|
|
|
#include <assert.h>
|
|
|
|
#include <ccan/build_assert/build_assert.h>
|
|
|
|
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
|
|
|
|
#include <ccan/crypto/sha256/sha256.h>
|
|
|
|
#include <ccan/endian/endian.h>
|
|
|
|
#include <ccan/mem/mem.h>
|
|
|
|
#include <ccan/short_types/short_types.h>
|
|
|
|
#include <ccan/take/take.h>
|
|
|
|
#include <lightningd/cryptomsg.h>
|
|
|
|
#include <sodium/crypto_aead_chacha20poly1305.h>
|
|
|
|
#include <status.h>
|
|
|
|
#include <utils.h>
|
|
|
|
#include <wire/wire.h>
|
|
|
|
#include <wire/wire_io.h>
|
|
|
|
|
|
|
|
static void hkdf_two_keys(struct sha256 *out1, struct sha256 *out2,
|
|
|
|
const struct sha256 *in1,
|
|
|
|
const struct sha256 *in2)
|
|
|
|
{
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `HKDF(salt,ikm)`: a function is defined in [3](#reference-3),
|
|
|
|
* evaluated with a zero-length `info` field.
|
|
|
|
* * All invocations of the `HKDF` implicitly return `64-bytes`
|
|
|
|
* of cryptographic randomness using the extract-and-expand
|
|
|
|
* component of the `HKDF`.
|
|
|
|
*/
|
|
|
|
struct sha256 okm[2];
|
|
|
|
|
|
|
|
BUILD_ASSERT(sizeof(okm) == 64);
|
|
|
|
hkdf_sha256(okm, sizeof(okm), in1, sizeof(*in1), in2, sizeof(*in2),
|
|
|
|
NULL, 0);
|
|
|
|
*out1 = okm[0];
|
|
|
|
*out2 = okm[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
static void maybe_rotate_key(u64 *n, struct sha256 *k, struct sha256 *ck)
|
|
|
|
{
|
|
|
|
struct sha256 new_k, new_ck;
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* A key is to be rotated after a party sends of decrypts
|
|
|
|
* `1000` messages with it. This can be properly accounted
|
|
|
|
* for by rotating the key once the nonce dedicated to it
|
|
|
|
* exceeds `1000`.
|
|
|
|
*/
|
|
|
|
if (*n != 1000)
|
|
|
|
return;
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* Key rotation for a key `k` is performed according to the following:
|
|
|
|
*
|
|
|
|
* * Let `ck` be the chaining key obtained at the end of `Act Three`.
|
|
|
|
* * `ck', k' = HKDF(ck, k)`
|
|
|
|
* * Reset the nonce for the key to `n = 0`.
|
|
|
|
* * `k = k'`
|
|
|
|
* * `ck = ck'`
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(&new_ck, &new_k, ck, k);
|
|
|
|
status_trace("# 0x%s, 0x%s = HKDF(0x%s, 0x%s)",
|
|
|
|
tal_hexstr(trc, &new_ck, sizeof(new_ck)),
|
|
|
|
tal_hexstr(trc, &new_k, sizeof(new_k)),
|
|
|
|
tal_hexstr(trc, ck, sizeof(*ck)),
|
|
|
|
tal_hexstr(trc, k, sizeof(*k)));
|
|
|
|
*ck = new_ck;
|
|
|
|
*k = new_k;
|
|
|
|
*n = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void le64_nonce(unsigned char *npub, u64 nonce)
|
|
|
|
{
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* ...with nonce `n` encoded as 32 zero bits followed by a
|
|
|
|
* *little-endian* 64-bit value (this follows the Noise Protocol
|
|
|
|
* convention, rather than our normal endian).
|
|
|
|
*/
|
|
|
|
le64 le_nonce = cpu_to_le64(nonce);
|
|
|
|
const size_t zerolen = crypto_aead_chacha20poly1305_ietf_NPUBBYTES - sizeof(le_nonce);
|
|
|
|
|
|
|
|
BUILD_ASSERT(crypto_aead_chacha20poly1305_ietf_NPUBBYTES >= sizeof(le_nonce));
|
|
|
|
/* First part is 0, followed by nonce. */
|
|
|
|
memset(npub, 0, zerolen);
|
|
|
|
memcpy(npub + zerolen, &le_nonce, sizeof(le_nonce));
|
|
|
|
}
|
|
|
|
|
|
|
|
u8 *cryptomsg_decrypt_body(const tal_t *ctx,
|
|
|
|
struct crypto_state *cs, const u8 *in)
|
|
|
|
{
|
|
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
|
|
unsigned long long mlen;
|
|
|
|
size_t inlen = tal_count(in);
|
|
|
|
u8 *decrypted;
|
|
|
|
|
|
|
|
if (inlen < 16)
|
|
|
|
return NULL;
|
|
|
|
decrypted = tal_arr(ctx, u8, inlen - 16);
|
|
|
|
|
|
|
|
le64_nonce(npub, cs->rn++);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Decrypt `c` using `ChaCha20-Poly1305`, `rn`, and `rk` to
|
|
|
|
* obtain decrypted plaintext packet `p`.
|
|
|
|
*
|
|
|
|
* * The nonce `rn` MUST be incremented after this step.
|
|
|
|
*/
|
|
|
|
if (crypto_aead_chacha20poly1305_ietf_decrypt(decrypted,
|
|
|
|
&mlen, NULL,
|
|
|
|
memcheck(in, inlen),
|
|
|
|
inlen,
|
|
|
|
NULL, 0,
|
|
|
|
npub, cs->rk.u.u8) != 0) {
|
|
|
|
/* FIXME: Report error! */
|
|
|
|
return tal_free(decrypted);
|
|
|
|
}
|
|
|
|
assert(mlen == tal_count(decrypted));
|
|
|
|
|
|
|
|
maybe_rotate_key(&cs->rn, &cs->rk, &cs->r_ck);
|
|
|
|
return decrypted;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct io_plan *peer_decrypt_body(struct io_conn *conn,
|
|
|
|
struct peer_crypto_state *pcs)
|
|
|
|
{
|
|
|
|
struct io_plan *plan;
|
|
|
|
u8 *in, *decrypted;
|
|
|
|
|
|
|
|
decrypted = cryptomsg_decrypt_body(pcs->in, &pcs->cs, pcs->in);
|
|
|
|
if (!decrypted)
|
|
|
|
return io_close(conn);
|
|
|
|
|
|
|
|
/* Steal cs->in: we free it after, and decrypted too unless
|
|
|
|
* they steal but be careful not to touch anything after
|
|
|
|
* next_in (could free itself) */
|
|
|
|
in = tal_steal(NULL, pcs->in);
|
|
|
|
pcs->in = NULL;
|
|
|
|
|
|
|
|
plan = pcs->next_in(conn, pcs->peer, decrypted);
|
|
|
|
tal_free(in);
|
|
|
|
return plan;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool cryptomsg_decrypt_header(struct crypto_state *cs, u8 hdr[18], u16 *lenp)
|
|
|
|
{
|
|
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
|
|
unsigned long long mlen;
|
|
|
|
be16 len;
|
|
|
|
|
|
|
|
le64_nonce(npub, cs->rn++);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Let the encrypted length prefix be known as `lc`
|
|
|
|
*
|
|
|
|
* * Decrypt `lc` using `ChaCha20-Poy1305`, `rn`, and `rk` to
|
|
|
|
* obtain size of the encrypted packet `l`.
|
|
|
|
* * A zero-length byte slice is to be passed as the AD
|
|
|
|
* (associated data).
|
|
|
|
* * The nonce `rn` MUST be incremented after this step.
|
|
|
|
*/
|
|
|
|
if (crypto_aead_chacha20poly1305_ietf_decrypt((unsigned char *)&len,
|
|
|
|
&mlen, NULL,
|
|
|
|
memcheck(hdr, 18), 18,
|
|
|
|
NULL, 0,
|
|
|
|
npub, cs->rk.u.u8) != 0) {
|
|
|
|
/* FIXME: Report error! */
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
assert(mlen == sizeof(len));
|
|
|
|
*lenp = be16_to_cpu(len);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct io_plan *peer_decrypt_header(struct io_conn *conn,
|
|
|
|
struct peer_crypto_state *pcs)
|
|
|
|
{
|
|
|
|
u16 len;
|
|
|
|
|
|
|
|
if (!cryptomsg_decrypt_header(&pcs->cs, pcs->in, &len))
|
|
|
|
return io_close(conn);
|
|
|
|
|
|
|
|
tal_free(pcs->in);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Read _exactly_ `l+16` bytes from the network buffer, let
|
|
|
|
* the bytes be known as `c`.
|
|
|
|
*/
|
|
|
|
pcs->in = tal_arr(conn, u8, (u32)len + 16);
|
|
|
|
return io_read(conn, pcs->in, tal_count(pcs->in), peer_decrypt_body,
|
|
|
|
pcs);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct io_plan *peer_read_message(struct io_conn *conn,
|
|
|
|
struct peer_crypto_state *pcs,
|
|
|
|
struct io_plan *(*next)(struct io_conn *,
|
|
|
|
struct peer *,
|
|
|
|
u8 *msg))
|
|
|
|
{
|
|
|
|
assert(!pcs->in);
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* ### Decrypting Messages
|
|
|
|
*
|
|
|
|
* In order to decrypt the _next_ message in the network
|
|
|
|
* stream, the following is done:
|
|
|
|
*
|
|
|
|
* * Read _exactly_ `18-bytes` from the network buffer.
|
|
|
|
*/
|
|
|
|
pcs->in = tal_arr(conn, u8, 18);
|
|
|
|
pcs->next_in = next;
|
|
|
|
return io_read(conn, pcs->in, 18, peer_decrypt_header, pcs);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct io_plan *peer_write_done(struct io_conn *conn,
|
|
|
|
struct peer_crypto_state *pcs)
|
|
|
|
{
|
|
|
|
pcs->out = tal_free(pcs->out);
|
|
|
|
return pcs->next_out(conn, pcs->peer);
|
|
|
|
}
|
|
|
|
|
|
|
|
u8 *cryptomsg_encrypt_msg(const tal_t *ctx,
|
|
|
|
struct crypto_state *cs,
|
|
|
|
const u8 *msg)
|
|
|
|
{
|
|
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
|
|
unsigned long long clen, mlen = tal_count(msg);
|
|
|
|
be16 l;
|
|
|
|
int ret;
|
|
|
|
u8 *out;
|
|
|
|
|
|
|
|
out = tal_arr(ctx, u8, sizeof(l) + 16 + mlen + 16);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* In order to encrypt a lightning message (`m`), given a
|
|
|
|
* sending key (`sk`), and a nonce (`sn`), the following is done:
|
|
|
|
*
|
|
|
|
*
|
|
|
|
* * let `l = len(m)`,
|
|
|
|
* where `len` obtains the length in bytes of the lightning message.
|
|
|
|
*
|
|
|
|
* * Serialize `l` into `2-bytes` encoded as a big-endian integer.
|
|
|
|
*/
|
|
|
|
l = cpu_to_be16(mlen);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Encrypt `l` using `ChaChaPoly-1305`, `sn`, and `sk` to obtain `lc`
|
|
|
|
* (`18-bytes`)
|
|
|
|
* * The nonce `sn` is encoded as a 96-bit little-endian number.
|
|
|
|
* As our decoded nonces a 64-bit, we encode the 96-bit nonce as
|
|
|
|
* follows: 32-bits of leading zeroes followed by a 64-bit value.
|
|
|
|
* * The nonce `sn` MUST be incremented after this step.
|
|
|
|
* * A zero-length byte slice is to be passed as the AD
|
|
|
|
*/
|
|
|
|
le64_nonce(npub, cs->sn++);
|
|
|
|
ret = crypto_aead_chacha20poly1305_ietf_encrypt(out, &clen,
|
|
|
|
(unsigned char *)
|
|
|
|
memcheck(&l, sizeof(l)),
|
|
|
|
sizeof(l),
|
|
|
|
NULL, 0,
|
|
|
|
NULL, npub,
|
|
|
|
cs->sk.u.u8);
|
|
|
|
assert(ret == 0);
|
|
|
|
assert(clen == sizeof(l) + 16);
|
|
|
|
#ifdef SUPERVERBOSE
|
|
|
|
status_trace("# encrypt l: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s",
|
|
|
|
tal_hexstr(trc, &l, sizeof(l)),
|
|
|
|
tal_hexstr(trc, npub, sizeof(npub)),
|
|
|
|
tal_hexstr(trc, &cs->sk, sizeof(cs->sk)),
|
|
|
|
tal_hexstr(trc, out, clen));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Finally encrypt the message itself (`m`) using the same
|
|
|
|
* procedure used to encrypt the length prefix. Let
|
|
|
|
* encrypted ciphertext be known as `c`.
|
|
|
|
*
|
|
|
|
* * The nonce `sn` MUST be incremented after this step.
|
|
|
|
*/
|
|
|
|
le64_nonce(npub, cs->sn++);
|
|
|
|
ret = crypto_aead_chacha20poly1305_ietf_encrypt(out + clen, &clen,
|
|
|
|
memcheck(msg, mlen),
|
|
|
|
mlen,
|
|
|
|
NULL, 0,
|
|
|
|
NULL, npub,
|
|
|
|
cs->sk.u.u8);
|
|
|
|
assert(ret == 0);
|
|
|
|
assert(clen == mlen + 16);
|
|
|
|
#ifdef SUPERVERBOSE
|
|
|
|
status_trace("# encrypt m: cleartext=0x%s, AD=NULL, sn=0x%s, sk=0x%s => 0x%s",
|
|
|
|
tal_hexstr(trc, msg, mlen),
|
|
|
|
tal_hexstr(trc, npub, sizeof(npub)),
|
|
|
|
tal_hexstr(trc, &cs->sk, sizeof(cs->sk)),
|
|
|
|
tal_hexstr(trc, out + 18, clen));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
maybe_rotate_key(&cs->sn, &cs->sk, &cs->s_ck);
|
|
|
|
|
|
|
|
return out;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct io_plan *peer_write_message(struct io_conn *conn,
|
|
|
|
struct peer_crypto_state *pcs,
|
|
|
|
const u8 *msg,
|
|
|
|
struct io_plan *(*next)(struct io_conn *,
|
|
|
|
struct peer *))
|
|
|
|
{
|
|
|
|
assert(!pcs->out);
|
|
|
|
|
|
|
|
pcs->out = cryptomsg_encrypt_msg(conn, &pcs->cs, msg);
|
|
|
|
if (taken(msg))
|
|
|
|
tal_free(msg);
|
|
|
|
pcs->next_out = next;
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * Send `lc || c` over the network buffer.
|
|
|
|
*/
|
|
|
|
return io_write(conn, pcs->out, tal_count(pcs->out),
|
|
|
|
peer_write_done, pcs);
|
|
|
|
}
|
|
|
|
|
|
|
|
void init_peer_crypto_state(struct peer *peer, struct peer_crypto_state *pcs)
|
|
|
|
{
|
|
|
|
pcs->peer = peer;
|
|
|
|
pcs->out = pcs->in = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void towire_crypto_state(u8 **ptr, const struct crypto_state *cs)
|
|
|
|
{
|
|
|
|
towire_u64(ptr, cs->rn);
|
|
|
|
towire_u64(ptr, cs->sn);
|
|
|
|
towire_sha256(ptr, &cs->sk);
|
|
|
|
towire_sha256(ptr, &cs->rk);
|
|
|
|
towire_sha256(ptr, &cs->s_ck);
|
|
|
|
towire_sha256(ptr, &cs->r_ck);
|
|
|
|
}
|
|
|
|
|
|
|
|
void fromwire_crypto_state(const u8 **ptr, size_t *max, struct crypto_state *cs)
|
|
|
|
{
|
|
|
|
cs->rn = fromwire_u64(ptr, max);
|
|
|
|
cs->sn = fromwire_u64(ptr, max);
|
|
|
|
fromwire_sha256(ptr, max, &cs->sk);
|
|
|
|
fromwire_sha256(ptr, max, &cs->rk);
|
|
|
|
fromwire_sha256(ptr, max, &cs->s_ck);
|
|
|
|
fromwire_sha256(ptr, max, &cs->r_ck);
|
|
|
|
}
|