|
|
|
#include "tx.h"
|
|
|
|
#include <assert.h>
|
|
|
|
#include <ccan/cast/cast.h>
|
|
|
|
#include <ccan/crypto/sha256/sha256.h>
|
|
|
|
#include <ccan/endian/endian.h>
|
|
|
|
#include <ccan/mem/mem.h>
|
|
|
|
#include <ccan/read_write_all/read_write_all.h>
|
|
|
|
#include <ccan/str/hex/hex.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
enum styles {
|
|
|
|
/* Add the CT padding stuff to amount. */
|
|
|
|
TX_AMOUNT_CT_STYLE = 1,
|
|
|
|
/* Whether to process CT rangeproof and noncecommitment. */
|
|
|
|
TX_AMOUNT_INCLUDE_CT = 2,
|
|
|
|
/* Process the txfee field. */
|
|
|
|
TX_FEE = 4,
|
|
|
|
/* Process the input script sig. */
|
|
|
|
TX_INPUT_SCRIPTSIG = 8,
|
|
|
|
/* Process the amounts for each input. */
|
|
|
|
TX_INPUT_AMOUNT = 16,
|
|
|
|
/* Process the same amounts for each input. */
|
|
|
|
TX_INPUT_AMOUNT_BUGGY = 32,
|
|
|
|
/* Process hash of rangeproof and noncecommitment in *output* amount,
|
|
|
|
* instead of rangeproof and noncecommitment themselves. */
|
|
|
|
TX_OUTPUT_AMOUNT_HASHPROOF = 64
|
|
|
|
};
|
|
|
|
|
|
|
|
#if ALPHA_TXSTYLE
|
|
|
|
/* Linearizing has everything, except input amount (which is implied) */
|
|
|
|
#define LINEARIZE_STYLE (TX_AMOUNT_CT_STYLE | TX_AMOUNT_INCLUDE_CT | TX_FEE | TX_INPUT_SCRIPTSIG)
|
|
|
|
|
|
|
|
/* Alpha txids don't include input scripts, or rangeproof/txcommit in output */
|
|
|
|
#define TXID_STYLE (TX_AMOUNT_CT_STYLE | TX_FEE)
|
|
|
|
|
|
|
|
/* Alpha signatures sign the input script (assuming others are set to
|
|
|
|
* 0-len), as well as the input fee.
|
|
|
|
|
|
|
|
* They sign a hash of the rangeproof and noncecommitment for inputs,
|
|
|
|
* rather than the non rangeproof and noncecommitment themselves.
|
|
|
|
*
|
|
|
|
* For some reason they skip the txfee. */
|
|
|
|
#define SIG_STYLE (TX_AMOUNT_CT_STYLE | TX_AMOUNT_INCLUDE_CT | TX_INPUT_SCRIPTSIG | TX_INPUT_AMOUNT | TX_INPUT_AMOUNT_BUGGY | TX_OUTPUT_AMOUNT_HASHPROOF)
|
|
|
|
|
|
|
|
#else /* BITCOIN */
|
|
|
|
|
|
|
|
/* Process all the bitcoin fields. Works for txid, serialization and signing */
|
|
|
|
#define LINEARIZE_STYLE (TX_INPUT_SCRIPTSIG)
|
|
|
|
#define TXID_STYLE (TX_INPUT_SCRIPTSIG)
|
|
|
|
#define SIG_STYLE (TX_INPUT_SCRIPTSIG)
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
static void add_varint(varint_t v,
|
|
|
|
void (*add)(const void *, size_t, void *), void *addp,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
u8 buf[9], *p = buf;
|
|
|
|
|
|
|
|
if (v < 0xfd) {
|
|
|
|
*(p++) = v;
|
|
|
|
} else if (v <= 0xffff) {
|
|
|
|
(*p++) = 0xfd;
|
|
|
|
(*p++) = v;
|
|
|
|
(*p++) = v >> 8;
|
|
|
|
} else if (v <= 0xffffffff) {
|
|
|
|
(*p++) = 0xfe;
|
|
|
|
(*p++) = v;
|
|
|
|
(*p++) = v >> 8;
|
|
|
|
(*p++) = v >> 16;
|
|
|
|
(*p++) = v >> 24;
|
|
|
|
} else {
|
|
|
|
(*p++) = 0xff;
|
|
|
|
(*p++) = v;
|
|
|
|
(*p++) = v >> 8;
|
|
|
|
(*p++) = v >> 16;
|
|
|
|
(*p++) = v >> 24;
|
|
|
|
(*p++) = v >> 32;
|
|
|
|
(*p++) = v >> 40;
|
|
|
|
(*p++) = v >> 48;
|
|
|
|
(*p++) = v >> 56;
|
|
|
|
}
|
|
|
|
add(buf, p - buf, addp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_le32(u32 v,
|
|
|
|
void (*add)(const void *, size_t, void *), void *addp,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
le32 l = cpu_to_le32(v);
|
|
|
|
add(&l, sizeof(l), addp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_le64(u64 v,
|
|
|
|
void (*add)(const void *, size_t, void *), void *addp,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
le64 l = cpu_to_le64(v);
|
|
|
|
add(&l, sizeof(l), addp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_value(u64 amount,
|
|
|
|
void (*add)(const void *, size_t, void *),
|
|
|
|
void *addp,
|
|
|
|
bool output,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
if (style & TX_AMOUNT_CT_STYLE) {
|
|
|
|
/* The input is hashed as a 33 byte value (for CT); 25 0, then
|
|
|
|
* the big-endian value. */
|
|
|
|
static u8 zeroes[25];
|
|
|
|
be64 b = cpu_to_be64(amount);
|
|
|
|
add(zeroes, sizeof(zeroes), addp);
|
|
|
|
add(&b, sizeof(b), addp);
|
|
|
|
if (style & TX_AMOUNT_INCLUDE_CT) {
|
|
|
|
/* Two more zeroes: Rangeproof and Noncecommitment */
|
|
|
|
if (output && (style & TX_OUTPUT_AMOUNT_HASHPROOF)) {
|
|
|
|
struct sha256_double h;
|
|
|
|
sha256_double(&h, zeroes, 2);
|
|
|
|
add(&h, sizeof(h), addp);
|
|
|
|
} else {
|
|
|
|
add_varint(0, add, addp, style);
|
|
|
|
add_varint(0, add, addp, style);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
add_le64(amount, add, addp, style);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_input_value(u64 amount,
|
|
|
|
void (*add)(const void *, size_t, void *),
|
|
|
|
void *addp,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
return add_value(amount, add, addp, false, style);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_output_value(u64 amount,
|
|
|
|
void (*add)(const void *, size_t, void *),
|
|
|
|
void *addp,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
return add_value(amount, add, addp, true, style);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_tx_input(const struct bitcoin_tx_input *input,
|
|
|
|
void (*add)(const void *, size_t, void *), void *addp,
|
|
|
|
u64 dummy_amount,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
add(&input->txid, sizeof(input->txid), addp);
|
|
|
|
add_le32(input->index, add, addp, style);
|
|
|
|
if (style & TX_INPUT_AMOUNT) {
|
|
|
|
if (style & TX_INPUT_AMOUNT_BUGGY)
|
|
|
|
add_input_value(dummy_amount, add, addp, style);
|
|
|
|
else
|
|
|
|
add_input_value(input->input_amount, add, addp, style);
|
|
|
|
}
|
|
|
|
if (style & TX_INPUT_SCRIPTSIG) {
|
|
|
|
add_varint(input->script_length, add, addp, style);
|
|
|
|
add(input->script, input->script_length, addp);
|
|
|
|
}
|
|
|
|
add_le32(input->sequence_number, add, addp, style);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_tx_output(const struct bitcoin_tx_output *output,
|
|
|
|
void (*add)(const void *, size_t, void *), void *addp,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
add_output_value(output->amount, add, addp, style);
|
|
|
|
add_varint(output->script_length, add, addp, style);
|
|
|
|
add(output->script, output->script_length, addp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_tx(const struct bitcoin_tx *tx,
|
|
|
|
void (*add)(const void *, size_t, void *), void *addp,
|
|
|
|
u64 dummy_amount,
|
|
|
|
enum styles style)
|
|
|
|
{
|
|
|
|
varint_t i;
|
|
|
|
|
|
|
|
add_le32(tx->version, add, addp, style);
|
|
|
|
add_varint(tx->input_count, add, addp, style);
|
|
|
|
for (i = 0; i < tx->input_count; i++)
|
|
|
|
add_tx_input(&tx->input[i], add, addp, dummy_amount, style);
|
|
|
|
|
|
|
|
if (style & TX_FEE)
|
|
|
|
add_le64(tx->fee, add, addp, style);
|
|
|
|
|
|
|
|
add_varint(tx->output_count, add, addp, style);
|
|
|
|
for (i = 0; i < tx->output_count; i++)
|
|
|
|
add_tx_output(&tx->output[i], add, addp, style);
|
|
|
|
add_le32(tx->lock_time, add, addp, style);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_sha(const void *data, size_t len, void *shactx_)
|
|
|
|
{
|
|
|
|
struct sha256_ctx *ctx = shactx_;
|
|
|
|
sha256_update(ctx, memcheck(data, len), len);
|
|
|
|
}
|
|
|
|
|
|
|
|
void sha256_tx_for_sig(struct sha256_ctx *ctx, const struct bitcoin_tx *tx,
|
|
|
|
unsigned int input_num)
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
/* Caller should zero-out other scripts for signing! */
|
|
|
|
assert(input_num < tx->input_count);
|
|
|
|
for (i = 0; i < tx->input_count; i++)
|
|
|
|
if (i != input_num)
|
|
|
|
assert(tx->input[i].script_length == 0);
|
|
|
|
add_tx(tx, add_sha, ctx, tx->input[input_num].input_amount, SIG_STYLE);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void add_linearize(const void *data, size_t len, void *pptr_)
|
|
|
|
{
|
|
|
|
u8 **pptr = pptr_;
|
|
|
|
size_t oldsize = tal_count(*pptr);
|
|
|
|
|
|
|
|
tal_resize(pptr, oldsize + len);
|
|
|
|
memcpy(*pptr + oldsize, memcheck(data, len), len);
|
|
|
|
}
|
|
|
|
|
|
|
|
u8 *linearize_tx(const tal_t *ctx, const struct bitcoin_tx *tx)
|
|
|
|
{
|
|
|
|
u8 *arr = tal_arr(ctx, u8, 0);
|
|
|
|
add_tx(tx, add_linearize, &arr, 0, LINEARIZE_STYLE);
|
|
|
|
return arr;
|
|
|
|
}
|
|
|
|
|
|
|
|
void bitcoin_txid(const struct bitcoin_tx *tx, struct sha256_double *txid)
|
|
|
|
{
|
|
|
|
struct sha256_ctx ctx = SHA256_INIT;
|
|
|
|
|
|
|
|
add_tx(tx, add_sha, &ctx, 0, TXID_STYLE);
|
|
|
|
sha256_double_done(&ctx, txid);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct bitcoin_tx *bitcoin_tx(const tal_t *ctx, varint_t input_count,
|
|
|
|
varint_t output_count)
|
|
|
|
{
|
|
|
|
struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx);
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
tx->output_count = output_count;
|
|
|
|
tx->output = tal_arrz(tx, struct bitcoin_tx_output, output_count);
|
|
|
|
tx->input_count = input_count;
|
|
|
|
tx->input = tal_arrz(tx, struct bitcoin_tx_input, input_count);
|
|
|
|
for (i = 0; i < tx->input_count; i++) {
|
|
|
|
/* We assume NULL is a zero bitmap */
|
|
|
|
assert(tx->input[i].script == NULL);
|
|
|
|
tx->input[i].sequence_number = 0xFFFFFFFF;
|
|
|
|
}
|
|
|
|
tx->lock_time = 0;
|
|
|
|
#if HAS_BIP68
|
|
|
|
tx->version = 2;
|
|
|
|
#else
|
|
|
|
tx->version = 1;
|
|
|
|
#endif
|
|
|
|
return tx;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Sets *cursor to NULL and returns NULL when a pull fails. */
|
|
|
|
static const u8 *pull(const u8 **cursor, size_t *max, void *copy, size_t n)
|
|
|
|
{
|
|
|
|
const u8 *p = *cursor;
|
|
|
|
|
|
|
|
if (*max < n) {
|
|
|
|
*cursor = NULL;
|
|
|
|
*max = 0;
|
|
|
|
/* Just make sure we don't leak uninitialized mem! */
|
|
|
|
if (copy)
|
|
|
|
memset(copy, 0, n);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
*cursor += n;
|
|
|
|
*max -= n;
|
|
|
|
if (copy)
|
|
|
|
memcpy(copy, p, n);
|
|
|
|
return memcheck(p, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 pull_varint(const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
u64 ret;
|
|
|
|
const u8 *p;
|
|
|
|
|
|
|
|
p = pull(cursor, max, NULL, 1);
|
|
|
|
if (!p)
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
if (*p < 0xfd) {
|
|
|
|
ret = *p;
|
|
|
|
} else if (*p == 0xfd) {
|
|
|
|
p = pull(cursor, max, NULL, 2);
|
|
|
|
if (!p)
|
|
|
|
return 0;
|
|
|
|
ret = ((u64)p[1] << 8) + p[0];
|
|
|
|
} else if (*p == 0xfe) {
|
|
|
|
p = pull(cursor, max, NULL, 4);
|
|
|
|
if (!p)
|
|
|
|
return 0;
|
|
|
|
ret = ((u64)p[3] << 24) + ((u64)p[2] << 16)
|
|
|
|
+ ((u64)p[1] << 8) + p[0];
|
|
|
|
} else {
|
|
|
|
p = pull(cursor, max, NULL, 8);
|
|
|
|
if (!p)
|
|
|
|
return 0;
|
|
|
|
ret = ((u64)p[7] << 56) + ((u64)p[6] << 48)
|
|
|
|
+ ((u64)p[5] << 40) + ((u64)p[4] << 32)
|
|
|
|
+ ((u64)p[3] << 24) + ((u64)p[2] << 16)
|
|
|
|
+ ((u64)p[1] << 8) + p[0];
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
static u32 pull_le32(const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
le32 ret;
|
|
|
|
|
|
|
|
if (!pull(cursor, max, &ret, sizeof(ret)))
|
|
|
|
return 0;
|
|
|
|
return le32_to_cpu(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 pull_le64(const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
le64 ret;
|
|
|
|
|
|
|
|
if (!pull(cursor, max, &ret, sizeof(ret)))
|
|
|
|
return 0;
|
|
|
|
return le64_to_cpu(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool pull_sha256_double(const u8 **cursor, size_t *max,
|
|
|
|
struct sha256_double *h)
|
|
|
|
{
|
|
|
|
return pull(cursor, max, h, sizeof(*h));
|
|
|
|
}
|
|
|
|
|
|
|
|
static u64 pull_value(const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
u64 amount;
|
|
|
|
|
|
|
|
if (LINEARIZE_STYLE & TX_AMOUNT_CT_STYLE) {
|
|
|
|
/* The input is hashed as a 33 byte value (for CT); 25 0, then
|
|
|
|
* the big-endian value. */
|
|
|
|
u8 zeroes[25];
|
|
|
|
be64 b;
|
|
|
|
|
|
|
|
if (!pull(cursor, max, zeroes, sizeof(zeroes)))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* We don't handle CT amounts. */
|
|
|
|
if (zeroes[0] != 0)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
if (!pull(cursor, max, &b, sizeof(b)))
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
amount = be64_to_cpu(b);
|
|
|
|
if (LINEARIZE_STYLE & TX_AMOUNT_INCLUDE_CT) {
|
|
|
|
varint_t rp, nc;
|
|
|
|
|
|
|
|
rp = pull_varint(cursor, max);
|
|
|
|
nc = pull_varint(cursor, max);
|
|
|
|
if (rp != 0 || nc != 0)
|
|
|
|
goto fail;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
amount = pull_le64(cursor, max);
|
|
|
|
}
|
|
|
|
return amount;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
/* Simulate EOF */
|
|
|
|
*cursor = NULL;
|
|
|
|
*max = 0;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pull_input(const tal_t *ctx, const u8 **cursor, size_t *max,
|
|
|
|
struct bitcoin_tx_input *input)
|
|
|
|
{
|
|
|
|
pull_sha256_double(cursor, max, &input->txid);
|
|
|
|
input->index = pull_le32(cursor, max);
|
|
|
|
if (LINEARIZE_STYLE & TX_INPUT_AMOUNT) {
|
|
|
|
input->input_amount = pull_value(cursor, max);
|
|
|
|
}
|
|
|
|
if (LINEARIZE_STYLE & TX_INPUT_SCRIPTSIG) {
|
|
|
|
input->script_length = pull_varint(cursor, max);
|
|
|
|
input->script = tal_arr(ctx, u8, input->script_length);
|
|
|
|
pull(cursor, max, input->script, input->script_length);
|
|
|
|
}
|
|
|
|
input->sequence_number = pull_le32(cursor, max);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void pull_output(const tal_t *ctx, const u8 **cursor, size_t *max,
|
|
|
|
struct bitcoin_tx_output *output)
|
|
|
|
{
|
|
|
|
output->amount = pull_value(cursor, max);
|
|
|
|
output->script_length = pull_varint(cursor, max);
|
|
|
|
output->script = tal_arr(ctx, u8, output->script_length);
|
|
|
|
pull(cursor, max, output->script, output->script_length);
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct bitcoin_tx *pull_bitcoin_tx(const tal_t *ctx,
|
|
|
|
const u8 **cursor, size_t *max)
|
|
|
|
{
|
|
|
|
struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx);
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
tx->version = pull_le32(cursor, max);
|
|
|
|
tx->input_count = pull_varint(cursor, max);
|
|
|
|
tx->input = tal_arr(tx, struct bitcoin_tx_input, tx->input_count);
|
|
|
|
for (i = 0; i < tx->input_count; i++)
|
|
|
|
pull_input(tx, cursor, max, tx->input + i);
|
|
|
|
|
|
|
|
if (LINEARIZE_STYLE & TX_FEE)
|
|
|
|
tx->fee = pull_le64(cursor, max);
|
|
|
|
|
|
|
|
tx->output_count = pull_varint(cursor, max);
|
|
|
|
tx->output = tal_arr(tx, struct bitcoin_tx_output, tx->output_count);
|
|
|
|
for (i = 0; i < tx->output_count; i++)
|
|
|
|
pull_output(tx, cursor, max, tx->output + i);
|
|
|
|
tx->lock_time = pull_le32(cursor, max);
|
|
|
|
|
|
|
|
/* If we ran short, or have bytes left over, fail. */
|
|
|
|
if (!*cursor || *max != 0)
|
|
|
|
tx = tal_free(tx);
|
|
|
|
return tx;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct bitcoin_tx *bitcoin_tx_from_hex(const tal_t *ctx, const char *hex,
|
|
|
|
size_t hexlen)
|
|
|
|
{
|
|
|
|
char *end;
|
|
|
|
u8 *linear_tx;
|
|
|
|
const u8 *p;
|
|
|
|
struct bitcoin_tx *tx;
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
end = memchr(hex, ':', hexlen);
|
|
|
|
if (!end) {
|
|
|
|
end = cast_const(char *, hex) + hexlen;
|
|
|
|
if (hexlen > 0 && hex[hexlen-1] == '\n')
|
|
|
|
end--;
|
|
|
|
}
|
|
|
|
|
|
|
|
len = hex_data_size(end - hex);
|
|
|
|
p = linear_tx = tal_arr(ctx, u8, len);
|
|
|
|
if (!hex_decode(hex, end - hex, linear_tx, len))
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
tx = pull_bitcoin_tx(ctx, &p, &len);
|
|
|
|
if (!tx)
|
|
|
|
goto fail;
|
|
|
|
|
|
|
|
/* Optional appended [:input-amount]* */
|
|
|
|
for (len = 0; len < tx->input_count; len++) {
|
|
|
|
if (*end != ':')
|
|
|
|
break;
|
|
|
|
|
|
|
|
tx->input[len].input_amount = 0;
|
|
|
|
end++;
|
|
|
|
while (end < hex + hexlen && cisdigit(*end)) {
|
|
|
|
tx->input[len].input_amount *= 10;
|
|
|
|
tx->input[len].input_amount += *end - '0';
|
|
|
|
end++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (len == tx->input_count) {
|
|
|
|
if (end != hex + hexlen && *end != '\n')
|
|
|
|
goto fail_free_tx;
|
|
|
|
} else {
|
|
|
|
/* Input amounts are compulsory for alpha, to generate sigs */
|
|
|
|
#if ALPHA_TXSTYLE
|
|
|
|
goto fail_free_tx;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
tal_free(linear_tx);
|
|
|
|
return tx;
|
|
|
|
|
|
|
|
fail_free_tx:
|
|
|
|
tal_free(tx);
|
|
|
|
fail:
|
|
|
|
tal_free(linear_tx);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* <sigh>. Bitcoind represents hashes as little-endian for RPC. This didn't
|
|
|
|
* stick for blockids (everyone else uses big-endian, eg. block explorers),
|
|
|
|
* but it did stick for txids. */
|
|
|
|
static void reverse_bytes(u8 *arr, size_t len)
|
|
|
|
{
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
for (i = 0; i < len / 2; i++) {
|
|
|
|
unsigned char tmp = arr[i];
|
|
|
|
arr[i] = arr[len - 1 - i];
|
|
|
|
arr[len - 1 - i] = tmp;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool bitcoin_txid_from_hex(const char *hexstr, size_t hexstr_len,
|
|
|
|
struct sha256_double *txid)
|
|
|
|
{
|
|
|
|
if (!hex_decode(hexstr, hexstr_len, txid, sizeof(*txid)))
|
|
|
|
return false;
|
|
|
|
reverse_bytes(txid->sha.u.u8, sizeof(txid->sha.u.u8));
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool bitcoin_txid_to_hex(const struct sha256_double *txid,
|
|
|
|
char *hexstr, size_t hexstr_len)
|
|
|
|
{
|
|
|
|
struct sha256_double rev = *txid;
|
|
|
|
reverse_bytes(rev.sha.u.u8, sizeof(rev.sha.u.u8));
|
|
|
|
return hex_encode(&rev, sizeof(rev), hexstr, hexstr_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool write_input_amounts(int fd, const struct bitcoin_tx *tx)
|
|
|
|
{
|
|
|
|
/* Alpha required input amounts, so append them */
|
|
|
|
#if ALPHA_TXSTYLE
|
|
|
|
size_t i;
|
|
|
|
|
|
|
|
for (i = 0; i < tx->input_count; i++) {
|
|
|
|
char str[1 + STR_MAX_CHARS(tx->input[i].input_amount)];
|
|
|
|
sprintf(str, ":%llu",
|
|
|
|
(unsigned long long)tx->input[i].input_amount);
|
|
|
|
if (!write_all(fd, str, strlen(str)))
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool bitcoin_tx_write(int fd, const struct bitcoin_tx *tx)
|
|
|
|
{
|
|
|
|
u8 *tx_arr;
|
|
|
|
char *tx_hex;
|
|
|
|
bool ok;
|
|
|
|
|
|
|
|
tx_arr = linearize_tx(NULL, tx);
|
|
|
|
tx_hex = tal_arr(tx_arr, char, hex_str_size(tal_count(tx_arr)));
|
|
|
|
hex_encode(tx_arr, tal_count(tx_arr), tx_hex, tal_count(tx_hex));
|
|
|
|
|
|
|
|
ok = write_all(fd, tx_hex, strlen(tx_hex))
|
|
|
|
&& write_input_amounts(fd, tx);
|
|
|
|
tal_free(tx_arr);
|
|
|
|
return ok;
|
|
|
|
}
|