|
|
|
#include <assert.h>
|
|
|
|
#include <bitcoin/block.h>
|
|
|
|
#include <bitcoin/pullpush.h>
|
|
|
|
#include <bitcoin/tx.h>
|
|
|
|
#include <ccan/cast/cast.h>
|
|
|
|
#include <ccan/crypto/sha256/sha256.h>
|
|
|
|
#include <ccan/endian/endian.h>
|
|
|
|
#include <ccan/mem/mem.h>
|
|
|
|
#include <ccan/read_write_all/read_write_all.h>
|
|
|
|
#include <ccan/str/hex/hex.h>
|
|
|
|
#include <common/type_to_string.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#define SEGREGATED_WITNESS_FLAG 0x1
|
|
|
|
|
|
|
|
static struct sha256_double all_zeroes;
|
|
|
|
|
|
|
|
static void push_tx_input(const struct bitcoin_tx_input *input,
|
|
|
|
const u8 *input_script,
|
|
|
|
void (*push)(const void *, size_t, void *), void *pushp)
|
|
|
|
{
|
|
|
|
push(&input->txid, sizeof(input->txid), pushp);
|
|
|
|
push_le32(input->index, push, pushp);
|
|
|
|
push_varint_blob(input_script, push, pushp);
|
|
|
|
push_le32(input->sequence_number, push, pushp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void push_tx_output(const struct bitcoin_tx_output *output,
|
|
|
|
void (*push)(const void *, size_t, void *), void *pushp)
|
|
|
|
{
|
|
|
|
push_le64(output->amount, push, pushp);
|
|
|
|
push_varint_blob(output->script, push, pushp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BIP 141:
|
|
|
|
* It is followed by stack items, with each item starts with a var_int
|
|
|
|
* to indicate the length. */
|
|
|
|
static void push_witness(const u8 *witness,
|
|
|
|
void (*push)(const void *, size_t, void *), void *pushp)
|
|
|
|
{
|
|
|
|
push_varint_blob(witness, push, pushp);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BIP144:
|
|
|
|
* If the witness is empty, the old serialization format should be used. */
|
|
|
|
static bool uses_witness(const struct bitcoin_tx *tx)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++) {
|
|
|
|
if (tx->input[i].witness)
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BIP 141: The witness is a serialization of all witness data of the
|
|
|
|
* transaction. Each txin is associated with a witness field. A
|
|
|
|
* witness field starts with a var_int to indicate the number of stack
|
|
|
|
* items for the txin. */
|
|
|
|
static void push_witnesses(const struct bitcoin_tx *tx,
|
|
|
|
void (*push)(const void *, size_t, void *), void *pushp)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++) {
|
|
|
|
size_t j, elements;
|
|
|
|
|
|
|
|
/* Not every input needs a witness. */
|
|
|
|
if (!tx->input[i].witness) {
|
|
|
|
push_varint(0, push, pushp);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
elements = tal_count(tx->input[i].witness);
|
|
|
|
push_varint(elements, push, pushp);
|
|
|
|
for (j = 0;
|
|
|
|
j < tal_count(tx->input[i].witness);
|
|
|
|
j++) {
|
|
|
|
push_witness(tx->input[i].witness[j],
|
|
|
|
push, pushp);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* For signing, we ignore input scripts on other inputs, and pretend
|
|
|
|
* the current input has a certain script: this is indicated by a
|
|
|
|
* non-NULL override_script.
|
|
|
|
*
|
|
|
|
* For this (and other signing weirdness like SIGHASH_SINGLE), we
|
|
|
|
* also need the current input being signed; that's in input_num.
|
|
|
|
* We also need sighash_type.
|
|
|
|
*/
|
|
|
|
static void push_tx(const struct bitcoin_tx *tx,
|
|
|
|
const u8 *override_script,
|
|
|
|
size_t input_num,
|
|
|
|
void (*push)(const void *, size_t, void *), void *pushp,
|
|
|
|
bool bip144)
|
|
|
|
{
|
|
|
|
varint_t i;
|
|
|
|
u8 flag = 0;
|
|
|
|
|
|
|
|
push_le32(tx->version, push, pushp);
|
|
|
|
|
|
|
|
if (bip144 && uses_witness(tx))
|
|
|
|
flag |= SEGREGATED_WITNESS_FLAG;
|
|
|
|
|
|
|
|
/* BIP 141: The flag MUST be a 1-byte non-zero value. */
|
|
|
|
/* ie. if no flags set, we fallback to pre-BIP144-style */
|
|
|
|
if (flag) {
|
|
|
|
u8 marker = 0;
|
|
|
|
/* BIP 144 */
|
|
|
|
/* marker char Must be zero */
|
|
|
|
/* flag char Must be nonzero */
|
|
|
|
push(&marker, 1, pushp);
|
|
|
|
push(&flag, 1, pushp);
|
|
|
|
}
|
|
|
|
|
|
|
|
push_varint(tal_count(tx->input), push, pushp);
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++) {
|
|
|
|
const u8 *input_script = tx->input[i].script;
|
|
|
|
if (override_script) {
|
|
|
|
if (input_num == i)
|
|
|
|
input_script = override_script;
|
|
|
|
else
|
|
|
|
input_script = NULL;
|
|
|
|
}
|
|
|
|
push_tx_input(&tx->input[i], input_script, push, pushp);
|
|
|
|
}
|
|
|
|
|
|
|
|
push_varint(tal_count(tx->output), push, pushp);
|
|
|
|
for (i = 0; i < tal_count(tx->output); i++)
|
|
|
|
push_tx_output(&tx->output[i], push, pushp);
|
|
|
|
|
|
|
|
if (flag & SEGREGATED_WITNESS_FLAG)
|
|
|
|
push_witnesses(tx, push, pushp);
|
|
|
|
|
|
|
|
push_le32(tx->lock_time, push, pushp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void push_sha(const void *data, size_t len, void *shactx_)
|
|
|
|
{
|
|
|
|
struct sha256_ctx *ctx = shactx_;
|
|
|
|
sha256_update(ctx, memcheck(data, len), len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hash_prevouts(struct sha256_double *h, const struct bitcoin_tx *tx,
|
|
|
|
enum sighash_type sighash_type)
|
|
|
|
{
|
|
|
|
struct sha256_ctx ctx;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
/* BIP143: If the ANYONECANPAY flag is not set, hashPrevouts is the
|
|
|
|
* double SHA256 of the serialization of all input
|
|
|
|
* outpoints; Otherwise, hashPrevouts is a uint256 of 0x0000......0000.
|
|
|
|
*/
|
|
|
|
if (sighash_anyonecanpay(sighash_type)) {
|
|
|
|
*h = all_zeroes;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
sha256_init(&ctx);
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++) {
|
|
|
|
push_sha(&tx->input[i].txid, sizeof(tx->input[i].txid), &ctx);
|
|
|
|
push_le32(tx->input[i].index, push_sha, &ctx);
|
|
|
|
}
|
|
|
|
sha256_double_done(&ctx, h);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hash_sequence(struct sha256_double *h, const struct bitcoin_tx *tx,
|
|
|
|
enum sighash_type sighash_type)
|
|
|
|
{
|
|
|
|
struct sha256_ctx ctx;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
/* BIP143: If none of the ANYONECANPAY, SINGLE, NONE sighash type is
|
|
|
|
* set, hashSequence is the double SHA256 of the serialization of
|
|
|
|
* nSequence of all inputs; Otherwise, hashSequence is a uint256 of
|
|
|
|
* 0x0000......0000. */
|
|
|
|
if (sighash_anyonecanpay(sighash_type) || sighash_single(sighash_type)) {
|
|
|
|
*h = all_zeroes;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
sha256_init(&ctx);
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++)
|
|
|
|
push_le32(tx->input[i].sequence_number, push_sha, &ctx);
|
|
|
|
|
|
|
|
sha256_double_done(&ctx, h);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If the sighash type is neither SINGLE nor NONE, hashOutputs is the double
|
|
|
|
* SHA256 of the serialization of all output value (8-byte little endian) with
|
|
|
|
* scriptPubKey (varInt for the length + script); If sighash type is SINGLE
|
|
|
|
* and the input index is smaller than the number of outputs, hashOutputs is
|
|
|
|
* the double SHA256 of the output amount with scriptPubKey of the same index
|
|
|
|
* as the input; */
|
|
|
|
static void hash_outputs(struct sha256_double *h, const struct bitcoin_tx *tx,
|
|
|
|
enum sighash_type sighash_type, unsigned int input_num)
|
|
|
|
{
|
|
|
|
struct sha256_ctx ctx;
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
sha256_init(&ctx);
|
|
|
|
for (i = 0; i < tal_count(tx->output); i++) {
|
|
|
|
if (sighash_single(sighash_type) && i != input_num)
|
|
|
|
continue;
|
|
|
|
|
|
|
|
push_le64(tx->output[i].amount, push_sha, &ctx);
|
|
|
|
push_varint_blob(tx->output[i].script, push_sha, &ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
sha256_double_done(&ctx, h);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hash_for_segwit(struct sha256_ctx *ctx,
|
|
|
|
const struct bitcoin_tx *tx,
|
|
|
|
unsigned int input_num,
|
|
|
|
const u8 *witness_script,
|
|
|
|
enum sighash_type sighash_type)
|
|
|
|
{
|
|
|
|
struct sha256_double h;
|
|
|
|
|
|
|
|
/* BIP143:
|
|
|
|
*
|
|
|
|
* Double SHA256 of the serialization of:
|
|
|
|
* 1. nVersion of the transaction (4-byte little endian)
|
|
|
|
*/
|
|
|
|
push_le32(tx->version, push_sha, ctx);
|
|
|
|
|
|
|
|
/* 2. hashPrevouts (32-byte hash) */
|
|
|
|
hash_prevouts(&h, tx, sighash_type);
|
|
|
|
push_sha(&h, sizeof(h), ctx);
|
|
|
|
|
|
|
|
/* 3. hashSequence (32-byte hash) */
|
|
|
|
hash_sequence(&h, tx, sighash_type);
|
|
|
|
push_sha(&h, sizeof(h), ctx);
|
|
|
|
|
|
|
|
/* 4. outpoint (32-byte hash + 4-byte little endian) */
|
|
|
|
push_sha(&tx->input[input_num].txid, sizeof(tx->input[input_num].txid),
|
|
|
|
ctx);
|
|
|
|
push_le32(tx->input[input_num].index, push_sha, ctx);
|
|
|
|
|
|
|
|
/* 5. scriptCode of the input (varInt for the length + script) */
|
|
|
|
push_varint_blob(witness_script, push_sha, ctx);
|
|
|
|
|
|
|
|
/* 6. value of the output spent by this input (8-byte little end) */
|
|
|
|
push_le64(*tx->input[input_num].amount, push_sha, ctx);
|
|
|
|
|
|
|
|
/* 7. nSequence of the input (4-byte little endian) */
|
|
|
|
push_le32(tx->input[input_num].sequence_number, push_sha, ctx);
|
|
|
|
|
|
|
|
/* 8. hashOutputs (32-byte hash) */
|
|
|
|
hash_outputs(&h, tx, sighash_type, input_num);
|
|
|
|
push_sha(&h, sizeof(h), ctx);
|
|
|
|
|
|
|
|
/* 9. nLocktime of the transaction (4-byte little endian) */
|
|
|
|
push_le32(tx->lock_time, push_sha, ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
void sha256_tx_for_sig(struct sha256_double *h, const struct bitcoin_tx *tx,
|
|
|
|
unsigned int input_num,
|
|
|
|
const u8 *script,
|
|
|
|
const u8 *witness_script,
|
|
|
|
enum sighash_type sighash_type)
|
|
|
|
{
|
|
|
|
struct sha256_ctx ctx = SHA256_INIT;
|
|
|
|
|
|
|
|
assert(input_num < tal_count(tx->input));
|
|
|
|
|
|
|
|
if (witness_script) {
|
|
|
|
/* Only implemented and tested these two! */
|
|
|
|
assert(sighash_type == SIGHASH_ALL
|
|
|
|
|| sighash_type == (SIGHASH_SINGLE|SIGHASH_ANYONECANPAY));
|
|
|
|
/* BIP143 hashing if OP_CHECKSIG is inside witness. */
|
|
|
|
hash_for_segwit(&ctx, tx, input_num, witness_script,
|
|
|
|
sighash_type);
|
|
|
|
} else {
|
|
|
|
/* Never implemented anything else for old scheme. */
|
|
|
|
assert(sighash_type == SIGHASH_ALL);
|
|
|
|
/* Otherwise signature hashing never includes witness. */
|
|
|
|
push_tx(tx, script, input_num, push_sha, &ctx, false);
|
|
|
|
}
|
|
|
|
|
|
|
|
sha256_le32(&ctx, sighash_type);
|
|
|
|
sha256_double_done(&ctx, h);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void push_linearize(const void *data, size_t len, void *pptr_)
|
|
|
|
{
|
|
|
|
u8 **pptr = pptr_;
|
|
|
|
size_t oldsize = tal_count(*pptr);
|
|
|
|
|
|
|
|
tal_resize(pptr, oldsize + len);
|
|
|
|
memcpy(*pptr + oldsize, memcheck(data, len), len);
|
|
|
|
}
|
|
|
|
|
|
|
|
u8 *linearize_tx(const tal_t *ctx, const struct bitcoin_tx *tx)
|
|
|
|
{
|
|
|
|
u8 *arr = tal_arr(ctx, u8, 0);
|
|
|
|
push_tx(tx, NULL, 0, push_linearize, &arr, true);
|
|
|
|
return arr;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void push_measure(const void *data UNUSED, size_t len, void *lenp)
|
|
|
|
{
|
|
|
|
*(size_t *)lenp += len;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t measure_tx_weight(const struct bitcoin_tx *tx)
|
|
|
|
{
|
|
|
|
size_t non_witness_len = 0, witness_len = 0;
|
|
|
|
push_tx(tx, NULL, 0, push_measure, &non_witness_len, false);
|
|
|
|
if (uses_witness(tx)) {
|
|
|
|
push_witnesses(tx, push_measure, &witness_len);
|
|
|
|
/* Include BIP 144 marker and flag bytes in witness length */
|
|
|
|
witness_len += 2;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Normal bytes weigh 4 times more than Witness bytes */
|
|
|
|
return non_witness_len * 4 + witness_len;
|
|
|
|
}
|
|
|
|
|
|
|
|
void bitcoin_txid(const struct bitcoin_tx *tx, struct bitcoin_txid *txid)
|
|
|
|
{
|
|
|
|
struct sha256_ctx ctx = SHA256_INIT;
|
|
|
|
|
|
|
|
/* For TXID, we never use extended form. */
|
|
|
|
push_tx(tx, NULL, 0, push_sha, &ctx, false);
|
|
|
|
sha256_double_done(&ctx, &txid->shad);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct bitcoin_tx *bitcoin_tx(const tal_t *ctx, varint_t input_count,
|
|
|
|
varint_t output_count)
|
|
|
|
{
|
|
|
|
struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx);
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
tx->output = tal_arrz(tx, struct bitcoin_tx_output, output_count);
|
|
|
|
tx->input = tal_arrz(tx, struct bitcoin_tx_input, input_count);
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++) {
|
|
|
|
/* We assume NULL is a zero bitmap */
|
|
|
|
assert(tx->input[i].script == NULL);
|
|
|
|
tx->input[i].sequence_number = 0xFFFFFFFF;
|
|
|
|
tx->input[i].amount = NULL;
|
|
|
|
tx->input[i].witness = NULL;
|
|
|
|
}
|
|
|
|
tx->lock_time = 0;
|
|
|
|
tx->version = 2;
|
|
|
|
return tx;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool pull_sha256_double(const u8 **cursor, size_t *max,
|
|
|
|
struct sha256_double *h)
|
|
|
|
{
|
|
|
|
return pull(cursor, max, h, sizeof(*h));
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 pull_value(const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
u64 amount;
|
|
|
|
|
|
|
|
amount = pull_le64(cursor, max);
|
|
|
|
return amount;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Pulls a varint which specifies n items of mult size: ensures basic
|
|
|
|
* sanity to avoid trivial OOM */
|
|
|
|
static u64 pull_length(const u8 **cursor, size_t *max, size_t mult)
|
|
|
|
{
|
|
|
|
u64 v = pull_varint(cursor, max);
|
|
|
|
if (v * mult > *max) {
|
|
|
|
*cursor = NULL;
|
|
|
|
*max = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pull_input(const tal_t *ctx, const u8 **cursor, size_t *max,
|
|
|
|
struct bitcoin_tx_input *input)
|
|
|
|
{
|
|
|
|
u64 script_len;
|
|
|
|
pull_sha256_double(cursor, max, &input->txid.shad);
|
|
|
|
input->index = pull_le32(cursor, max);
|
|
|
|
script_len = pull_length(cursor, max, 1);
|
|
|
|
if (script_len)
|
|
|
|
input->script = tal_arr(ctx, u8, script_len);
|
|
|
|
else
|
|
|
|
input->script = NULL;
|
|
|
|
pull(cursor, max, input->script, tal_count(input->script));
|
|
|
|
input->sequence_number = pull_le32(cursor, max);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pull_output(const tal_t *ctx, const u8 **cursor, size_t *max,
|
|
|
|
struct bitcoin_tx_output *output)
|
|
|
|
{
|
|
|
|
output->amount = pull_value(cursor, max);
|
|
|
|
output->script = tal_arr(ctx, u8, pull_length(cursor, max, 1));
|
|
|
|
pull(cursor, max, output->script, tal_count(output->script));
|
|
|
|
}
|
|
|
|
|
|
|
|
static u8 *pull_witness_item(const tal_t *ctx, const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
uint64_t len = pull_length(cursor, max, 1);
|
|
|
|
u8 *item;
|
|
|
|
|
|
|
|
item = tal_arr(ctx, u8, len);
|
|
|
|
pull(cursor, max, item, len);
|
|
|
|
return item;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pull_witness(struct bitcoin_tx_input *inputs, size_t i,
|
|
|
|
const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
uint64_t j, num = pull_length(cursor, max, 1);
|
|
|
|
|
|
|
|
/* 0 means not using witness. */
|
|
|
|
if (num == 0) {
|
|
|
|
inputs[i].witness = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
inputs[i].witness = tal_arr(inputs, u8 *, num);
|
|
|
|
for (j = 0; j < num; j++) {
|
|
|
|
inputs[i].witness[j] = pull_witness_item(inputs[i].witness,
|
|
|
|
cursor, max);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
struct bitcoin_tx *pull_bitcoin_tx(const tal_t *ctx, const u8 **cursor,
|
|
|
|
size_t *max)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
u64 count;
|
|
|
|
u8 flag = 0;
|
|
|
|
struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx);
|
|
|
|
|
|
|
|
tx->version = pull_le32(cursor, max);
|
|
|
|
count = pull_length(cursor, max, 32 + 4 + 4 + 1);
|
|
|
|
/* BIP 144 marker is 0 (impossible to have tx with 0 inputs) */
|
|
|
|
if (count == 0) {
|
|
|
|
pull(cursor, max, &flag, 1);
|
|
|
|
if (flag != SEGREGATED_WITNESS_FLAG)
|
|
|
|
return tal_free(tx);
|
|
|
|
count = pull_length(cursor, max, 32 + 4 + 4 + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
tx->input = tal_arr(tx, struct bitcoin_tx_input, count);
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++)
|
|
|
|
pull_input(tx, cursor, max, tx->input + i);
|
|
|
|
|
|
|
|
count = pull_length(cursor, max, 8 + 1);
|
|
|
|
tx->output = tal_arr(tx, struct bitcoin_tx_output, count);
|
|
|
|
for (i = 0; i < tal_count(tx->output); i++)
|
|
|
|
pull_output(tx, cursor, max, tx->output + i);
|
|
|
|
|
|
|
|
if (flag & SEGREGATED_WITNESS_FLAG) {
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++)
|
|
|
|
pull_witness(tx->input, i, cursor, max);
|
|
|
|
} else {
|
|
|
|
for (i = 0; i < tal_count(tx->input); i++)
|
|
|
|
tx->input[i].witness = NULL;
|
|
|
|
}
|
|
|
|
tx->lock_time = pull_le32(cursor, max);
|
|
|
|
|
|
|
|
/* If we ran short, fail. */
|
|
|
|
if (!*cursor)
|
|
|
|
tx = tal_free(tx);
|
|
|
|
return tx;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct bitcoin_tx *bitcoin_tx_from_hex(const tal_t *ctx, const char *hex,
|
|
|
|
size_t hexlen)
|
|
|
|
{
|
|
|
|
const char *end;
|
|
|
|
u8 *linear_tx;
|
|
|
|
const u8 *p;
|
|
|
|
struct bitcoin_tx *tx;
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
end = memchr(hex, '\n', hexlen);
|
|
|
|
if (!end)
|
|
|
|
end = hex + hexlen;
|
|
|
|
|
|
|
|
len = hex_data_size(end - hex);
|
|
|
|
p = linear_tx = tal_arr(ctx, u8, len);
|
|
|
|
if (!hex_decode(hex, end - hex, linear_tx, len))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
tx = pull_bitcoin_tx(ctx, &p, &len);
|
|
|
|
if (!tx)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
if (len)
|
|
|
|
goto fail_free_tx;
|
|
|
|
|
|
|
|
tal_free(linear_tx);
|
|
|
|
return tx;
|
|
|
|
|
|
|
|
fail_free_tx:
|
|
|
|
tal_free(tx);
|
|
|
|
fail:
|
|
|
|
tal_free(linear_tx);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* <sigh>. Bitcoind represents hashes as little-endian for RPC. */
|
|
|
|
static void reverse_bytes(u8 *arr, size_t len)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < len / 2; i++) {
|
|
|
|
unsigned char tmp = arr[i];
|
|
|
|
arr[i] = arr[len - 1 - i];
|
|
|
|
arr[len - 1 - i] = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool bitcoin_txid_from_hex(const char *hexstr, size_t hexstr_len,
|
|
|
|
struct bitcoin_txid *txid)
|
|
|
|
{
|
|
|
|
if (!hex_decode(hexstr, hexstr_len, txid, sizeof(*txid)))
|
|
|
|
return false;
|
|
|
|
reverse_bytes(txid->shad.sha.u.u8, sizeof(txid->shad.sha.u.u8));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool bitcoin_txid_to_hex(const struct bitcoin_txid *txid,
|
|
|
|
char *hexstr, size_t hexstr_len)
|
|
|
|
{
|
|
|
|
struct sha256_double rev = txid->shad;
|
|
|
|
reverse_bytes(rev.sha.u.u8, sizeof(rev.sha.u.u8));
|
|
|
|
return hex_encode(&rev, sizeof(rev), hexstr, hexstr_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *fmt_bitcoin_tx(const tal_t *ctx, const struct bitcoin_tx *tx)
|
|
|
|
{
|
|
|
|
u8 *lin = linearize_tx(ctx, tx);
|
|
|
|
char *s = tal_hex(ctx, lin);
|
|
|
|
tal_free(lin);
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *fmt_bitcoin_txid(const tal_t *ctx, const struct bitcoin_txid *txid)
|
|
|
|
{
|
|
|
|
char *hexstr = tal_arr(ctx, char, hex_str_size(sizeof(*txid)));
|
|
|
|
|
|
|
|
bitcoin_txid_to_hex(txid, hexstr, hex_str_size(sizeof(*txid)));
|
|
|
|
return hexstr;
|
|
|
|
}
|
|
|
|
|
|
|
|
REGISTER_TYPE_TO_STRING(bitcoin_tx, fmt_bitcoin_tx);
|
|
|
|
REGISTER_TYPE_TO_STRING(bitcoin_txid, fmt_bitcoin_txid);
|