You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

755 lines
21 KiB

#include <assert.h>
#include <bitcoin/varint.h>
#include <ccan/array_size/array_size.h>
#include <ccan/crypto/ripemd160/ripemd160.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/mem/mem.h>
#include <common/node_id.h>
#include <common/sphinx.h>
#include <common/utils.h>
#include <err.h>
#include <secp256k1_ecdh.h>
#include <sodium/crypto_auth_hmacsha256.h>
#include <sodium/crypto_stream_chacha20.h>
#define BLINDING_FACTOR_SIZE 32
#define SHARED_SECRET_SIZE 32
#define KEY_LEN 32
#define NUM_STREAM_BYTES (2*ROUTING_INFO_SIZE)
#define ONION_REPLY_SIZE 256
#define RHO_KEYTYPE "rho"
struct hop_params {
u8 secret[SHARED_SECRET_SIZE];
u8 blind[BLINDING_FACTOR_SIZE];
struct pubkey ephemeralkey;
};
struct keyset {
u8 pi[KEY_LEN];
u8 mu[KEY_LEN];
u8 rho[KEY_LEN];
u8 gamma[KEY_LEN];
};
/*
* All the necessary information to generate a valid onion for this hop on a
* sphinx path. The payload is preserialized in order since the onion
* generation is payload agnostic. */
struct sphinx_hop {
struct pubkey pubkey;
u8 realm;
const u8 *payload;
u8 hmac[HMAC_SIZE];
};
/* Encapsulates the information about a given payment path for the the onion
* routing algorithm.
*/
struct sphinx_path {
/* The session_key used to generate the shared secrets along the
* path. This MUST be generated in a cryptographically secure manner,
* and is exposed solely for testing, i.e., it can be set to known
* values in unit tests. If unset it'll be generated during the packet
* generation. */
struct secret *session_key;
/* The associated data is appended to the packet when generating the
* HMAC, but is not passed along as part of the packet. It is used to
* ensure some external data (HTLC payment_hash) is not modified along
* the way. */
u8 *associated_data;
/* The individual hops on this route. */
struct sphinx_hop *hops;
};
struct sphinx_path *sphinx_path_new(const tal_t *ctx, const u8 *associated_data)
{
struct sphinx_path *sp = tal(ctx, struct sphinx_path);
sp->associated_data = tal_dup_arr(sp, u8, associated_data,
tal_bytelen(associated_data), 0);
sp->session_key = NULL;
sp->hops = tal_arr(sp, struct sphinx_hop, 0);
return sp;
}
struct sphinx_path *sphinx_path_new_with_key(const tal_t *ctx,
const u8 *associated_data,
const struct secret *session_key)
{
struct sphinx_path *sp = sphinx_path_new(ctx, associated_data);
sp->session_key = tal_dup(sp, struct secret, session_key);
return sp;
}
static size_t sphinx_hop_size(const struct sphinx_hop *hop)
{
size_t size = tal_bytelen(hop->payload), vsize;
/* There is no point really in trying to serialize something that is
* larger than the maximum length we can fit into the payload region
* anyway. 3 here is the maximum varint size that we allow. */
assert(size < ROUTING_INFO_SIZE - 3 - HMAC_SIZE);
/* Backwards compatibility: realm 0 is the legacy hop_data format and
* always has 65 bytes in size */
if (hop->realm == 0x00)
return 65;
/* Since this uses the bigsize serialization format for variable
* length integer encodings we need to allocate enough space for
* it. Values >= 0xfd are used to signal multi-byte serializations. */
if (size < 0xFD)
vsize = 1;
else
vsize = 3;
/* The hop must accomodate the hop_payload, as well as the varint
* describing the length and HMAC. */
return vsize + size + HMAC_SIZE;
}
static size_t sphinx_path_payloads_size(const struct sphinx_path *path)
{
size_t size = 0;
for (size_t i=0; i<tal_count(path->hops); i++)
size += sphinx_hop_size(&path->hops[i]);
return size;
}
void sphinx_add_raw_hop(struct sphinx_path *path, const struct pubkey *pubkey,
u8 realm, const u8 *payload)
{
struct sphinx_hop sp;
sp.payload = payload;
sp.realm = realm;
sp.pubkey = *pubkey;
tal_arr_expand(&path->hops, sp);
assert(sphinx_path_payloads_size(path) <= ROUTING_INFO_SIZE);
}
void sphinx_add_v0_hop(struct sphinx_path *path, const struct pubkey *pubkey,
const struct short_channel_id *scid,
struct amount_msat forward, u32 outgoing_cltv)
{
const u8 padding[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
u8 *buf = tal_arr(path, u8, 0);
towire_short_channel_id(&buf, scid);
towire_u64(&buf, forward.millisatoshis); /* Raw: low-level serializer */
towire_u32(&buf, outgoing_cltv);
towire(&buf, padding, ARRAY_SIZE(padding));
assert(tal_bytelen(buf) == 32);
sphinx_add_raw_hop(path, pubkey, 0, buf);
}
/* Small helper to append data to a buffer and update the position
* into the buffer
*/
static void write_buffer(u8 *dst, const void *src, const size_t len, int *pos)
{
memcpy(dst + *pos, src, len);
*pos += len;
}
/* Read len bytes from the source at position pos into dst and update
* the position pos accordingly.
*/
static void read_buffer(void *dst, const u8 *src, const size_t len, int *pos)
{
memcpy(dst, src + *pos, len);
*pos += len;
}
u8 *serialize_onionpacket(
const tal_t *ctx,
const struct onionpacket *m)
{
u8 *dst = tal_arr(ctx, u8, TOTAL_PACKET_SIZE);
u8 der[PUBKEY_CMPR_LEN];
int p = 0;
pubkey_to_der(der, &m->ephemeralkey);
write_buffer(dst, &m->version, 1, &p);
write_buffer(dst, der, sizeof(der), &p);
write_buffer(dst, m->routinginfo, ROUTING_INFO_SIZE, &p);
write_buffer(dst, m->mac, sizeof(m->mac), &p);
return dst;
}
struct onionpacket *parse_onionpacket(const tal_t *ctx,
const void *src,
const size_t srclen,
enum onion_type *why_bad)
{
struct onionpacket *m;
int p = 0;
u8 rawEphemeralkey[PUBKEY_CMPR_LEN];
assert(srclen == TOTAL_PACKET_SIZE);
m = talz(ctx, struct onionpacket);
read_buffer(&m->version, src, 1, &p);
if (m->version != 0x00) {
// FIXME add logging
*why_bad = WIRE_INVALID_ONION_VERSION;
return tal_free(m);
}
read_buffer(rawEphemeralkey, src, sizeof(rawEphemeralkey), &p);
if (!pubkey_from_der(rawEphemeralkey, sizeof(rawEphemeralkey),
&m->ephemeralkey)) {
*why_bad = WIRE_INVALID_ONION_KEY;
return tal_free(m);
}
read_buffer(&m->routinginfo, src, ROUTING_INFO_SIZE, &p);
read_buffer(&m->mac, src, HMAC_SIZE, &p);
return m;
}
static void xorbytes(uint8_t *d, const uint8_t *a, const uint8_t *b, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
d[i] = a[i] ^ b[i];
}
/*
* Generate a pseudo-random byte stream of length `dstlen` from key `k` and
* store it in `dst`. `dst must be at least `dstlen` bytes long.
*/
static void generate_cipher_stream(void *dst, const u8 *k, size_t dstlen)
{
u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
crypto_stream_chacha20(dst, dstlen, nonce, k);
}
static bool compute_hmac(
void *dst,
const void *src,
size_t len,
const void *key,
size_t keylen)
{
crypto_auth_hmacsha256_state state;
crypto_auth_hmacsha256_init(&state, key, keylen);
crypto_auth_hmacsha256_update(&state, memcheck(src, len), len);
crypto_auth_hmacsha256_final(&state, dst);
return true;
}
static void compute_packet_hmac(const struct onionpacket *packet,
const u8 *assocdata, const size_t assocdatalen,
u8 *mukey, u8 *hmac)
{
u8 mactemp[ROUTING_INFO_SIZE + assocdatalen];
u8 mac[32];
int pos = 0;
write_buffer(mactemp, packet->routinginfo, ROUTING_INFO_SIZE, &pos);
write_buffer(mactemp, assocdata, assocdatalen, &pos);
compute_hmac(mac, mactemp, sizeof(mactemp), mukey, KEY_LEN);
memcpy(hmac, mac, HMAC_SIZE);
}
static bool generate_key(void *k, const char *t, u8 tlen, const u8 *s)
{
return compute_hmac(k, s, KEY_LEN, t, tlen);
}
static bool generate_header_padding(void *dst, size_t dstlen,
const struct sphinx_path *path,
struct hop_params *params)
{
u8 stream[2 * ROUTING_INFO_SIZE];
u8 key[KEY_LEN];
size_t fillerStart, fillerEnd, fillerSize;
memset(dst, 0, dstlen);
for (int i = 0; i < tal_count(path->hops) - 1; i++) {
if (!generate_key(&key, RHO_KEYTYPE, strlen(RHO_KEYTYPE),
params[i].secret))
return false;
generate_cipher_stream(stream, key, sizeof(stream));
/* Sum up how many bytes have been used by previous hops,
* that gives us the start in the stream */
fillerSize = 0;
for (int j = 0; j < i; j++)
fillerSize += sphinx_hop_size(&path->hops[j]);
fillerStart = ROUTING_INFO_SIZE - fillerSize;
/* The filler will dangle off of the end by the current
* hop-size, we'll make sure to copy it into the correct
* position in the next step. */
fillerEnd = ROUTING_INFO_SIZE + sphinx_hop_size(&path->hops[i]);
/* Apply the cipher-stream to the part of the filler that'll
* be added by this hop */
xorbytes(dst, dst, stream + fillerStart,
fillerEnd - fillerStart);
}
return true;
}
static void compute_blinding_factor(const struct pubkey *key,
const u8 sharedsecret[SHARED_SECRET_SIZE],
u8 res[BLINDING_FACTOR_SIZE])
{
struct sha256_ctx ctx;
u8 der[PUBKEY_CMPR_LEN];
struct sha256 temp;
pubkey_to_der(der, key);
sha256_init(&ctx);
sha256_update(&ctx, der, sizeof(der));
sha256_update(&ctx, sharedsecret, SHARED_SECRET_SIZE);
sha256_done(&ctx, &temp);
memcpy(res, &temp, 32);
}
static bool blind_group_element(struct pubkey *blindedelement,
const struct pubkey *pubkey,
const u8 blind[BLINDING_FACTOR_SIZE])
{
/* tweak_mul is inplace so copy first. */
if (pubkey != blindedelement)
*blindedelement = *pubkey;
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx,
&blindedelement->pubkey, blind) != 1)
return false;
return true;
}
static bool create_shared_secret(u8 *secret, const struct pubkey *pubkey,
const struct secret *session_key)
{
if (secp256k1_ecdh(secp256k1_ctx, secret, &pubkey->pubkey,
session_key->data, NULL, NULL) != 1)
return false;
return true;
}
bool onion_shared_secret(
u8 *secret,
const struct onionpacket *packet,
const struct privkey *privkey)
{
return create_shared_secret(secret, &packet->ephemeralkey,
&privkey->secret);
}
static void generate_key_set(const u8 secret[SHARED_SECRET_SIZE],
struct keyset *keys)
{
generate_key(keys->rho, "rho", 3, secret);
generate_key(keys->pi, "pi", 2, secret);
generate_key(keys->mu, "mu", 2, secret);
generate_key(keys->gamma, "gamma", 5, secret);
}
static struct hop_params *generate_hop_params(
const tal_t *ctx,
const u8 *sessionkey,
struct sphinx_path *path)
{
int i, j, num_hops = tal_count(path->hops);
struct pubkey temp;
u8 blind[BLINDING_FACTOR_SIZE];
struct hop_params *params = tal_arr(ctx, struct hop_params, num_hops);
/* Initialize the first hop with the raw information */
if (secp256k1_ec_pubkey_create(secp256k1_ctx,
&params[0].ephemeralkey.pubkey,
path->session_key->data) != 1)
return NULL;
if (!create_shared_secret(params[0].secret, &path->hops[0].pubkey,
path->session_key))
return NULL;
compute_blinding_factor(
&params[0].ephemeralkey, params[0].secret,
params[0].blind);
/* Recursively compute all following ephemeral public keys,
* secrets and blinding factors
*/
for (i = 1; i < num_hops; i++) {
if (!blind_group_element(
&params[i].ephemeralkey,
&params[i - 1].ephemeralkey,
params[i - 1].blind))
return NULL;
/* Blind this hop's point with all previous blinding factors
* Order is indifferent, multiplication is commutative.
*/
memcpy(&blind, sessionkey, 32);
temp = path->hops[i].pubkey;
if (!blind_group_element(&temp, &temp, blind))
return NULL;
for (j = 0; j < i; j++)
if (!blind_group_element(
&temp,
&temp,
params[j].blind))
return NULL;
/* Now hash temp and store it. This requires us to
* DER-serialize first and then skip the sign byte.
*/
u8 der[PUBKEY_CMPR_LEN];
pubkey_to_der(der, &temp);
struct sha256 h;
sha256(&h, der, sizeof(der));
memcpy(&params[i].secret, &h, sizeof(h));
compute_blinding_factor(
&params[i].ephemeralkey,
params[i].secret, params[i].blind);
}
return params;
}
static void deserialize_hop_data(struct hop_data *data, const u8 *src)
{
const u8 *cursor = src;
size_t max = FRAME_SIZE;
data->realm = fromwire_u8(&cursor, &max);
fromwire_short_channel_id(&cursor, &max, &data->channel_id);
data->amt_forward = fromwire_amount_msat(&cursor, &max);
data->outgoing_cltv = fromwire_u32(&cursor, &max);
}
static void sphinx_write_frame(u8 *dest, const struct sphinx_hop *hop)
{
size_t raw_size = tal_bytelen(hop->payload);
size_t hop_size = sphinx_hop_size(hop);
int pos = 0;
memset(dest, 0, hop_size);
/* Backwards compatibility for the legacy hop_data format. */
if (hop->realm == 0x00)
dest[pos++] = 0x00;
else
pos += varint_put(dest+pos, raw_size);
memcpy(dest + pos, hop->payload, raw_size);
memcpy(dest + hop_size - HMAC_SIZE, hop->hmac, HMAC_SIZE);
}
static void sphinx_parse_payload(struct route_step *step, const u8 *src)
{
size_t hop_size, raw_size, vsize;
/* Legacy hop_data support */
if (src[0] == 0x00) {
vsize = 1;
raw_size = 32;
hop_size = FRAME_SIZE;
step->realm = src[0];
} else {
vsize = varint_get(src, 3, &raw_size);
hop_size = raw_size + vsize + HMAC_SIZE;
}
/* Copy common pieces over */
step->raw_payload = tal_dup_arr(step, u8, src + vsize, raw_size, 0);
memcpy(step->next->mac, src + hop_size - HMAC_SIZE, HMAC_SIZE);
/* And now try to parse whatever the payload contains so we can use it
* later. */
if (step->realm == SPHINX_V0_PAYLOAD) {
step->type = SPHINX_V0_PAYLOAD;
deserialize_hop_data(&step->payload.v0, src);
} else {
step->type = SPHINX_RAW_PAYLOAD;
}
}
struct onionpacket *create_onionpacket(
const tal_t *ctx,
struct sphinx_path *sp,
struct secret **path_secrets
)
{
struct onionpacket *packet = talz(ctx, struct onionpacket);
int i, num_hops = tal_count(sp->hops);
size_t fillerSize = sphinx_path_payloads_size(sp) -
sphinx_hop_size(&sp->hops[num_hops - 1]);
u8 filler[fillerSize];
struct keyset keys;
u8 nexthmac[HMAC_SIZE];
u8 stream[ROUTING_INFO_SIZE];
struct hop_params *params;
struct secret *secrets = tal_arr(ctx, struct secret, num_hops);
if (sp->session_key == NULL) {
sp->session_key = tal(sp, struct secret);
randombytes_buf(sp->session_key, sizeof(struct secret));
}
params = generate_hop_params(ctx, sp->session_key->data, sp);
if (!params) {
tal_free(packet);
tal_free(secrets);
return NULL;
}
packet->version = 0;
memset(nexthmac, 0, HMAC_SIZE);
memset(packet->routinginfo, 0, ROUTING_INFO_SIZE);
generate_header_padding(filler, sizeof(filler), sp, params);
for (i = num_hops - 1; i >= 0; i--) {
memcpy(sp->hops[i].hmac, nexthmac, HMAC_SIZE);
generate_key_set(params[i].secret, &keys);
generate_cipher_stream(stream, keys.rho, ROUTING_INFO_SIZE);
/* Rightshift mix-header by FRAME_SIZE */
size_t shiftSize = sphinx_hop_size(&sp->hops[i]);
memmove(packet->routinginfo + shiftSize, packet->routinginfo,
ROUTING_INFO_SIZE-shiftSize);
sphinx_write_frame(packet->routinginfo, &sp->hops[i]);
xorbytes(packet->routinginfo, packet->routinginfo, stream, ROUTING_INFO_SIZE);
if (i == num_hops - 1) {
memcpy(packet->routinginfo + ROUTING_INFO_SIZE - fillerSize, filler, fillerSize);
}
compute_packet_hmac(packet, sp->associated_data, tal_bytelen(sp->associated_data), keys.mu,
nexthmac);
}
memcpy(packet->mac, nexthmac, sizeof(nexthmac));
memcpy(&packet->ephemeralkey, &params[0].ephemeralkey, sizeof(secp256k1_pubkey));
for (i=0; i<num_hops; i++) {
memcpy(&secrets[i], params[i].secret, SHARED_SECRET_SIZE);
}
*path_secrets = secrets;
return packet;
}
/*
* Given an onionpacket msg extract the information for the current
* node and unwrap the remainder so that the node can forward it.
*/
struct route_step *process_onionpacket(
const tal_t *ctx,
const struct onionpacket *msg,
const u8 *shared_secret,
const u8 *assocdata,
const size_t assocdatalen
)
{
struct route_step *step = talz(ctx, struct route_step);
u8 hmac[HMAC_SIZE];
struct keyset keys;
u8 blind[BLINDING_FACTOR_SIZE];
u8 stream[NUM_STREAM_BYTES];
u8 paddedheader[2*ROUTING_INFO_SIZE];
size_t shift_size, vsize;
step->next = talz(step, struct onionpacket);
step->next->version = msg->version;
generate_key_set(shared_secret, &keys);
compute_packet_hmac(msg, assocdata, assocdatalen, keys.mu, hmac);
if (memcmp(msg->mac, hmac, sizeof(hmac)) != 0) {
/* Computed MAC does not match expected MAC, the message was modified. */
return tal_free(step);
}
//FIXME:store seen secrets to avoid replay attacks
generate_cipher_stream(stream, keys.rho, sizeof(stream));
memset(paddedheader, 0, sizeof(paddedheader));
memcpy(paddedheader, msg->routinginfo, ROUTING_INFO_SIZE);
xorbytes(paddedheader, paddedheader, stream, sizeof(stream));
compute_blinding_factor(&msg->ephemeralkey, shared_secret, blind);
if (!blind_group_element(&step->next->ephemeralkey, &msg->ephemeralkey, blind))
return tal_free(step);
sphinx_parse_payload(step, paddedheader);
/* Extract how many bytes we need to shift away */
if (paddedheader[0] == 0x00) {
shift_size = FRAME_SIZE;
} else {
/* In addition to the raw payload we need to also shift the
* length encoding itself and the HMAC away. */
vsize = varint_get(paddedheader, 3, &shift_size);
shift_size += vsize + HMAC_SIZE;
/* If we get an unreasonable shift size we must return an error. */
if (shift_size >= ROUTING_INFO_SIZE)
return tal_free(step);
}
step->raw_payload = tal_dup_arr(step, u8, paddedheader + 1,
shift_size - 1 - HMAC_SIZE, 0);
/* Copy the hmac from the last HMAC_SIZE bytes */
memcpy(&step->next->mac, paddedheader + shift_size - HMAC_SIZE, HMAC_SIZE);
/* Left shift the current payload out and make the remainder the new onion */
memcpy(&step->next->routinginfo, paddedheader + shift_size, ROUTING_INFO_SIZE);
if (memeqzero(step->next->mac, sizeof(step->next->mac))) {
step->nextcase = ONION_END;
} else {
step->nextcase = ONION_FORWARD;
}
return step;
}
u8 *create_onionreply(const tal_t *ctx, const struct secret *shared_secret,
const u8 *failure_msg)
{
size_t msglen = tal_count(failure_msg);
size_t padlen = ONION_REPLY_SIZE - msglen;
u8 *reply = tal_arr(ctx, u8, 0), *payload = tal_arr(ctx, u8, 0);
u8 key[KEY_LEN];
u8 hmac[HMAC_SIZE];
/* BOLT #4:
*
* The node generating the error message (_erring node_) builds a return
* packet consisting of
* the following fields:
*
* 1. data:
* * [`32*byte`:`hmac`]
* * [`u16`:`failure_len`]
* * [`failure_len*byte`:`failuremsg`]
* * [`u16`:`pad_len`]
* * [`pad_len*byte`:`pad`]
*/
towire_u16(&payload, msglen);
towire(&payload, failure_msg, msglen);
towire_u16(&payload, padlen);
towire_pad(&payload, padlen);
/* BOLT #4:
*
* The _erring node_:
* - SHOULD set `pad` such that the `failure_len` plus `pad_len` is
* equal to 256.
* - Note: this value is 118 bytes longer than the longest
* currently-defined message.
*/
assert(tal_count(payload) == ONION_REPLY_SIZE + 4);
/* BOLT #4:
*
* Where `hmac` is an HMAC authenticating the remainder of the packet,
* with a key generated using the above process, with key type `um`
*/
generate_key(key, "um", 2, shared_secret->data);
compute_hmac(hmac, payload, tal_count(payload), key, KEY_LEN);
towire(&reply, hmac, sizeof(hmac));
towire(&reply, payload, tal_count(payload));
tal_free(payload);
return reply;
}
u8 *wrap_onionreply(const tal_t *ctx,
const struct secret *shared_secret, const u8 *reply)
{
u8 key[KEY_LEN];
size_t streamlen = tal_count(reply);
u8 stream[streamlen];
u8 *result = tal_arr(ctx, u8, streamlen);
/* BOLT #4:
*
* The erring node then generates a new key, using the key type `ammag`.
* This key is then used to generate a pseudo-random stream, which is
* in turn applied to the packet using `XOR`.
*
* The obfuscation step is repeated by every hop along the return path.
*/
generate_key(key, "ammag", 5, shared_secret->data);
generate_cipher_stream(stream, key, streamlen);
xorbytes(result, stream, reply, streamlen);
return result;
}
struct onionreply *unwrap_onionreply(const tal_t *ctx,
const struct secret *shared_secrets,
const int numhops, const u8 *reply)
{
struct onionreply *oreply = tal(tmpctx, struct onionreply);
u8 *msg = tal_arr(oreply, u8, tal_count(reply));
u8 key[KEY_LEN], hmac[HMAC_SIZE];
const u8 *cursor;
size_t max;
u16 msglen;
if (tal_count(reply) != ONION_REPLY_SIZE + sizeof(hmac) + 4) {
return NULL;
}
memcpy(msg, reply, tal_count(reply));
oreply->origin_index = -1;
for (int i = 0; i < numhops; i++) {
/* Since the encryption is just XORing with the cipher
* stream encryption is identical to decryption */
msg = wrap_onionreply(tmpctx, &shared_secrets[i], msg);
/* Check if the HMAC matches, this means that this is
* the origin */
generate_key(key, "um", 2, shared_secrets[i].data);
compute_hmac(hmac, msg + sizeof(hmac),
tal_count(msg) - sizeof(hmac), key, KEY_LEN);
if (memcmp(hmac, msg, sizeof(hmac)) == 0) {
oreply->origin_index = i;
break;
}
}
if (oreply->origin_index == -1) {
return NULL;
}
cursor = msg + sizeof(hmac);
max = tal_count(msg) - sizeof(hmac);
msglen = fromwire_u16(&cursor, &max);
if (msglen > ONION_REPLY_SIZE) {
return NULL;
}
oreply->msg = tal_arr(oreply, u8, msglen);
fromwire(&cursor, &max, oreply->msg, msglen);
tal_steal(ctx, oreply);
return oreply;
}