Hence child 0, then child 0 again to get extkey to derive from. */
if (bip32_key_from_parent(&master_extkey, 0, BIP32_FLAG_KEY_PRIVATE,
&child_extkey) != WALLY_OK)
/*~ status_failed() is a helper which exits and sends lightningd
* a message about what happened. For hsmd, that's fatal to
* lightningd. */
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive child bip32 key");
if (bip32_key_from_parent(&child_extkey, 0, BIP32_FLAG_KEY_PRIVATE,
&secretstuff.bip32) != WALLY_OK)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Can't derive private bip32 key");
}
/*~ Get the keys for this given BIP32 index: if privkey is NULL, we
* don't fill it in. */
static void bitcoin_key(struct privkey *privkey, struct pubkey *pubkey,
u32 index)
{
struct ext_key ext;
struct privkey unused_priv;
if (privkey == NULL)
privkey = &unused_priv;
if (index >= BIP32_INITIAL_HARDENED_CHILD)
status_failed(STATUS_FAIL_MASTER_IO,
"Index %u too great", index);
/*~ This uses libwally, which doesn't dovetail directly with
* libsecp256k1 even though it, too, uses it internally. */
if (bip32_key_from_parent(&secretstuff.bip32, index,
BIP32_FLAG_KEY_PRIVATE, &ext) != WALLY_OK)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"BIP32 of %u failed", index);
/* libwally says: The private key with prefix byte 0; remove it
* for libsecp256k1. */
memcpy(privkey->secret.data, ext.priv_key+1, 32);
if (!secp256k1_ec_pubkey_create(secp256k1_ctx, &pubkey->pubkey,
privkey->secret.data))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"BIP32 pubkey %u create failed", index);
}
/*~ This encrypts the content of the secretstuff and stores it in hsm_secret,
* this is called instead of create_hsm() if `lightningd` is started with
* --encrypted-hsm.
*/
static void create_encrypted_hsm(int fd, const struct secret *encryption_key)
{
crypto_secretstream_xchacha20poly1305_state crypto_state;
u8 header[crypto_secretstream_xchacha20poly1305_HEADERBYTES];
/* The cipher size is static with xchacha20poly1305 */
u8 cipher[sizeof(struct secret) + crypto_secretstream_xchacha20poly1305_ABYTES];
crypto_secretstream_xchacha20poly1305_init_push(&crypto_state, header,
encryption_key->data);
crypto_secretstream_xchacha20poly1305_push(&crypto_state, cipher,
NULL,
secretstuff.hsm_secret.data,
sizeof(secretstuff.hsm_secret.data),
/* Additional data and tag */
NULL, 0, 0);
if (!write_all(fd, header, sizeof(header))) {
unlink_noerr("hsm_secret");
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Writing header of encrypted secret: %s", strerror(errno));
}
if (!write_all(fd, cipher, sizeof(cipher))) {
unlink_noerr("hsm_secret");
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Writing encrypted secret: %s", strerror(errno));
}
}
static void create_hsm(int fd)
{
/*~ ccan/read_write_all has a more convenient return than write() where
* we'd have to check the return value == the length we gave: write()
* can return short on normal files if we run out of disk space. */
if (!write_all(fd, &secretstuff.hsm_secret, sizeof(secretstuff.hsm_secret))) {
/* ccan/noerr contains useful routines like this, which don't
* clobber errno, so we can use it in our error report. */
unlink_noerr("hsm_secret");
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"writing: %s", strerror(errno));
}
}
/*~ We store our root secret in a "hsm_secret" file (like all of c-lightning,
* we run in the user's .lightning directory). */
static void maybe_create_new_hsm(const struct secret *encryption_key,
bool random_hsm)
{
/*~ Note that this is opened for write-only, even though the permissions
* are set to read-only. That's perfectly valid! */
int fd = open("hsm_secret", O_CREAT|O_EXCL|O_WRONLY, 0400);
if (fd < 0) {
/* If this is not the first time we've run, it will exist. */
if (errno == EEXIST)
return;
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"creating: %s", strerror(errno));
}
/*~ This is libsodium's cryptographic randomness routine: we assume
* it's doing a good job. */
if (random_hsm)
randombytes_buf(&secretstuff.hsm_secret, sizeof(secretstuff.hsm_secret));
/*~ If an encryption_key was provided, store an encrypted seed. */
if (encryption_key)
create_encrypted_hsm(fd, encryption_key);
/*~ Otherwise store the seed in clear.. */
else
create_hsm(fd);
/*~ fsync (mostly!) ensures that the file has reached the disk. */
if (fsync(fd) != 0) {
unlink_noerr("hsm_secret");
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"fsync: %s", strerror(errno));
}
/*~ This should never fail if fsync succeeded. But paranoia good, and
* bugs exist. */
if (close(fd) != 0) {
unlink_noerr("hsm_secret");
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"closing: %s", strerror(errno));
}
/*~ We actually need to sync the *directory itself* to make sure the
* file exists! You're only allowed to open directories read-only in
* modern Unix though. */
fd = open(".", O_RDONLY);
if (fd < 0) {
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"opening: %s", strerror(errno));
}
if (fsync(fd) != 0) {
unlink_noerr("hsm_secret");
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"fsyncdir: %s", strerror(errno));
}
close(fd);
/*~ status_unusual() is good for things which are interesting and
* definitely won't spam the logs. Only status_broken() is higher;
* status_info() is lower, then status_debug() and finally
* status_io(). */
status_unusual("HSM: created new hsm_secret file");
}
/*~ We always load the HSM file, even if we just created it above. This
* both unifies the code paths, and provides a nice sanity check that the
* file contents are as they will be for future invocations. */
static void load_hsm(const struct secret *encryption_key)
{
struct stat st;
int fd = open("hsm_secret", O_RDONLY);
if (fd < 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"opening: %s", strerror(errno));
if (stat("hsm_secret", &st) != 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"stating: %s", strerror(errno));
/* If the seed is stored in clear. */
if (st.st_size <= 32) {
if (!read_all(fd, &secretstuff.hsm_secret, sizeof(secretstuff.hsm_secret)))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"reading: %s", strerror(errno));
/* If an encryption key was passed with a not yet encrypted hsm_secret,
* remove the old one and create an encrypted one. */
if (encryption_key) {
if (close(fd) != 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"closing: %s", strerror(errno));
if (remove("hsm_secret") != 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"removing clear hsm_secret: %s", strerror(errno));
maybe_create_new_hsm(encryption_key, false);
fd = open("hsm_secret", O_RDONLY);
if (fd < 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"opening: %s", strerror(errno));
}
}
/*~ If an encryption key was passed and the `hsm_secret` is stored
* encrypted, recover the seed from the cipher. */
if (encryption_key && st.st_size > 32) {
crypto_secretstream_xchacha20poly1305_state crypto_state;
u8 header[crypto_secretstream_xchacha20poly1305_HEADERBYTES];
/* The cipher size is static with xchacha20poly1305 */
u8 cipher[sizeof(struct secret) + crypto_secretstream_xchacha20poly1305_ABYTES];
if (!read_all(fd, &header, crypto_secretstream_xchacha20poly1305_HEADERBYTES))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Reading xchacha20 header: %s", strerror(errno));
if (!read_all(fd, cipher, sizeof(cipher)))
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Reading encrypted secret: %s", strerror(errno));
if (crypto_secretstream_xchacha20poly1305_init_pull(&crypto_state, header,
encryption_key->data) != 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Initializing the crypto state: %s", strerror(errno));
if (crypto_secretstream_xchacha20poly1305_pull(&crypto_state,
secretstuff.hsm_secret.data,
NULL, 0, cipher, sizeof(cipher),
NULL, 0) != 0) {
/* Exit but don't throw a backtrace when the user made a mistake in typing
* its password. Instead exit and `lightningd` will be able to give
* an error message. */
exit(1);
}
}
/* else { handled in hsm_control } */
close(fd);
populate_secretstuff();
}
/*~ This is the response to lightningd's HSM_INIT request, which is the first
* thing it sends. */
static struct io_plan *init_hsm(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct node_id node_id;
struct pubkey key;
struct privkey *privkey;
struct secret *seed;
struct secrets *secrets;
struct sha256 *shaseed;
struct secret *hsm_encryption_key;
/* This must be lightningd. */
assert(is_lightningd(c));
/*~ The fromwire_* routines are autogenerated, based on the message
* definitions in hsm_client_wire.csv. The format of those files is
* an extension of the simple comma-separated format output by the
* BOLT tools/extract-formats.py tool. */
if (!fromwire_hsm_init(NULL, msg_in, &bip32_key_version, &chainparams,
&hsm_encryption_key, &privkey, &seed, &secrets, &shaseed))
return bad_req(conn, c, msg_in);
/*~ The memory is actually copied in towire(), so lock the `hsm_secret`
* encryption key (new) memory again here. */
if (hsm_encryption_key && sodium_mlock(hsm_encryption_key,
sizeof(hsm_encryption_key)) != 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Could not lock memory for hsm_secret encryption key.");
/*~ Don't swap this. */
sodium_mlock(secretstuff.hsm_secret.data, sizeof(secretstuff.hsm_secret.data));
#if DEVELOPER
dev_force_privkey = privkey;
dev_force_bip32_seed = seed;
dev_force_channel_secrets = secrets;
dev_force_channel_secrets_shaseed = shaseed;
#endif
/* Once we have read the init message we know which params the master
* will use */
c->chainparams = chainparams;
maybe_create_new_hsm(hsm_encryption_key, true);
load_hsm(hsm_encryption_key);
/*~ We don't need the hsm_secret encryption key anymore.
* Note that sodium_munlock() also zeroes the memory. */
if (hsm_encryption_key) {
sodium_munlock(hsm_encryption_key, sizeof(*hsm_encryption_key));
tal_free(hsm_encryption_key);
}
/*~ We tell lightning our node id and (public) bip32 seed. */
node_key(NULL, &key);
node_id_from_pubkey(&node_id, &key);
/*~ Note: marshalling a bip32 tree only marshals the public side,
* not the secrets! So we're not actually handing them out here!
*/
return req_reply(conn, c,
take(towire_hsm_init_reply(NULL, &node_id,
&secretstuff.bip32)));
}
/*~ The client has asked us to extract the shared secret from an EC Diffie
* Hellman token. This doesn't leak any information, but requires the private
* key, so the hsmd performs it. It's used to set up an encryption key for the
* connection handshaking (BOLT #8) and for the onion wrapping (BOLT #4). */
static struct io_plan *handle_ecdh(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct privkey privkey;
struct pubkey point;
struct secret ss;
if (!fromwire_hsm_ecdh_req(msg_in, &point))
return bad_req(conn, c, msg_in);
/*~ We simply use the secp256k1_ecdh function: if privkey.secret.data is invalid,
* we kill them for bad randomness (~1 in 2^127 if privkey.secret.data is random) */
node_key(&privkey, NULL);
if (secp256k1_ecdh(secp256k1_ctx, ss.data, &point.pubkey,
privkey.secret.data, NULL, NULL) != 1) {
return bad_req_fmt(conn, c, msg_in, "secp256k1_ecdh fail");
}
/*~ In the normal case, we return the shared secret, and then read
* the next msg. */
return req_reply(conn, c, take(towire_hsm_ecdh_resp(NULL, &ss)));
}
/*~ The specific routine to sign the channel_announcement message. This is
* defined in BOLT #7, and requires *two* signatures: one from this node's key
* (to prove it's from us), and one from the bitcoin key used to create the
* funding transaction (to prove we own the output). */
static struct io_plan *handle_cannouncement_sig(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
/*~ Our autogeneration code doesn't define field offsets, so we just
* copy this from the spec itself.
*
* Note that 'check-source' will actually find and check this quote
* against the spec (if available); whitespace is ignored and
* "..." means some content is skipped, but it works remarkably well to
* track spec changes. */
/* BOLT #7:
*
* - MUST compute the double-SHA256 hash `h` of the message, beginning
* at offset 256, up to the end of the message.
* - Note: the hash skips the 4 signatures but hashes the rest of the
* message, including any future fields appended to the end.
*/
/* First type bytes are the msg type */
size_t offset = 2 + 256;
struct privkey node_pkey;
secp256k1_ecdsa_signature node_sig, bitcoin_sig;
struct sha256_double hash;
u8 *reply;
u8 *ca;
struct pubkey funding_pubkey;
struct privkey funding_privkey;
struct secret channel_seed;
/*~ You'll find FIXMEs like this scattered through the code.
* Sometimes they suggest simple improvements which someone like
* yourself should go ahead an implement. Sometimes they're deceptive
* quagmires which will cause you nothing but grief. You decide! */
/*~ Christian uses TODO(cdecker) or FIXME(cdecker), but I'm sure he won't
* mind if you fix this for him! */
/* FIXME: We should cache these. */
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_funding_key(&channel_seed, &funding_pubkey, &funding_privkey);
/*~ fromwire_ routines which need to do allocation take a tal context
* as their first field; tmpctx is good here since we won't need it
* after this function. */
if (!fromwire_hsm_cannouncement_sig_req(tmpctx, msg_in, &ca))
return bad_req(conn, c, msg_in);
if (tal_count(ca) < offset)
return bad_req_fmt(conn, c, msg_in,
"bad cannounce length %zu",
tal_count(ca));
if (fromwire_peektype(ca) != WIRE_CHANNEL_ANNOUNCEMENT)
return bad_req_fmt(conn, c, msg_in,
"Invalid channel announcement");
node_key(&node_pkey, NULL);
sha256_double(&hash, ca + offset, tal_count(ca) - offset);
sign_hash(&node_pkey, &hash, &node_sig);
sign_hash(&funding_privkey, &hash, &bitcoin_sig);
reply = towire_hsm_cannouncement_sig_reply(NULL, &node_sig,
&bitcoin_sig);
return req_reply(conn, c, take(reply));
}
/*~ The specific routine to sign the channel_update message. */
static struct io_plan *handle_channel_update_sig(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
/* BOLT #7:
*
* - MUST set `signature` to the signature of the double-SHA256 of the
* entire remaining packet after `signature`, using its own
* `node_id`.
*/
/* 2 bytes msg type + 64 bytes signature */
size_t offset = 66;
struct privkey node_pkey;
struct sha256_double hash;
secp256k1_ecdsa_signature sig;
struct short_channel_id scid;
u32 timestamp, fee_base_msat, fee_proportional_mill;
struct amount_msat htlc_minimum, htlc_maximum;
u8 message_flags, channel_flags;
u16 cltv_expiry_delta;
struct bitcoin_blkid chain_hash;
u8 *cu;
if (!fromwire_hsm_cupdate_sig_req(tmpctx, msg_in, &cu))
return bad_req(conn, c, msg_in);
if (!fromwire_channel_update_option_channel_htlc_max(cu, &sig,
&chain_hash, &scid, &timestamp, &message_flags,
&channel_flags, &cltv_expiry_delta,
&htlc_minimum, &fee_base_msat,
&fee_proportional_mill, &htlc_maximum)) {
return bad_req_fmt(conn, c, msg_in, "Bad inner channel_update");
}
if (tal_count(cu) < offset)
return bad_req_fmt(conn, c, msg_in,
"inner channel_update too short");
node_key(&node_pkey, NULL);
sha256_double(&hash, cu + offset, tal_count(cu) - offset);
sign_hash(&node_pkey, &hash, &sig);
cu = towire_channel_update_option_channel_htlc_max(tmpctx, &sig, &chain_hash,
&scid, timestamp, message_flags, channel_flags,
cltv_expiry_delta, htlc_minimum,
fee_base_msat, fee_proportional_mill,
htlc_maximum);
return req_reply(conn, c, take(towire_hsm_cupdate_sig_reply(NULL, cu)));
}
/*~ This gets the basepoints for a channel; it's not private information really
* (we tell the peer this to establish a channel, as it sets up the keys used
* for each transaction).
*
* Note that this is asked by lightningd, so it tells us what channels it wants.
*/
static struct io_plan *handle_get_channel_basepoints(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct node_id peer_id;
u64 dbid;
struct secret seed;
struct basepoints basepoints;
struct pubkey funding_pubkey;
if (!fromwire_hsm_get_channel_basepoints(msg_in, &peer_id, &dbid))
return bad_req(conn, c, msg_in);
get_channel_seed(&peer_id, dbid, &seed);
derive_basepoints(&seed, &funding_pubkey, &basepoints, NULL, NULL);
return req_reply(conn, c,
take(towire_hsm_get_channel_basepoints_reply(NULL,
&basepoints,
&funding_pubkey)));
}
/*~ This is another lightningd-only interface; signing a commit transaction.
* This is dangerous, since if we sign a revoked commitment tx we'll lose
* funds, thus it's only available to lightningd.
*
*
* Oh look, another FIXME! */
/* FIXME: Ensure HSM never does this twice for same dbid! */
static struct io_plan *handle_sign_commitment_tx(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct pubkey remote_funding_pubkey, local_funding_pubkey;
struct node_id peer_id;
u64 dbid;
struct secret channel_seed;
struct bitcoin_tx *tx;
struct bitcoin_signature sig;
struct secrets secrets;
const u8 *funding_wscript;
if (!fromwire_hsm_sign_commitment_tx(tmpctx, msg_in,
&peer_id, &dbid,
&tx,
&remote_funding_pubkey))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
/* Basic sanity checks. */
if (tx->wtx->num_inputs != 1)
return bad_req_fmt(conn, c, msg_in, "tx must have 1 input");
if (tx->wtx->num_outputs == 0)
return bad_req_fmt(conn, c, msg_in, "tx must have > 0 outputs");
get_channel_seed(&peer_id, dbid, &channel_seed);
derive_basepoints(&channel_seed,
&local_funding_pubkey, NULL, &secrets, NULL);
/*~ Bitcoin signatures cover the (part of) the script they're
* executing; the rules are a bit complex in general, but for
* Segregated Witness it's simply the current script. */
funding_wscript = bitcoin_redeem_2of2(tmpctx,
&local_funding_pubkey,
&remote_funding_pubkey);
sign_tx_input(tx, 0, NULL, funding_wscript,
&secrets.funding_privkey,
&local_funding_pubkey,
SIGHASH_ALL,
&sig);
return req_reply(conn, c,
take(towire_hsm_sign_commitment_tx_reply(NULL, &sig)));
}
/*~ This is used by channeld to create signatures for the remote peer's
* commitment transaction. It's functionally identical to signing our own,
* but we expect to do this repeatedly as commitment transactions are
* updated.
*
* The HSM almost certainly *should* do more checks before signing!
*/
/* FIXME: make sure it meets some criteria? */
static struct io_plan *handle_sign_remote_commitment_tx(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct pubkey remote_funding_pubkey, local_funding_pubkey;
struct secret channel_seed;
struct bitcoin_tx *tx;
struct bitcoin_signature sig;
struct secrets secrets;
const u8 *funding_wscript;
struct pubkey remote_per_commit;
bool option_static_remotekey;
if (!fromwire_hsm_sign_remote_commitment_tx(tmpctx, msg_in,
&tx,
&remote_funding_pubkey,
&remote_per_commit,
&option_static_remotekey))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
/* Basic sanity checks. */
if (tx->wtx->num_inputs != 1)
return bad_req_fmt(conn, c, msg_in, "tx must have 1 input");
if (tx->wtx->num_outputs == 0)
return bad_req_fmt(conn, c, msg_in, "tx must have > 0 outputs");
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_basepoints(&channel_seed,
&local_funding_pubkey, NULL, &secrets, NULL);
funding_wscript = bitcoin_redeem_2of2(tmpctx,
&local_funding_pubkey,
&remote_funding_pubkey);
sign_tx_input(tx, 0, NULL, funding_wscript,
&secrets.funding_privkey,
&local_funding_pubkey,
SIGHASH_ALL,
&sig);
return req_reply(conn, c, take(towire_hsm_sign_tx_reply(NULL, &sig)));
}
/*~ This is used by channeld to create signatures for the remote peer's
* HTLC transactions. */
static struct io_plan *handle_sign_remote_htlc_tx(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct secret channel_seed;
struct bitcoin_tx *tx;
struct bitcoin_signature sig;
struct secrets secrets;
struct basepoints basepoints;
struct pubkey remote_per_commit_point;
u8 *wscript;
struct privkey htlc_privkey;
struct pubkey htlc_pubkey;
if (!fromwire_hsm_sign_remote_htlc_tx(tmpctx, msg_in,
&tx, &wscript,
&remote_per_commit_point))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_basepoints(&channel_seed, NULL, &basepoints, &secrets, NULL);
if (!derive_simple_privkey(&secrets.htlc_basepoint_secret,
&basepoints.htlc,
&remote_per_commit_point,
&htlc_privkey))
return bad_req_fmt(conn, c, msg_in,
"Failed deriving htlc privkey");
if (!derive_simple_key(&basepoints.htlc,
&remote_per_commit_point,
&htlc_pubkey))
return bad_req_fmt(conn, c, msg_in,
"Failed deriving htlc pubkey");
sign_tx_input(tx, 0, NULL, wscript, &htlc_privkey, &htlc_pubkey,
SIGHASH_ALL, &sig);
return req_reply(conn, c, take(towire_hsm_sign_tx_reply(NULL, &sig)));
}
/*~ This covers several cases where onchaind is creating a transaction which
* sends funds to our internal wallet. */
/* FIXME: Derive output address for this client, and check it here! */
static struct io_plan *handle_sign_to_us_tx(struct io_conn *conn,
struct client *c,
const u8 *msg_in,
struct bitcoin_tx *tx,
const struct privkey *privkey,
const u8 *wscript)
{
struct bitcoin_signature sig;
struct pubkey pubkey;
if (!pubkey_from_privkey(privkey, &pubkey))
return bad_req_fmt(conn, c, msg_in, "bad pubkey_from_privkey");
if (tx->wtx->num_inputs != 1)
return bad_req_fmt(conn, c, msg_in, "bad txinput count");
sign_tx_input(tx, 0, NULL, wscript, privkey, &pubkey, SIGHASH_ALL, &sig);
return req_reply(conn, c, take(towire_hsm_sign_tx_reply(NULL, &sig)));
}
/*~ When we send a commitment transaction onchain (unilateral close), there's
* a delay before we can spend it. onchaind does an explicit transaction to
* transfer it to the wallet so that doesn't need to remember how to spend
* this complex transaction. */
static struct io_plan *handle_sign_delayed_payment_to_us(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
u64 commit_num;
struct secret channel_seed, basepoint_secret;
struct pubkey basepoint;
struct bitcoin_tx *tx;
struct sha256 shaseed;
struct pubkey per_commitment_point;
struct privkey privkey;
u8 *wscript;
/*~ We don't derive the wscript ourselves, but perhaps we should? */
if (!fromwire_hsm_sign_delayed_payment_to_us(tmpctx, msg_in,
&commit_num,
&tx, &wscript))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
/*~ ccan/crypto/shachain how we efficiently derive 2^48 ordered
* preimages from a single seed; the twist is that as the preimages
* are revealed, you can generate the previous ones yourself, needing
* to only keep log(N) of them at any time. */
if (!derive_shaseed(&channel_seed, &shaseed))
return bad_req_fmt(conn, c, msg_in, "bad derive_shaseed");
/*~ BOLT #3 describes exactly how this is used to generate the Nth
* per-commitment point. */
if (!per_commit_point(&shaseed, &per_commitment_point, commit_num))
return bad_req_fmt(conn, c, msg_in,
"bad per_commitment_point %"PRIu64,
commit_num);
/*~ ... which is combined with the basepoint to generate then N'th key.
*/
if (!derive_delayed_payment_basepoint(&channel_seed,
&basepoint,
&basepoint_secret))
return bad_req_fmt(conn, c, msg_in, "failed deriving basepoint");
if (!derive_simple_privkey(&basepoint_secret,
&basepoint,
&per_commitment_point,
&privkey))
return bad_req_fmt(conn, c, msg_in, "failed deriving privkey");
return handle_sign_to_us_tx(conn, c, msg_in,
tx, &privkey, wscript);
}
/*~ This is used when a commitment transaction is onchain, and has an HTLC
* output paying to us (because we have the preimage); this signs that
* transaction, which lightningd will broadcast to collect the funds. */
static struct io_plan *handle_sign_remote_htlc_to_us(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct secret channel_seed, htlc_basepoint_secret;
struct pubkey htlc_basepoint;
struct bitcoin_tx *tx;
struct pubkey remote_per_commitment_point;
struct privkey privkey;
u8 *wscript;
if (!fromwire_hsm_sign_remote_htlc_to_us(tmpctx, msg_in,
&remote_per_commitment_point,
&tx, &wscript))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_htlc_basepoint(&channel_seed, &htlc_basepoint,
&htlc_basepoint_secret))
return bad_req_fmt(conn, c, msg_in,
"Failed derive_htlc_basepoint");
if (!derive_simple_privkey(&htlc_basepoint_secret,
&htlc_basepoint,
&remote_per_commitment_point,
&privkey))
return bad_req_fmt(conn, c, msg_in,
"Failed deriving htlc privkey");
return handle_sign_to_us_tx(conn, c, msg_in,
tx, &privkey, wscript);
}
/*~ This is used when the remote peer's commitment transaction is revoked;
* we can use the revocation secret to spend the outputs. For simplicity,
* we do them one at a time, though. */
static struct io_plan *handle_sign_penalty_to_us(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct secret channel_seed, revocation_secret, revocation_basepoint_secret;
struct pubkey revocation_basepoint;
struct bitcoin_tx *tx;
struct pubkey point;
struct privkey privkey;
u8 *wscript;
if (!fromwire_hsm_sign_penalty_to_us(tmpctx, msg_in,
&revocation_secret,
&tx, &wscript))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
if (!pubkey_from_secret(&revocation_secret, &point))
return bad_req_fmt(conn, c, msg_in, "Failed deriving pubkey");
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_revocation_basepoint(&channel_seed,
&revocation_basepoint,
&revocation_basepoint_secret))
return bad_req_fmt(conn, c, msg_in,
"Failed deriving revocation basepoint");
if (!derive_revocation_privkey(&revocation_basepoint_secret,
&revocation_secret,
&revocation_basepoint,
&point,
&privkey))
return bad_req_fmt(conn, c, msg_in,
"Failed deriving revocation privkey");
return handle_sign_to_us_tx(conn, c, msg_in,
tx, &privkey, wscript);
}
/*~ This is used when a commitment transaction is onchain, and has an HTLC
* output paying to them, which has timed out; this signs that transaction,
* which lightningd will broadcast to collect the funds. */
static struct io_plan *handle_sign_local_htlc_tx(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
u64 commit_num;
struct secret channel_seed, htlc_basepoint_secret;
struct sha256 shaseed;
struct pubkey per_commitment_point, htlc_basepoint;
struct bitcoin_tx *tx;
u8 *wscript;
struct bitcoin_signature sig;
struct privkey htlc_privkey;
struct pubkey htlc_pubkey;
if (!fromwire_hsm_sign_local_htlc_tx(tmpctx, msg_in,
&commit_num, &tx, &wscript))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_shaseed(&channel_seed, &shaseed))
return bad_req_fmt(conn, c, msg_in, "bad derive_shaseed");
if (!per_commit_point(&shaseed, &per_commitment_point, commit_num))
return bad_req_fmt(conn, c, msg_in,
"bad per_commitment_point %"PRIu64,
commit_num);
if (!derive_htlc_basepoint(&channel_seed,
&htlc_basepoint,
&htlc_basepoint_secret))
return bad_req_fmt(conn, c, msg_in,
"Failed deriving htlc basepoint");
if (!derive_simple_privkey(&htlc_basepoint_secret,
&htlc_basepoint,
&per_commitment_point,
&htlc_privkey))
return bad_req_fmt(conn, c, msg_in,
"Failed deriving htlc privkey");
if (!pubkey_from_privkey(&htlc_privkey, &htlc_pubkey))
return bad_req_fmt(conn, c, msg_in, "bad pubkey_from_privkey");
if (tx->wtx->num_inputs != 1)
return bad_req_fmt(conn, c, msg_in, "bad txinput count");
/* FIXME: Check that output script is correct! */
sign_tx_input(tx, 0, NULL, wscript, &htlc_privkey, &htlc_pubkey,
SIGHASH_ALL, &sig);
return req_reply(conn, c, take(towire_hsm_sign_tx_reply(NULL, &sig)));
}
/*~ This get the Nth a per-commitment point, and for N > 2, returns the
* grandparent per-commitment secret. This pattern is because after
* negotiating commitment N-1, we send them the next per-commitment point,
* and reveal the previous per-commitment secret as a promise not to spend
* the previous commitment transaction. */
static struct io_plan *handle_get_per_commitment_point(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct secret channel_seed;
struct sha256 shaseed;
struct pubkey per_commitment_point;
u64 n;
struct secret *old_secret;
if (!fromwire_hsm_get_per_commitment_point(msg_in, &n))
return bad_req(conn, c, msg_in);
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_shaseed(&channel_seed, &shaseed))
return bad_req_fmt(conn, c, msg_in, "bad derive_shaseed");
if (!per_commit_point(&shaseed, &per_commitment_point, n))
return bad_req_fmt(conn, c, msg_in,
"bad per_commit_point %"PRIu64, n);
if (n >= 2) {
old_secret = tal(tmpctx, struct secret);
if (!per_commit_secret(&shaseed, old_secret, n - 2)) {
return bad_req_fmt(conn, c, msg_in,
"Cannot derive secret %"PRIu64,
n - 2);
}
} else
old_secret = NULL;
/*~ hsm_client_wire.csv marks the secret field here optional, so it only
* gets included if the parameter is non-NULL. We violate 80 columns
* pretty badly here, but it's a recommendation not a religion. */
return req_reply(conn, c,
take(towire_hsm_get_per_commitment_point_reply(NULL,
&per_commitment_point,
old_secret)));
}
/*~ This is used when the remote peer claims to have knowledge of future
* commitment states (option_data_loss_protect in the spec) which means we've
* been restored from backup or something, and may have already revealed
* secrets. We carefully check that this is true, here. */
static struct io_plan *handle_check_future_secret(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct secret channel_seed;
struct sha256 shaseed;
u64 n;
struct secret secret, suggested;
if (!fromwire_hsm_check_future_secret(msg_in, &n, &suggested))
return bad_req(conn, c, msg_in);
get_channel_seed(&c->id, c->dbid, &channel_seed);
if (!derive_shaseed(&channel_seed, &shaseed))
return bad_req_fmt(conn, c, msg_in, "bad derive_shaseed");
if (!per_commit_secret(&shaseed, &secret, n))
return bad_req_fmt(conn, c, msg_in,
"bad commit secret #%"PRIu64, n);
/*~ Note the special secret_eq_consttime: we generate foo_eq for many
* types using ccan/structeq, but not 'struct secret' because any
* comparison risks leaking information about the secret if it is
* timing dependent. */
return req_reply(conn, c,
take(towire_hsm_check_future_secret_reply(NULL,
secret_eq_consttime(&secret, &suggested))));
}
/* This is used by closingd to sign off on a mutual close tx. */
static struct io_plan *handle_sign_mutual_close_tx(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct secret channel_seed;
struct bitcoin_tx *tx;
struct pubkey remote_funding_pubkey, local_funding_pubkey;
struct bitcoin_signature sig;
struct secrets secrets;
const u8 *funding_wscript;
if (!fromwire_hsm_sign_mutual_close_tx(tmpctx, msg_in,
&tx,
&remote_funding_pubkey))
return bad_req(conn, c, msg_in);
tx->chainparams = c->chainparams;
/* FIXME: We should know dust level, decent fee range and
* balances, and final_keyindex, and thus be able to check tx
* outputs! */
get_channel_seed(&c->id, c->dbid, &channel_seed);
derive_basepoints(&channel_seed,
&local_funding_pubkey, NULL, &secrets, NULL);
funding_wscript = bitcoin_redeem_2of2(tmpctx,
&local_funding_pubkey,
&remote_funding_pubkey);
sign_tx_input(tx, 0, NULL, funding_wscript,
&secrets.funding_privkey,
&local_funding_pubkey,
SIGHASH_ALL, &sig);
return req_reply(conn, c, take(towire_hsm_sign_tx_reply(NULL, &sig)));
}
/*~ Since we process requests then service them in strict order, and because
* only lightningd can request a new client fd, we can get away with a global
* here! But because we are being tricky, I set it to an invalid value when
* not in use, and sprinkle assertions around. */
static int pending_client_fd = -1;
/*~ This is the callback from below: having sent the reply, we now send the
* fd for the client end of the new socketpair. */
static struct io_plan *send_pending_client_fd(struct io_conn *conn,
struct client *master)
{
int fd = pending_client_fd;
/* This must be the master. */
assert(is_lightningd(master));
assert(fd != -1);
/* This sanity check shouldn't be necessary, but it's cheap. */
pending_client_fd = -1;
/*~There's arcane UNIX magic to send an open file descriptor over a
* UNIX domain socket. There's no great way to autogenerate this
* though; especially for the receive side, so we always pass these
* manually immediately following the message.
*
* io_send_fd()'s third parameter is whether to close the local one
* after sending; that saves us YA callback.
*/
return io_send_fd(conn, fd, true, client_read_next, master);
}
/*~ This is used by the master to create a new client connection (which
* becomes the HSM_FD for the subdaemon after forking). */
static struct io_plan *pass_client_hsmfd(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
int fds[2];
u64 dbid, capabilities;
struct node_id id;
/* This must be lightningd itself. */
assert(is_lightningd(c));
if (!fromwire_hsm_client_hsmfd(msg_in, &id, &dbid, &capabilities))
return bad_req(conn, c, msg_in);
/* socketpair is a bi-directional pipe, which is what we want. */
if (socketpair(AF_UNIX, SOCK_STREAM, 0, fds) != 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR, "creating fds: %s",
strerror(errno));
status_debug("new_client: %"PRIu64, dbid);
new_client(c, c->chainparams, &id, dbid, capabilities, fds[0]);
/*~ We stash this in a global, because we need to get both the fd and
* the client pointer to the callback. The other way would be to
* create a boutique structure and hand that, but we don't need to. */
pending_client_fd = fds[1];
return io_write_wire(conn, take(towire_hsm_client_hsmfd_reply(NULL)),
send_pending_client_fd, c);
}
/*~ For almost every wallet tx we use the BIP32 seed, but not for onchain
* unilateral closes from a peer: they (may) have an output to us using a
* public key based on the channel basepoints. It's a bit spammy to spend
* those immediately just to make the wallet simpler, and we didn't appreciate
* the problem when we designed the protocol for commitment transaction keys.
*
* So we store just enough about the channel it came from (which may be
* long-gone) to regenerate the keys here. That has the added advantage that
* the secrets themselves stay within the HSM. */
static void hsm_unilateral_close_privkey(struct privkey *dst,
struct unilateral_close_info *info)
{
struct secret channel_seed;
struct basepoints basepoints;
struct secrets secrets;
get_channel_seed(&info->peer_id, info->channel_id, &channel_seed);
derive_basepoints(&channel_seed, NULL, &basepoints, &secrets, NULL);
/* BOLT #3:
*
* If `option_static_remotekey` is negotiated the `remotepubkey`
* is simply the remote node's `payment_basepoint`, otherwise it is
* calculated as above using the remote node's `payment_basepoint`.
*/
/* In our UTXO representation, this is indicated by a NULL
* commitment_point. */
if (!info->commitment_point)
dst->secret = secrets.payment_basepoint_secret;
else if (!derive_simple_privkey(&secrets.payment_basepoint_secret,
&basepoints.payment,
info->commitment_point,
dst)) {
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Deriving unilateral_close_privkey");
}
}
/* This gets the bitcoin private key needed to spend from our wallet. */
static void hsm_key_for_utxo(struct privkey *privkey, struct pubkey *pubkey,
const struct utxo *utxo)
{
if (utxo->close_info != NULL) {
/* This is a their_unilateral_close/to-us output, so
* we need to derive the secret the long way */
status_debug("Unilateral close output, deriving secrets");
hsm_unilateral_close_privkey(privkey, utxo->close_info);
pubkey_from_privkey(privkey, pubkey);
status_debug("Derived public key %s from unilateral close",
type_to_string(tmpctx, struct pubkey, pubkey));
} else {
/* Simple case: just get derive via HD-derivation */
bitcoin_key(privkey, pubkey, utxo->keyindex);
}
}
static void sign_input(struct bitcoin_tx *tx, struct utxo *in,
struct pubkey *inkey,
struct bitcoin_signature *sig,
int index)
{
struct privkey inprivkey;
u8 *subscript, *wscript, *script;
/* Figure out keys to spend this. */
hsm_key_for_utxo(&inprivkey, inkey, in);
/* It's either a p2wpkh or p2sh (we support that so people from
* the last bitcoin era can put funds into the wallet) */
wscript = p2wpkh_scriptcode(tmpctx, inkey);
if (in->is_p2sh) {
/* For P2SH-wrapped Segwit, the (implied) redeemScript
* is defined in BIP141 */
subscript = bitcoin_redeem_p2sh_p2wpkh(tmpctx, inkey);
script = bitcoin_scriptsig_p2sh_p2wpkh(tx, inkey);
bitcoin_tx_input_set_script(tx, index, script);
} else {
/* Pure segwit uses an empty inputScript; NULL has
* tal_count() == 0, so it works great here. */
subscript = NULL;
bitcoin_tx_input_set_script(tx, index, NULL);
}
/* This is the core crypto magic. */
sign_tx_input(tx, index, subscript, wscript, &inprivkey, inkey,
SIGHASH_ALL, sig);
/* The witness is [sig] [key] */
bitcoin_tx_input_set_witness(
tx, index, take(bitcoin_witness_p2wpkh(tx, sig, inkey)));
}
/* This completes the tx by filling in the input scripts with signatures. */
static void sign_all_inputs(struct bitcoin_tx *tx, struct utxo **utxos)
{
/*~ Deep in my mind there's a continuous battle: should arrays be
* named as singular or plural? Is consistency the sign of a weak
* mind?
*
* ZmnSCPxj answers thusly: One must make peace with the fact, that
* the array itself is singular, yet its contents are plural. Do you
* name the array, or do you name its contents? Is the array itself
* the thing and the whole of the thing, or is it its contents that
* define what it is?
*
*... I'm not sure that helps! */
assert(tx->wtx->num_inputs == tal_count(utxos));
for (size_t i = 0; i < tal_count(utxos); i++) {
struct pubkey inkey;
struct bitcoin_signature sig;
sign_input(tx, utxos[i], &inkey, &sig, i);
}
}
/*~ lightningd asks us to sign a withdrawal or funding as above but in theory
* we can do more to check the previous case is valid. */
static struct io_plan *handle_sign_withdrawal_tx(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct amount_sat satoshi_out, change_out;
u32 change_keyindex;
struct utxo **utxos;
struct bitcoin_tx *tx;
struct pubkey changekey;
struct bitcoin_tx_output **outputs;
u32 nlocktime;
if (!fromwire_hsm_sign_withdrawal(tmpctx, msg_in, &satoshi_out,
&change_out, &change_keyindex,
&outputs, &utxos, &nlocktime))
return bad_req(conn, c, msg_in);
if (!bip32_pubkey(&secretstuff.bip32, &changekey, change_keyindex))
return bad_req_fmt(conn, c, msg_in,
"Failed to get key %u", change_keyindex);
tx = withdraw_tx(tmpctx, c->chainparams,
cast_const2(const struct utxo **, utxos), outputs,
&changekey, change_out, NULL, NULL, nlocktime);
sign_all_inputs(tx, utxos);
return req_reply(conn, c,
take(towire_hsm_sign_withdrawal_reply(NULL, tx)));
}
/*~ Lightning invoices, defined by BOLT 11, are signed. This has been
* surprisingly controversial; it means a node needs to be online to create
* invoices. However, it seems clear to me that in a world without
* intermedaries you need proof that you have received an offer (the
* signature), as well as proof that you've paid it (the preimage). */
static struct io_plan *handle_sign_invoice(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
/*~ We make up a 'u5' type to represent BOLT11's 5-bits-per-byte
* format: it's only for human consumption, as typedefs are almost
* entirely transparent to the C compiler. */
u5 *u5bytes;
u8 *hrpu8;
char *hrp;
struct sha256 sha;
secp256k1_ecdsa_recoverable_signature rsig;
struct hash_u5 hu5;
struct privkey node_pkey;
if (!fromwire_hsm_sign_invoice(tmpctx, msg_in, &u5bytes, &hrpu8))
return bad_req(conn, c, msg_in);
/* BOLT #11:
*
* A writer... MUST set `signature` to a valid 512-bit
* secp256k1 signature of the SHA2 256-bit hash of the
* human-readable part, represented as UTF-8 bytes,
* concatenated with the data part (excluding the signature)
* with 0 bits appended to pad the data to the next byte
* boundary, with a trailing byte containing the recovery ID
* (0, 1, 2, or 3).
*/
/* FIXME: Check invoice! */
/*~ tal_dup_arr() does what you'd expect: allocate an array by copying
* another; the cast is needed because the hrp is a 'char' array, not
* a 'u8' (unsigned char) as it's the "human readable" part.
*
* The final arg of tal_dup_arr() is how many extra bytes to allocate:
* it's so often zero that I've thought about dropping the argument, but
* in cases like this (adding a NUL terminator) it's perfect. */
hrp = tal_dup_arr(tmpctx, char, (char *)hrpu8, tal_count(hrpu8), 1);
hrp[tal_count(hrpu8)] = '\0';
hash_u5_init(&hu5, hrp);
hash_u5(&hu5, u5bytes, tal_count(u5bytes));
hash_u5_done(&hu5, &sha);
node_key(&node_pkey, NULL);
/*~ By no small coincidence, this libsecp routine uses the exact
* recovery signature format mandated by BOLT 11. */
if (!secp256k1_ecdsa_sign_recoverable(secp256k1_ctx, &rsig,
(const u8 *)&sha,
node_pkey.secret.data,
NULL, NULL)) {
return bad_req_fmt(conn, c, msg_in, "Failed to sign invoice");
}
return req_reply(conn, c,
take(towire_hsm_sign_invoice_reply(NULL, &rsig)));
}
/*~ It's optional for nodes to send node_announcement, but it lets us set our
* favourite color and cool alias! Plus other minor details like how to
* connect to us. */
static struct io_plan *handle_sign_node_announcement(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
/* BOLT #7:
*
* The origin node:
*...
* - MUST set `signature` to the signature of the double-SHA256 of the
* entire remaining packet after `signature` (using the key given by
* `node_id`).
*/
/* 2 bytes msg type + 64 bytes signature */
size_t offset = 66;
struct sha256_double hash;
struct privkey node_pkey;
secp256k1_ecdsa_signature sig;
u8 *reply;
u8 *ann;
if (!fromwire_hsm_node_announcement_sig_req(tmpctx, msg_in, &ann))
return bad_req(conn, c, msg_in);
if (tal_count(ann) < offset)
return bad_req_fmt(conn, c, msg_in,
"Node announcement too short");
if (fromwire_peektype(ann) != WIRE_NODE_ANNOUNCEMENT)
return bad_req_fmt(conn, c, msg_in,
"Invalid announcement");
node_key(&node_pkey, NULL);
sha256_double(&hash, ann + offset, tal_count(ann) - offset);
sign_hash(&node_pkey, &hash, &sig);
reply = towire_hsm_node_announcement_sig_reply(NULL, &sig);
return req_reply(conn, c, take(reply));
}
/*~ lightningd asks us to sign a message. I tweeted the spec
* in https://twitter.com/rusty_twit/status/1182102005914800128:
*
* @roasbeef & @bitconner point out that #lnd algo is:
* zbase32(SigRec(SHA256(SHA256("Lightning Signed Message:" + msg)))).
* zbase32 from https://philzimmermann.com/docs/human-oriented-base-32-encoding.txt
* and SigRec has first byte 31 + recovery id, followed by 64 byte sig. #specinatweet
*/
static struct io_plan *handle_sign_message(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
u8 *msg;
struct sha256_ctx sctx = SHA256_INIT;
struct sha256_double shad;
secp256k1_ecdsa_recoverable_signature rsig;
struct privkey node_pkey;
if (!fromwire_hsm_sign_message(tmpctx, msg_in, &msg))
return bad_req(conn, c, msg_in);
/* Prefixing by a known string means we'll never be convinced
* to sign some gossip message, etc. */
sha256_update(&sctx, "Lightning Signed Message:",
strlen("Lightning Signed Message:"));
sha256_update(&sctx, msg, tal_count(msg));
sha256_double_done(&sctx, &shad);
node_key(&node_pkey, NULL);
/*~ By no small coincidence, this libsecp routine uses the exact
* recovery signature format mandated by BOLT 11. */
if (!secp256k1_ecdsa_sign_recoverable(secp256k1_ctx, &rsig,
shad.sha.u.u8,
node_pkey.secret.data,
NULL, NULL)) {
return bad_req_fmt(conn, c, msg_in, "Failed to sign message");
}
return req_reply(conn, c,
take(towire_hsm_sign_message_reply(NULL, &rsig)));
}
#if DEVELOPER
static struct io_plan *handle_memleak(struct io_conn *conn,
struct client *c,
const u8 *msg_in)
{
struct htable *memtable;
bool found_leak;
u8 *reply;
memtable = memleak_enter_allocations(tmpctx, msg_in, msg_in);
/* Now delete clients and anything they point to. */
memleak_remove_referenced(memtable, c);
memleak_scan_region(memtable,
dbid_zero_clients, sizeof(dbid_zero_clients));
memleak_remove_uintmap(memtable, &clients);
memleak_scan_region(memtable, status_conn, tal_bytelen(status_conn));
memleak_scan_region(memtable, dev_force_privkey, 0);
memleak_scan_region(memtable, dev_force_bip32_seed, 0);
found_leak = dump_memleak(memtable);
reply = towire_hsm_dev_memleak_reply(NULL, found_leak);
return req_reply(conn, c, take(reply));
}
#endif /* DEVELOPER */
/*~ This routine checks that a client is allowed to call the handler. */
static bool check_client_capabilities(struct client *client,
enum hsm_wire_type t)
{
/*~ Here's a useful trick: enums in C are not real types, they're
* semantic sugar sprinkled over an int, bascally (in fact, older
* versions of gcc used to convert the values ints in the parser!).
*
* But GCC will do one thing for us: if we have a switch statement
* with a controlling expression which is an enum, it will warn us
* if a declared enum value is *not* handled in the switch, eg:
* enumeration value FOOBAR not handled in switch [-Werror=switch]
*
* This only works if there's no 'default' label, which is sometimes
* hard, as we *can* have non-enum values in our enum. But the tradeoff
* is worth it so the compiler tells us everywhere we have to fix when
* we add a new enum identifier!
*/
switch (t) {
case WIRE_HSM_ECDH_REQ:
return (client->capabilities & HSM_CAP_ECDH) != 0;
case WIRE_HSM_CANNOUNCEMENT_SIG_REQ:
case WIRE_HSM_CUPDATE_SIG_REQ:
case WIRE_HSM_NODE_ANNOUNCEMENT_SIG_REQ:
return (client->capabilities & HSM_CAP_SIGN_GOSSIP) != 0;
case WIRE_HSM_SIGN_DELAYED_PAYMENT_TO_US:
case WIRE_HSM_SIGN_REMOTE_HTLC_TO_US:
case WIRE_HSM_SIGN_PENALTY_TO_US:
case WIRE_HSM_SIGN_LOCAL_HTLC_TX:
return (client->capabilities & HSM_CAP_SIGN_ONCHAIN_TX) != 0;
case WIRE_HSM_GET_PER_COMMITMENT_POINT:
case WIRE_HSM_CHECK_FUTURE_SECRET:
return (client->capabilities & HSM_CAP_COMMITMENT_POINT) != 0;
case WIRE_HSM_SIGN_REMOTE_COMMITMENT_TX:
case WIRE_HSM_SIGN_REMOTE_HTLC_TX:
return (client->capabilities & HSM_CAP_SIGN_REMOTE_TX) != 0;
case WIRE_HSM_SIGN_MUTUAL_CLOSE_TX:
return (client->capabilities & HSM_CAP_SIGN_CLOSING_TX) != 0;
case WIRE_HSM_INIT:
case WIRE_HSM_CLIENT_HSMFD:
case WIRE_HSM_SIGN_WITHDRAWAL:
case WIRE_HSM_SIGN_INVOICE:
case WIRE_HSM_SIGN_COMMITMENT_TX:
case WIRE_HSM_GET_CHANNEL_BASEPOINTS:
case WIRE_HSM_DEV_MEMLEAK:
case WIRE_HSM_SIGN_MESSAGE:
return (client->capabilities & HSM_CAP_MASTER) != 0;
/*~ These are messages sent by the HSM so we should never receive them. */
/* FIXME: Since we autogenerate these, we should really generate separate
* enums for replies to avoid this kind of clutter! */
case WIRE_HSM_ECDH_RESP:
case WIRE_HSM_CANNOUNCEMENT_SIG_REPLY:
case WIRE_HSM_CUPDATE_SIG_REPLY:
case WIRE_HSM_CLIENT_HSMFD_REPLY:
case WIRE_HSM_NODE_ANNOUNCEMENT_SIG_REPLY:
case WIRE_HSM_SIGN_WITHDRAWAL_REPLY:
case WIRE_HSM_SIGN_INVOICE_REPLY:
case WIRE_HSM_INIT_REPLY:
case WIRE_HSMSTATUS_CLIENT_BAD_REQUEST:
case WIRE_HSM_SIGN_COMMITMENT_TX_REPLY:
case WIRE_HSM_SIGN_TX_REPLY:
case WIRE_HSM_GET_PER_COMMITMENT_POINT_REPLY:
case WIRE_HSM_CHECK_FUTURE_SECRET_REPLY:
case WIRE_HSM_GET_CHANNEL_BASEPOINTS_REPLY:
case WIRE_HSM_DEV_MEMLEAK_REPLY:
case WIRE_HSM_SIGN_MESSAGE_REPLY:
break;
}
return false;
}
/*~ This is the core of the HSM daemon: handling requests. */
static struct io_plan *handle_client(struct io_conn *conn, struct client *c)
{
enum hsm_wire_type t = fromwire_peektype(c->msg_in);
status_debug("Client: Received message %d from client", t);
/* Before we do anything else, is this client allowed to do
* what he asks for? */
if (!check_client_capabilities(c, t))
return bad_req_fmt(conn, c, c->msg_in,
"does not have capability to run %d", t);
/* Now actually go and do what the client asked for */
switch (t) {
case WIRE_HSM_INIT:
return init_hsm(conn, c, c->msg_in);
case WIRE_HSM_CLIENT_HSMFD:
return pass_client_hsmfd(conn, c, c->msg_in);
case WIRE_HSM_GET_CHANNEL_BASEPOINTS:
return handle_get_channel_basepoints(conn, c, c->msg_in);
case WIRE_HSM_ECDH_REQ:
return handle_ecdh(conn, c, c->msg_in);
case WIRE_HSM_CANNOUNCEMENT_SIG_REQ:
return handle_cannouncement_sig(conn, c, c->msg_in);
case WIRE_HSM_CUPDATE_SIG_REQ:
return handle_channel_update_sig(conn, c, c->msg_in);
case WIRE_HSM_NODE_ANNOUNCEMENT_SIG_REQ:
return handle_sign_node_announcement(conn, c, c->msg_in);
case WIRE_HSM_SIGN_INVOICE:
return handle_sign_invoice(conn, c, c->msg_in);
case WIRE_HSM_SIGN_WITHDRAWAL:
return handle_sign_withdrawal_tx(conn, c, c->msg_in);
case WIRE_HSM_SIGN_COMMITMENT_TX:
return handle_sign_commitment_tx(conn, c, c->msg_in);
case WIRE_HSM_SIGN_DELAYED_PAYMENT_TO_US:
return handle_sign_delayed_payment_to_us(conn, c, c->msg_in);
case WIRE_HSM_SIGN_REMOTE_HTLC_TO_US:
return handle_sign_remote_htlc_to_us(conn, c, c->msg_in);
case WIRE_HSM_SIGN_PENALTY_TO_US:
return handle_sign_penalty_to_us(conn, c, c->msg_in);
case WIRE_HSM_SIGN_LOCAL_HTLC_TX:
return handle_sign_local_htlc_tx(conn, c, c->msg_in);
case WIRE_HSM_GET_PER_COMMITMENT_POINT:
return handle_get_per_commitment_point(conn, c, c->msg_in);
case WIRE_HSM_CHECK_FUTURE_SECRET:
return handle_check_future_secret(conn, c, c->msg_in);
case WIRE_HSM_SIGN_REMOTE_COMMITMENT_TX:
return handle_sign_remote_commitment_tx(conn, c, c->msg_in);
case WIRE_HSM_SIGN_REMOTE_HTLC_TX:
return handle_sign_remote_htlc_tx(conn, c, c->msg_in);
case WIRE_HSM_SIGN_MUTUAL_CLOSE_TX:
return handle_sign_mutual_close_tx(conn, c, c->msg_in);
case WIRE_HSM_SIGN_MESSAGE:
return handle_sign_message(conn, c, c->msg_in);
#if DEVELOPER
case WIRE_HSM_DEV_MEMLEAK:
return handle_memleak(conn, c, c->msg_in);
#else
case WIRE_HSM_DEV_MEMLEAK:
#endif /* DEVELOPER */
case WIRE_HSM_ECDH_RESP:
case WIRE_HSM_CANNOUNCEMENT_SIG_REPLY:
case WIRE_HSM_CUPDATE_SIG_REPLY:
case WIRE_HSM_CLIENT_HSMFD_REPLY:
case WIRE_HSM_NODE_ANNOUNCEMENT_SIG_REPLY:
case WIRE_HSM_SIGN_WITHDRAWAL_REPLY:
case WIRE_HSM_SIGN_INVOICE_REPLY:
case WIRE_HSM_INIT_REPLY:
case WIRE_HSMSTATUS_CLIENT_BAD_REQUEST:
case WIRE_HSM_SIGN_COMMITMENT_TX_REPLY:
case WIRE_HSM_SIGN_TX_REPLY:
case WIRE_HSM_GET_PER_COMMITMENT_POINT_REPLY:
case WIRE_HSM_CHECK_FUTURE_SECRET_REPLY:
case WIRE_HSM_GET_CHANNEL_BASEPOINTS_REPLY:
case WIRE_HSM_DEV_MEMLEAK_REPLY:
case WIRE_HSM_SIGN_MESSAGE_REPLY:
break;
}
return bad_req_fmt(conn, c, c->msg_in, "Unknown request");
}
static void master_gone(struct io_conn *unused UNUSED, struct client *c UNUSED)
{
daemon_shutdown();
/* Can't tell master, it's gone. */
exit(2);
}
int main(int argc, char *argv[])
{
struct client *master;
setup_locale();
/* This sets up tmpctx, various DEVELOPER options, backtraces, etc. */
subdaemon_setup(argc, argv);
/* A trivial daemon_conn just for writing. */
status_conn = daemon_conn_new(NULL, STDIN_FILENO, NULL, NULL, NULL);
status_setup_async(status_conn);
uintmap_init(&clients);
master = new_client(NULL, NULL, NULL, 0,
HSM_CAP_MASTER | HSM_CAP_SIGN_GOSSIP | HSM_CAP_ECDH,
REQ_FD);
/* First client == lightningd. */
assert(is_lightningd(master));
/* When conn closes, everything is freed. */
io_set_finish(master->conn, master_gone, master);
/*~ The two NULL args are a list of timers, and the timer which expired:
* we don't have any timers. */
io_loop(NULL, NULL);
/*~ This should never be reached: io_loop only exits on io_break which
* we don't call, a timer expiry which we don't have, or all connections
* being closed, and closing the master calls master_gone. */
abort();
}
/*~ Congratulations on making it through the first of the seven dwarves!
* (And Christian wondered why I'm so fond of having separate daemons!).
*
* We continue our story in the next-more-complex daemon: connectd/connectd.c
*/