|
|
|
#include "status.h"
|
|
|
|
#include "type_to_string.h"
|
|
|
|
#include <assert.h>
|
|
|
|
#include <bitcoin/privkey.h>
|
|
|
|
#include <ccan/build_assert/build_assert.h>
|
|
|
|
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
|
|
|
|
#include <ccan/endian/endian.h>
|
|
|
|
#include <ccan/fdpass/fdpass.h>
|
|
|
|
#include <ccan/mem/mem.h>
|
|
|
|
#include <ccan/read_write_all/read_write_all.h>
|
|
|
|
#include <ccan/short_types/short_types.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <lightningd/debug.h>
|
|
|
|
#include <lightningd/handshake/gen_handshake_control_wire.h>
|
|
|
|
#include <lightningd/handshake/gen_handshake_status_wire.h>
|
|
|
|
#include <lightningd/hsm/client.h>
|
|
|
|
#include <secp256k1.h>
|
|
|
|
#include <secp256k1_ecdh.h>
|
|
|
|
#include <sodium/crypto_aead_chacha20poly1305.h>
|
|
|
|
#include <sodium/randombytes.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#include <version.h>
|
|
|
|
#include <wire/wire.h>
|
|
|
|
#include <wire/wire_sync.h>
|
|
|
|
|
|
|
|
/* Stdout == status, stdin == requests, 3 == hsmfd */
|
|
|
|
#define STATUS_FD STDOUT_FILENO
|
|
|
|
#define REQ_FD STDIN_FILENO
|
|
|
|
|
|
|
|
/* Representing chacha keys and ecdh results we derive them from;
|
|
|
|
* even though it's not really an SHA */
|
|
|
|
struct secret {
|
|
|
|
struct sha256 s;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `generateKey()`
|
|
|
|
* * where generateKey generates and returns a fresh `secp256k1` keypair
|
|
|
|
* * the object returned by `generateKey` has two attributes:
|
|
|
|
* * `.pub`: which returns an abstract object representing the
|
|
|
|
* public key
|
|
|
|
* * `.priv`: which represents the private key used to generate the
|
|
|
|
* public key
|
|
|
|
*/
|
|
|
|
struct keypair {
|
|
|
|
struct pubkey pub;
|
|
|
|
struct privkey priv;
|
|
|
|
};
|
|
|
|
|
|
|
|
static struct keypair generate_key(void)
|
|
|
|
{
|
|
|
|
struct keypair k;
|
|
|
|
|
|
|
|
do {
|
|
|
|
randombytes_buf(k.priv.secret, sizeof(k.priv.secret));
|
|
|
|
} while (!secp256k1_ec_pubkey_create(secp256k1_ctx,
|
|
|
|
&k.pub.pubkey, k.priv.secret));
|
|
|
|
return k;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* Throughout the handshake process, each side maintains these variables:
|
|
|
|
*
|
|
|
|
* * `ck`: The **chaining key**. This value is the accumulated hash of all
|
|
|
|
* previous ECDH outputs. At the end of the handshake, `ck` is used to
|
|
|
|
* derive the encryption keys for lightning messages.
|
|
|
|
*
|
|
|
|
* * `h`: The **handshake hash**. This value is the accumulated hash of _all_
|
|
|
|
* handshake data that has been sent and received so far during the
|
|
|
|
* handshake process.
|
|
|
|
*
|
|
|
|
* * `temp_k1`, `temp_k2`, `temp_k3`: **intermediate keys** used to
|
|
|
|
* encrypt/decrypt the zero-length AEAD payloads at the end of each
|
|
|
|
* handshake message.
|
|
|
|
*
|
|
|
|
* * `e`: A party's **ephemeral keypair**. For each session a node MUST
|
|
|
|
* generate a new ephemeral key with strong cryptographic randomness.
|
|
|
|
*
|
|
|
|
* * `s`: A party's **static public key** (`ls` for local, `rs` for remote)
|
|
|
|
*/
|
|
|
|
struct handshake {
|
|
|
|
struct secret ck;
|
|
|
|
struct secret temp_k;
|
|
|
|
struct sha256 h;
|
|
|
|
struct keypair e;
|
|
|
|
struct secret ss;
|
|
|
|
};
|
|
|
|
|
|
|
|
/* h = SHA-256(h || data) */
|
|
|
|
static void sha_mix_in(struct sha256 *h, const void *data, size_t len)
|
|
|
|
{
|
|
|
|
struct sha256_ctx shactx;
|
|
|
|
|
|
|
|
sha256_init(&shactx);
|
|
|
|
sha256_update(&shactx, h, sizeof(*h));
|
|
|
|
sha256_update(&shactx, data, len);
|
|
|
|
sha256_done(&shactx, h);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* h = SHA-256(h || pub.serializeCompressed()) */
|
|
|
|
static void sha_mix_in_key(struct sha256 *h, const struct pubkey *key)
|
|
|
|
{
|
|
|
|
u8 der[PUBKEY_DER_LEN];
|
|
|
|
size_t len = sizeof(der);
|
|
|
|
|
|
|
|
secp256k1_ec_pubkey_serialize(secp256k1_ctx, der, &len, &key->pubkey,
|
|
|
|
SECP256K1_EC_COMPRESSED);
|
|
|
|
assert(len == sizeof(der));
|
|
|
|
sha_mix_in(h, der, sizeof(der));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* out1, out2 = HKDF(in1, in2)` */
|
|
|
|
static void hkdf_two_keys(struct secret *out1, struct secret *out2,
|
|
|
|
const struct secret *in1,
|
|
|
|
const void *in2, size_t in2_size)
|
|
|
|
{
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `HKDF(salt,ikm)`: a function is defined in [3](#reference-3),
|
|
|
|
* evaluated with a zero-length `info` field.
|
|
|
|
* * All invocations of the `HKDF` implicitly return `64-bytes`
|
|
|
|
* of cryptographic randomness using the extract-and-expand
|
|
|
|
* component of the `HKDF`.
|
|
|
|
*/
|
|
|
|
struct secret okm[2];
|
|
|
|
|
|
|
|
status_trace("# HKDF(0x%s,%s%s)",
|
|
|
|
tal_hexstr(trc, in1, sizeof(*in1)),
|
|
|
|
in2_size ? "0x" : "zero",
|
|
|
|
tal_hexstr(trc, in2, in2_size));
|
|
|
|
BUILD_ASSERT(sizeof(okm) == 64);
|
|
|
|
hkdf_sha256(okm, sizeof(okm), in1, sizeof(*in1), in2, in2_size,
|
|
|
|
NULL, 0);
|
|
|
|
*out1 = okm[0];
|
|
|
|
*out2 = okm[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
static void le64_nonce(unsigned char *npub, u64 nonce)
|
|
|
|
{
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* ...with nonce `n` encoded as 32 zero bits followed by a
|
|
|
|
* *little-endian* 64-bit value (this follows the Noise Protocol
|
|
|
|
* convention, rather than our normal endian).
|
|
|
|
*/
|
|
|
|
le64 le_nonce = cpu_to_le64(nonce);
|
|
|
|
const size_t zerolen = crypto_aead_chacha20poly1305_ietf_NPUBBYTES - sizeof(le_nonce);
|
|
|
|
|
|
|
|
BUILD_ASSERT(crypto_aead_chacha20poly1305_ietf_NPUBBYTES >= sizeof(le_nonce));
|
|
|
|
/* First part is 0, followed by nonce. */
|
|
|
|
memset(npub, 0, zerolen);
|
|
|
|
memcpy(npub + zerolen, &le_nonce, sizeof(le_nonce));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * `encryptWithAD(k, n, ad, plaintext)`: outputs `encrypt(k, n, ad,
|
|
|
|
* plaintext)`
|
|
|
|
* * where `encrypt` is an evaluation of `ChaCha20-Poly1305` (IETF
|
|
|
|
* variant) with the passed arguments, with nonce `n`
|
|
|
|
*/
|
|
|
|
static void encrypt_ad(const struct secret *k, u64 nonce,
|
|
|
|
const void *additional_data, size_t additional_data_len,
|
|
|
|
const void *plaintext, size_t plaintext_len,
|
|
|
|
void *output, size_t outputlen)
|
|
|
|
{
|
|
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
|
|
unsigned long long clen;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
assert(outputlen == plaintext_len + crypto_aead_chacha20poly1305_ietf_ABYTES);
|
|
|
|
le64_nonce(npub, nonce);
|
|
|
|
BUILD_ASSERT(sizeof(*k) == crypto_aead_chacha20poly1305_ietf_KEYBYTES);
|
|
|
|
status_trace("# encryptWithAD(0x%s, 0x%s, 0x%s, %s%s)",
|
|
|
|
tal_hexstr(trc, k, sizeof(*k)),
|
|
|
|
tal_hexstr(trc, npub, sizeof(npub)),
|
|
|
|
tal_hexstr(trc, additional_data, additional_data_len),
|
|
|
|
plaintext_len ? "0x" : "<empty>",
|
|
|
|
tal_hexstr(trc, plaintext, plaintext_len));
|
|
|
|
|
|
|
|
ret = crypto_aead_chacha20poly1305_ietf_encrypt(output, &clen,
|
|
|
|
memcheck(plaintext, plaintext_len),
|
|
|
|
plaintext_len,
|
|
|
|
additional_data, additional_data_len,
|
|
|
|
NULL, npub, k->s.u.u8);
|
|
|
|
assert(ret == 0);
|
|
|
|
assert(clen == plaintext_len + crypto_aead_chacha20poly1305_ietf_ABYTES);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * `decryptWithAD(k, n, ad, ciphertext)`: outputs `decrypt(k, n, ad,
|
|
|
|
* ciphertext)`
|
|
|
|
* * where `decrypt` is an evaluation of `ChaCha20-Poly1305` (IETF
|
|
|
|
* variant) with the passed arguments, with nonce `n`
|
|
|
|
*/
|
|
|
|
static bool decrypt(const struct secret *k, u64 nonce,
|
|
|
|
const void *additional_data, size_t additional_data_len,
|
|
|
|
const void *ciphertext, size_t ciphertext_len,
|
|
|
|
void *output, size_t outputlen)
|
|
|
|
{
|
|
|
|
unsigned char npub[crypto_aead_chacha20poly1305_ietf_NPUBBYTES];
|
|
|
|
unsigned long long mlen;
|
|
|
|
|
|
|
|
assert(outputlen == ciphertext_len - crypto_aead_chacha20poly1305_ietf_ABYTES);
|
|
|
|
|
|
|
|
le64_nonce(npub, nonce);
|
|
|
|
BUILD_ASSERT(sizeof(*k) == crypto_aead_chacha20poly1305_ietf_KEYBYTES);
|
|
|
|
status_trace("# decryptWithAD(0x%s, 0x%s, 0x%s, 0x%s)",
|
|
|
|
tal_hexstr(trc, k, sizeof(*k)),
|
|
|
|
tal_hexstr(trc, npub, sizeof(npub)),
|
|
|
|
tal_hexstr(trc, additional_data, additional_data_len),
|
|
|
|
tal_hexstr(trc, ciphertext, ciphertext_len));
|
|
|
|
if (crypto_aead_chacha20poly1305_ietf_decrypt(output, &mlen, NULL,
|
|
|
|
memcheck(ciphertext, ciphertext_len),
|
|
|
|
ciphertext_len,
|
|
|
|
additional_data, additional_data_len,
|
|
|
|
npub, k->s.u.u8) != 0)
|
|
|
|
return false;
|
|
|
|
|
|
|
|
assert(mlen == ciphertext_len - crypto_aead_chacha20poly1305_ietf_ABYTES);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct handshake *new_handshake(const tal_t *ctx,
|
|
|
|
const struct pubkey *id)
|
|
|
|
{
|
|
|
|
struct handshake *handshake = tal(ctx, struct handshake);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* Before the start of the first act, both sides initialize their
|
|
|
|
* per-sessions state as follows:
|
|
|
|
*
|
|
|
|
* 1. `h = SHA-256(protocolName)`
|
|
|
|
* * where `protocolName = "Noise_XK_secp256k1_ChaChaPoly_SHA256"`
|
|
|
|
* encoded as an ascii string.
|
|
|
|
*/
|
|
|
|
sha256(&handshake->h, "Noise_XK_secp256k1_ChaChaPoly_SHA256",
|
|
|
|
strlen("Noise_XK_secp256k1_ChaChaPoly_SHA256"));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* 2. `ck = h`
|
|
|
|
*/
|
|
|
|
BUILD_ASSERT(sizeof(handshake->h) == sizeof(handshake->ck));
|
|
|
|
memcpy(&handshake->ck, &handshake->h, sizeof(handshake->ck));
|
|
|
|
status_trace("# ck=%s",
|
|
|
|
tal_hexstr(trc, &handshake->ck, sizeof(handshake->ck)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* 3. `h = SHA-256(h || prologue)`
|
|
|
|
* * where `prologue` is the ascii string: `lightning`.
|
|
|
|
*/
|
|
|
|
sha_mix_in(&handshake->h, "lightning", strlen("lightning"));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* As a concluding step, both sides mix the responder's public key
|
|
|
|
* into the handshake digest:
|
|
|
|
*
|
|
|
|
* * The initiating node mixes in the responding node's static public
|
|
|
|
* key serialized in Bitcoin's DER compressed format:
|
|
|
|
* * `h = SHA-256(h || rs.pub.serializeCompressed())`
|
|
|
|
*
|
|
|
|
* * The responding node mixes in their local static public key
|
|
|
|
* serialized in Bitcoin's DER compressed format:
|
|
|
|
* * `h = SHA-256(h || ls.pub.serializeCompressed())`
|
|
|
|
*/
|
|
|
|
sha_mix_in_key(&handshake->h, id);
|
|
|
|
status_trace("# h=%s",
|
|
|
|
tal_hexstr(trc, &handshake->h, sizeof(handshake->h)));
|
|
|
|
|
|
|
|
return handshake;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* Act One is sent from initiator to responder. During `Act One`, the
|
|
|
|
* initiator attempts to satisfy an implicit challenge by the responder. To
|
|
|
|
* complete this challenge, the initiator _must_ know the static public key of
|
|
|
|
* the responder.
|
|
|
|
*/
|
|
|
|
struct act_one {
|
|
|
|
u8 v;
|
|
|
|
u8 pubkey[PUBKEY_DER_LEN];
|
|
|
|
u8 tag[crypto_aead_chacha20poly1305_ietf_ABYTES];
|
|
|
|
};
|
|
|
|
|
|
|
|
/* BOLT #8: The handshake message is _exactly_ `50 bytes` */
|
|
|
|
#define ACT_ONE_SIZE 50 /* ARM's stupid ABI adds padding. */
|
|
|
|
|
|
|
|
static inline void check_act_one(const struct act_one *act1)
|
|
|
|
{
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* : `1 byte` for the handshake version, `33 bytes` for the compressed
|
|
|
|
* ephemeral public key of the initiator, and `16 bytes` for the
|
|
|
|
* `poly1305` tag.
|
|
|
|
*/
|
|
|
|
BUILD_ASSERT(sizeof(act1->v) == 1);
|
|
|
|
BUILD_ASSERT(sizeof(act1->pubkey) == 33);
|
|
|
|
BUILD_ASSERT(sizeof(act1->tag) == 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void act_one_initiator(struct handshake *h, int fd,
|
|
|
|
const struct pubkey *their_id)
|
|
|
|
{
|
|
|
|
struct act_one act1;
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
status_send(towire_initr_act_one(h));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* **Sender Actions:**
|
|
|
|
*
|
|
|
|
* * `e = generateKey()`
|
|
|
|
*/
|
|
|
|
h->e = generate_key();
|
|
|
|
status_trace("e.priv: 0x%s",
|
|
|
|
tal_hexstr(trc, &h->e.priv, sizeof(h->e.priv)));
|
|
|
|
status_trace("e.pub: 0x%s",
|
|
|
|
type_to_string(trc, struct pubkey, &h->e.pub));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || e.pub.serializeCompressed())`
|
|
|
|
* * The newly generated ephemeral key is accumulated into our
|
|
|
|
* running handshake digest.
|
|
|
|
*/
|
|
|
|
sha_mix_in_key(&h->h, &h->e.pub);
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ss = ECDH(rs, e.priv)`
|
|
|
|
* * The initiator performs a `ECDH` between its newly generated
|
|
|
|
* ephemeral key with the remote node's static public key.
|
|
|
|
*/
|
|
|
|
if (!secp256k1_ecdh(secp256k1_ctx, h->ss.s.u.u8,
|
|
|
|
&their_id->pubkey, h->e.priv.secret))
|
|
|
|
status_failed(WIRE_INITR_ACT1_BAD_ECDH_FOR_SS, "%s", "");
|
|
|
|
status_trace("# ss=0x%s", tal_hexstr(trc, &h->ss.s, sizeof(h->ss.s)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ck, temp_k1 = HKDF(ck, ss)`
|
|
|
|
* * This phase generates a new temporary encryption key
|
|
|
|
* which is used to generate the authenticating MAC.
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, &h->ss, sizeof(h->ss));
|
|
|
|
status_trace("# ck,temp_k1=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, &h->ck, sizeof(h->ck)),
|
|
|
|
tal_hexstr(trc, &h->temp_k, sizeof(h->temp_k)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `c = encryptWithAD(temp_k1, 0, h, zero)`
|
|
|
|
* * where `zero` is a zero-length plaintext
|
|
|
|
*/
|
|
|
|
encrypt_ad(&h->temp_k, 0, &h->h, sizeof(h->h), NULL, 0,
|
|
|
|
act1.tag, sizeof(act1.tag));
|
|
|
|
status_trace("# c=%s", tal_hexstr(trc, act1.tag, sizeof(act1.tag)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || c)`
|
|
|
|
* * Finally, the generated ciphertext is accumulated into the
|
|
|
|
* authenticating handshake digest.
|
|
|
|
*/
|
|
|
|
sha_mix_in(&h->h, act1.tag, sizeof(act1.tag));
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Send `m = 0 || e.pub.serializeCompressed() || c` to the responder over the network buffer.
|
|
|
|
*/
|
|
|
|
act1.v = 0;
|
|
|
|
len = sizeof(act1.pubkey);
|
|
|
|
secp256k1_ec_pubkey_serialize(secp256k1_ctx, act1.pubkey, &len,
|
|
|
|
&h->e.pub.pubkey,
|
|
|
|
SECP256K1_EC_COMPRESSED);
|
|
|
|
status_trace("output: 0x%s", tal_hexstr(trc, &act1, ACT_ONE_SIZE));
|
|
|
|
if (!write_all(fd, &act1, ACT_ONE_SIZE))
|
|
|
|
status_failed(WIRE_INITR_ACT1_WRITE_FAILED,
|
|
|
|
"%s", strerror(errno));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void act_one_responder(struct handshake *h, int fd, struct pubkey *re)
|
|
|
|
{
|
|
|
|
struct act_one act1;
|
|
|
|
|
|
|
|
status_send(towire_respr_act_one(h));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Read _exactly_ `50-bytes` from the network buffer.
|
|
|
|
*
|
|
|
|
* * Parse out the read message (`m`) into `v = m[0]`, `re =
|
|
|
|
* m[1:33]` and `c = m[34:]`
|
|
|
|
* * where `m[0]` is the _first_ byte of `m`, `m[1:33]` are the
|
|
|
|
* next `33` bytes of `m` and `m[34:]` is the last 16 bytes of
|
|
|
|
* `m`
|
|
|
|
*/
|
|
|
|
if (!read_all(fd, &act1, ACT_ONE_SIZE))
|
|
|
|
status_failed(WIRE_RESPR_ACT1_READ_FAILED,
|
|
|
|
"%s", strerror(errno));
|
|
|
|
status_trace("input: 0x%s", tal_hexstr(trc, &act1, ACT_ONE_SIZE));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * If `v` is an unrecognized handshake version, then the responder
|
|
|
|
* MUST abort the connection attempt.
|
|
|
|
*/
|
|
|
|
if (act1.v != 0)
|
|
|
|
status_failed(WIRE_RESPR_ACT1_BAD_VERSION, "%u", act1.v);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * The raw bytes of the remote party's ephemeral public key
|
|
|
|
* (`e`) are to be deserialized into a point on the curve using
|
|
|
|
* affine coordinates as encoded by the key's serialized
|
|
|
|
* composed format.
|
|
|
|
*/
|
|
|
|
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &re->pubkey,
|
|
|
|
act1.pubkey, sizeof(act1.pubkey)) != 1)
|
|
|
|
status_failed(WIRE_RESPR_ACT1_BAD_PUBKEY, "%s",
|
|
|
|
tal_hexstr(trc, &act1.pubkey,
|
|
|
|
sizeof(act1.pubkey)));
|
|
|
|
status_trace("# re=0x%s", type_to_string(trc, struct pubkey, re));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || re.serializeCompressed())`
|
|
|
|
* * Accumulate the initiator's ephemeral key into the
|
|
|
|
* authenticating handshake digest.
|
|
|
|
*/
|
|
|
|
sha_mix_in_key(&h->h, re);
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * `ss = ECDH(re, s.priv)`
|
|
|
|
* * The responder performs an `ECDH` between its static public
|
|
|
|
* key and the initiator's ephemeral public key.
|
|
|
|
*/
|
|
|
|
if (!hsm_do_ecdh(&h->ss.s, re))
|
|
|
|
status_failed(WIRE_RESPR_ACT1_BAD_HSM_ECDH,
|
|
|
|
"re=%s",
|
|
|
|
type_to_string(trc, struct pubkey, re));
|
|
|
|
status_trace("# ss=0x%s", tal_hexstr(trc, &h->ss, sizeof(h->ss)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ck, temp_k1 = HKDF(ck, ss)`
|
|
|
|
* * This phase generates a new temporary encryption key
|
|
|
|
* which will be used to shortly check the
|
|
|
|
* authenticating MAC.
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, &h->ss, sizeof(h->ss));
|
|
|
|
status_trace("# ck,temp_k1=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, &h->ck, sizeof(h->ck)),
|
|
|
|
tal_hexstr(trc, &h->temp_k, sizeof(h->temp_k)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `p = decryptWithAD(temp_k1, 0, h, c)`
|
|
|
|
* * If the MAC check in this operation fails, then the initiator
|
|
|
|
* does _not_ know our static public key. If so, then the
|
|
|
|
* responder MUST terminate the connection without any further
|
|
|
|
* messages.
|
|
|
|
*/
|
|
|
|
if (!decrypt(&h->temp_k, 0, &h->h, sizeof(h->h),
|
|
|
|
act1.tag, sizeof(act1.tag), NULL, 0))
|
|
|
|
status_failed(WIRE_RESPR_ACT1_BAD_TAG, "re=%s ss=%s tag=%s",
|
|
|
|
type_to_string(trc, struct pubkey, re),
|
|
|
|
tal_hexstr(trc, &h->ss, sizeof(h->ss)),
|
|
|
|
tal_hexstr(trc, act1.tag, sizeof(act1.tag)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || c)`
|
|
|
|
* * Mix the received ciphertext into the handshake digest. This
|
|
|
|
* step serves to ensure the payload wasn't modified by a MiTM.
|
|
|
|
*/
|
|
|
|
sha_mix_in(&h->h, act1.tag, sizeof(act1.tag));
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* `Act Two` is sent from the responder to the initiator. `Act Two` will
|
|
|
|
* _only_ take place if `Act One` was successful. `Act One` was successful if
|
|
|
|
* the responder was able to properly decrypt and check the `MAC` of the tag
|
|
|
|
* sent at the end of `Act One`.
|
|
|
|
*/
|
|
|
|
struct act_two {
|
|
|
|
u8 v;
|
|
|
|
u8 pubkey[PUBKEY_DER_LEN];
|
|
|
|
u8 tag[crypto_aead_chacha20poly1305_ietf_ABYTES];
|
|
|
|
};
|
|
|
|
|
|
|
|
/* BOLT #8: The handshake is _exactly_ `50 bytes:` */
|
|
|
|
#define ACT_TWO_SIZE 50 /* ARM's stupid ABI adds padding. */
|
|
|
|
|
|
|
|
static inline void check_act_two(const struct act_two *act2)
|
|
|
|
{
|
|
|
|
/* BOLT #8:
|
|
|
|
* `1 byte` for the handshake version,
|
|
|
|
* `33 bytes` for the compressed ephemeral public key of the initiator, and
|
|
|
|
* `16 bytes` for the `poly1305` tag.
|
|
|
|
*/
|
|
|
|
BUILD_ASSERT(sizeof(act2->v) == 1);
|
|
|
|
BUILD_ASSERT(sizeof(act2->pubkey) == 33);
|
|
|
|
BUILD_ASSERT(sizeof(act2->tag) == 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void act_two_responder(struct handshake *h, int fd,
|
|
|
|
const struct pubkey *re)
|
|
|
|
{
|
|
|
|
struct act_two act2;
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
status_send(towire_respr_act_two(h));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* **Sender Actions:**
|
|
|
|
*
|
|
|
|
* * `e = generateKey()`
|
|
|
|
*/
|
|
|
|
h->e = generate_key();
|
|
|
|
status_trace("# e.pub=0x%s e.priv=0x%s",
|
|
|
|
type_to_string(trc, struct pubkey, &h->e.pub),
|
|
|
|
tal_hexstr(trc, &h->e.priv, sizeof(h->e.priv)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || e.pub.serializeCompressed())`
|
|
|
|
* * The newly generated ephemeral key is accumulated into our
|
|
|
|
* running handshake digest.
|
|
|
|
*/
|
|
|
|
sha_mix_in_key(&h->h, &h->e.pub);
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ss = ECDH(re, e.priv)`
|
|
|
|
* * where `re` is the ephemeral key of the initiator which was
|
|
|
|
* received during `ActOne`.
|
|
|
|
*/
|
|
|
|
if (!secp256k1_ecdh(secp256k1_ctx, h->ss.s.u.u8, &re->pubkey,
|
|
|
|
h->e.priv.secret))
|
|
|
|
status_failed(WIRE_RESPR_ACT2_BAD_ECDH_FOR_SS, "re=%s e.priv=%s",
|
|
|
|
type_to_string(trc, struct pubkey, re),
|
|
|
|
tal_hexstr(trc, &h->e.priv, sizeof(h->e.priv)));
|
|
|
|
status_trace("# ss=0x%s", tal_hexstr(trc, &h->ss.s, sizeof(h->ss.s)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ck, temp_k2 = HKDF(ck, ss)`
|
|
|
|
* * This phase generates a new temporary encryption key
|
|
|
|
* which is used to generate the authenticating MAC.
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, &h->ss, sizeof(h->ss));
|
|
|
|
status_trace("# ck,temp_k2=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, &h->ck, sizeof(h->ck)),
|
|
|
|
tal_hexstr(trc, &h->temp_k, sizeof(h->temp_k)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `c = encryptWithAD(temp_k2, 0, h, zero)`
|
|
|
|
* * where `zero` is a zero-length plaintext
|
|
|
|
*/
|
|
|
|
encrypt_ad(&h->temp_k, 0, &h->h, sizeof(h->h), NULL, 0,
|
|
|
|
act2.tag, sizeof(act2.tag));
|
|
|
|
status_trace("# c=0x%s", tal_hexstr(trc, act2.tag, sizeof(act2.tag)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || c)`
|
|
|
|
* * Finally, the generated ciphertext is accumulated into the
|
|
|
|
* authenticating handshake digest.
|
|
|
|
*/
|
|
|
|
sha_mix_in(&h->h, act2.tag, sizeof(act2.tag));
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Send `m = 0 || e.pub.serializeCompressed() || c` to the initiator over the network buffer.
|
|
|
|
*/
|
|
|
|
act2.v = 0;
|
|
|
|
len = sizeof(act2.pubkey);
|
|
|
|
secp256k1_ec_pubkey_serialize(secp256k1_ctx, act2.pubkey, &len,
|
|
|
|
&h->e.pub.pubkey,
|
|
|
|
SECP256K1_EC_COMPRESSED);
|
|
|
|
status_trace("output: 0x%s", tal_hexstr(trc, &act2, ACT_TWO_SIZE));
|
|
|
|
if (!write_all(fd, &act2, ACT_TWO_SIZE))
|
|
|
|
status_failed(WIRE_RESPR_ACT2_WRITE_FAILED,
|
|
|
|
"%s", strerror(errno));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void act_two_initiator(struct handshake *h, int fd, struct pubkey *re)
|
|
|
|
{
|
|
|
|
struct act_two act2;
|
|
|
|
|
|
|
|
status_send(towire_initr_act_two(h));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Read _exactly_ `50-bytes` from the network buffer.
|
|
|
|
*
|
|
|
|
* * Parse out the read message (`m`) into `v = m[0]`, `re = m[1:33]`
|
|
|
|
* and `c = m[34:]`
|
|
|
|
* * where `m[0]` is the _first_ byte of `m`, `m[1:33]` are the
|
|
|
|
* next `33` bytes of `m` and `m[34:]` is the last 16 bytes of
|
|
|
|
* `m`
|
|
|
|
*/
|
|
|
|
if (!read_all(fd, &act2, ACT_TWO_SIZE))
|
|
|
|
status_failed(WIRE_INITR_ACT2_READ_FAILED,
|
|
|
|
"%s", strerror(errno));
|
|
|
|
status_trace("input: 0x%s", tal_hexstr(trc, &act2, ACT_TWO_SIZE));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * If `v` is an unrecognized handshake version, then the responder
|
|
|
|
* MUST abort the connection attempt.
|
|
|
|
*/
|
|
|
|
if (act2.v != 0)
|
|
|
|
status_failed(WIRE_INITR_ACT2_BAD_VERSION, "%u", act2.v);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * The raw bytes of the remote party's ephemeral public key
|
|
|
|
* (`re`) are to be deserialized into a point on the curve using
|
|
|
|
* affine coordinates as encoded by the key's serialized
|
|
|
|
* composed format.
|
|
|
|
*/
|
|
|
|
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &re->pubkey,
|
|
|
|
act2.pubkey, sizeof(act2.pubkey)) != 1)
|
|
|
|
status_failed(WIRE_INITR_ACT2_BAD_PUBKEY, "%s",
|
|
|
|
tal_hexstr(trc, &act2.pubkey,
|
|
|
|
sizeof(act2.pubkey)));
|
|
|
|
status_trace("# re=0x%s", type_to_string(trc, struct pubkey, re));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || re.serializeCompressed())`
|
|
|
|
*/
|
|
|
|
sha_mix_in_key(&h->h, re);
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ss = ECDH(re, e.priv)`
|
|
|
|
*/
|
|
|
|
if (!secp256k1_ecdh(secp256k1_ctx, h->ss.s.u.u8, &re->pubkey,
|
|
|
|
h->e.priv.secret))
|
|
|
|
status_failed(WIRE_INITR_ACT2_BAD_ECDH_FOR_SS, "re=%s e.priv=%s",
|
|
|
|
type_to_string(trc, struct pubkey, re),
|
|
|
|
tal_hexstr(trc, &h->e.priv, sizeof(h->e.priv)));
|
|
|
|
status_trace("# ss=0x%s", tal_hexstr(trc, &h->ss, sizeof(h->ss)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ck, temp_k2 = HKDF(ck, ss)`
|
|
|
|
* * This phase generates a new temporary encryption key
|
|
|
|
* which is used to generate the authenticating MAC.
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, &h->ss, sizeof(h->ss));
|
|
|
|
status_trace("# ck,temp_k2=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, &h->ck, sizeof(h->ck)),
|
|
|
|
tal_hexstr(trc, &h->temp_k, sizeof(h->temp_k)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `p = decryptWithAD(temp_k2, 0, h, c)`
|
|
|
|
* * If the MAC check in this operation fails, then the initiator
|
|
|
|
* MUST terminate the connection without any further messages.
|
|
|
|
*/
|
|
|
|
if (!decrypt(&h->temp_k, 0, &h->h, sizeof(h->h),
|
|
|
|
act2.tag, sizeof(act2.tag), NULL, 0))
|
|
|
|
status_failed(WIRE_INITR_ACT2_BAD_TAG, "c=%s",
|
|
|
|
tal_hexstr(trc, act2.tag, sizeof(act2.tag)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || c)`
|
|
|
|
* * Mix the received ciphertext into the handshake digest. This
|
|
|
|
* step serves to ensure the payload wasn't modified by a MiTM.
|
|
|
|
*/
|
|
|
|
sha_mix_in(&h->h, act2.tag, sizeof(act2.tag));
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
}
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* `Act Three` is the final phase in the authenticated key agreement described
|
|
|
|
* in this section. This act is sent from the initiator to the responder as a
|
|
|
|
* final concluding step. `Act Three` is only executed `iff` `Act Two` was
|
|
|
|
* successful. During `Act Three`, the initiator transports its static public
|
|
|
|
* key to the responder encrypted with _strong_ forward secrecy using the
|
|
|
|
* accumulated `HKDF` derived secret key at this point of the handshake.
|
|
|
|
*/
|
|
|
|
struct act_three {
|
|
|
|
u8 v;
|
|
|
|
u8 ciphertext[PUBKEY_DER_LEN + crypto_aead_chacha20poly1305_ietf_ABYTES];
|
|
|
|
u8 tag[crypto_aead_chacha20poly1305_ietf_ABYTES];
|
|
|
|
};
|
|
|
|
|
|
|
|
/* BOLT #8: The handshake is _exactly_ `66 bytes` */
|
|
|
|
#define ACT_THREE_SIZE 66 /* ARM's stupid ABI adds padding. */
|
|
|
|
|
|
|
|
static inline void check_act_three(const struct act_three *act3)
|
|
|
|
{
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* `1 byte` for the handshake version, `33 bytes` for the ephemeral
|
|
|
|
* public key encrypted with the `ChaCha20` stream cipher, `16 bytes`
|
|
|
|
* for the encrypted public key's tag generated via the `AEAD`
|
|
|
|
* construction, and `16 bytes` for a final authenticating tag.
|
|
|
|
*/
|
|
|
|
BUILD_ASSERT(sizeof(act3->v) == 1);
|
|
|
|
BUILD_ASSERT(sizeof(act3->ciphertext) == 33 + 16);
|
|
|
|
BUILD_ASSERT(sizeof(act3->tag) == 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void act_three_initiator(struct handshake *h, int fd,
|
|
|
|
const struct pubkey *re,
|
|
|
|
const struct pubkey *my_id)
|
|
|
|
{
|
|
|
|
struct act_three act3;
|
|
|
|
u8 spub[PUBKEY_DER_LEN];
|
|
|
|
size_t len = sizeof(spub);
|
|
|
|
|
|
|
|
status_send(towire_initr_act_three(h));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * `c = encryptWithAD(temp_k2, 1, h, s.pub.serializeCompressed())`
|
|
|
|
* * where `s` is the static public key of the initiator.
|
|
|
|
*/
|
|
|
|
secp256k1_ec_pubkey_serialize(secp256k1_ctx, spub, &len,
|
|
|
|
&my_id->pubkey,
|
|
|
|
SECP256K1_EC_COMPRESSED);
|
|
|
|
encrypt_ad(&h->temp_k, 1, &h->h, sizeof(h->h), spub, sizeof(spub),
|
|
|
|
act3.ciphertext, sizeof(act3.ciphertext));
|
|
|
|
status_trace("# c=0x%s",
|
|
|
|
tal_hexstr(trc,act3.ciphertext,sizeof(act3.ciphertext)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * `h = SHA-256(h || c)`
|
|
|
|
*/
|
|
|
|
sha_mix_in(&h->h, act3.ciphertext, sizeof(act3.ciphertext));
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ss = ECDH(re, s.priv)`
|
|
|
|
* * where `re` is the ephemeral public key of the responder.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
if (!hsm_do_ecdh(&h->ss.s, re))
|
|
|
|
status_failed(WIRE_INITR_ACT3_BAD_HSM_ECDH,
|
|
|
|
"re=%s",
|
|
|
|
type_to_string(trc, struct pubkey, re));
|
|
|
|
status_trace("# ss=0x%s", tal_hexstr(trc, &h->ss, sizeof(h->ss)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ck, temp_k3 = HKDF(ck, ss)`
|
|
|
|
* * Mix the final intermediate shared secret into the running chaining key.
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, &h->ss, sizeof(h->ss));
|
|
|
|
status_trace("# ck,temp_k3=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, &h->ck, sizeof(h->ck)),
|
|
|
|
tal_hexstr(trc, &h->temp_k, sizeof(h->temp_k)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `t = encryptWithAD(temp_k3, 0, h, zero)`
|
|
|
|
* * where `zero` is a zero-length plaintext
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
encrypt_ad(&h->temp_k, 0, &h->h, sizeof(h->h), NULL, 0,
|
|
|
|
act3.tag, sizeof(act3.tag));
|
|
|
|
status_trace("# t=0x%s",
|
|
|
|
tal_hexstr(trc, act3.tag, sizeof(act3.tag)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Send `m = 0 || c || t` over the network buffer.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
act3.v = 0;
|
|
|
|
|
|
|
|
status_trace("output: 0x%s", tal_hexstr(trc, &act3, ACT_THREE_SIZE));
|
|
|
|
if (!write_all(fd, &act3, ACT_THREE_SIZE))
|
|
|
|
status_failed(WIRE_INITR_ACT3_WRITE_FAILED,
|
|
|
|
"%s", strerror(errno));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void act_three_responder(struct handshake *h, int fd,
|
|
|
|
struct pubkey *their_id)
|
|
|
|
{
|
|
|
|
struct act_three act3;
|
|
|
|
u8 der[PUBKEY_DER_LEN];
|
|
|
|
|
|
|
|
status_send(towire_respr_act_three(h));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* **Receiver Actions:**
|
|
|
|
*
|
|
|
|
* * Read _exactly_ `66-bytes` from the network buffer.
|
|
|
|
*/
|
|
|
|
if (!read_all(fd, &act3, ACT_THREE_SIZE))
|
|
|
|
status_failed(WIRE_RESPR_ACT3_READ_FAILED,
|
|
|
|
"%s", strerror(errno));
|
|
|
|
status_trace("input: 0x%s", tal_hexstr(trc, &act3, ACT_THREE_SIZE));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * Parse out the read message (`m`) into `v = m[0]`, `c = m[1:49]` and `t = m[50:]`
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * If `v` is an unrecognized handshake version, then the responder MUST
|
|
|
|
* abort the connection attempt.
|
|
|
|
*/
|
|
|
|
if (act3.v != 0)
|
|
|
|
status_failed(WIRE_RESPR_ACT3_BAD_VERSION, "%u", act3.v);
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `rs = decryptWithAD(temp_k2, 1, h, c)`
|
|
|
|
* * At this point, the responder has recovered the static public key of the
|
|
|
|
* initiator.
|
|
|
|
*/
|
|
|
|
if (!decrypt(&h->temp_k, 1, &h->h, sizeof(h->h),
|
|
|
|
act3.ciphertext, sizeof(act3.ciphertext),
|
|
|
|
der, sizeof(der)))
|
|
|
|
status_failed(WIRE_RESPR_ACT3_BAD_CIPHERTEXT,
|
|
|
|
"ciphertext=%s",
|
|
|
|
tal_hexstr(trc, act3.ciphertext,
|
|
|
|
sizeof(act3.ciphertext)));
|
|
|
|
status_trace("# rs=0x%s", tal_hexstr(trc, der, sizeof(der)));
|
|
|
|
|
|
|
|
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &their_id->pubkey,
|
|
|
|
der, sizeof(der)) != 1)
|
|
|
|
status_failed(WIRE_RESPR_ACT3_BAD_PUBKEY, "%s",
|
|
|
|
tal_hexstr(trc, &der, sizeof(der)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `h = SHA-256(h || c)`
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
sha_mix_in(&h->h, act3.ciphertext, sizeof(act3.ciphertext));
|
|
|
|
status_trace("# h=0x%s", tal_hexstr(trc, &h->h, sizeof(h->h)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `ss = ECDH(rs, e.priv)`
|
|
|
|
* * where `e` is the responder's original ephemeral key
|
|
|
|
*/
|
|
|
|
if (!secp256k1_ecdh(secp256k1_ctx, h->ss.s.u.u8, &their_id->pubkey,
|
|
|
|
h->e.priv.secret))
|
|
|
|
status_failed(WIRE_RESPR_ACT3_BAD_ECDH_FOR_SS, "rs=%s e.priv=%s",
|
|
|
|
type_to_string(trc, struct pubkey, their_id),
|
|
|
|
tal_hexstr(trc, &h->e.priv, sizeof(h->e.priv)));
|
|
|
|
status_trace("# ss=0x%s", tal_hexstr(trc, &h->ss, sizeof(h->ss)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * `ck, temp_k3 = HKDF(ck, ss)`
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(&h->ck, &h->temp_k, &h->ck, &h->ss, sizeof(h->ss));
|
|
|
|
status_trace("# ck,temp_k3=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, &h->ck, sizeof(h->ck)),
|
|
|
|
tal_hexstr(trc, &h->temp_k, sizeof(h->temp_k)));
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
* * `p = decryptWithAD(temp_k3, 0, h, t)`
|
|
|
|
* * If the MAC check in this operation fails, then the responder MUST
|
|
|
|
* terminate the connection without any further messages.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
if (!decrypt(&h->temp_k, 0, &h->h, sizeof(h->h),
|
|
|
|
act3.tag, sizeof(act3.tag), NULL, 0))
|
|
|
|
status_failed(WIRE_RESPR_ACT3_BAD_TAG, "temp_k3=%s h=%s t=%s",
|
|
|
|
tal_hexstr(trc, &h->temp_k, sizeof(h->temp_k)),
|
|
|
|
tal_hexstr(trc, &h->h, sizeof(h->h)),
|
|
|
|
tal_hexstr(trc, act3.tag, sizeof(act3.tag)));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void initiator(int fd, const struct pubkey *my_id,
|
|
|
|
const struct pubkey *their_id,
|
|
|
|
struct secret *ck, struct secret *sk, struct secret *rk)
|
|
|
|
{
|
|
|
|
const tal_t *tmpctx = tal_tmpctx(NULL);
|
|
|
|
struct handshake *h = new_handshake(tmpctx, their_id);
|
|
|
|
struct pubkey re;
|
|
|
|
|
|
|
|
act_one_initiator(h, fd, their_id);
|
|
|
|
act_two_initiator(h, fd, &re);
|
|
|
|
act_three_initiator(h, fd, &re, my_id);
|
|
|
|
|
|
|
|
/* We need this for re-keying */
|
|
|
|
*ck = h->ck;
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `sk, rk = HKDF(ck, zero)`
|
|
|
|
*
|
|
|
|
* * where `zero` is a zero-length plaintext, `sk` is the key to
|
|
|
|
* be used by the initiator to encrypt messages to the
|
|
|
|
* responder, and `rk` is the key to be used by the initiator
|
|
|
|
* to decrypt messages sent by the responder.
|
|
|
|
*
|
|
|
|
* * This step generates the final encryption keys to be used for
|
|
|
|
* sending and receiving messages for the duration of the
|
|
|
|
* session.
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(sk, rk, ck, NULL, 0);
|
|
|
|
status_trace("output: sk,rk=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, sk, sizeof(*sk)),
|
|
|
|
tal_hexstr(trc, rk, sizeof(*rk)));
|
|
|
|
tal_free(tmpctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void responder(int fd,
|
|
|
|
const struct pubkey *my_id,
|
|
|
|
struct pubkey *their_id,
|
|
|
|
struct secret *ck, struct secret *sk, struct secret *rk)
|
|
|
|
{
|
|
|
|
const tal_t *tmpctx = tal_tmpctx(NULL);
|
|
|
|
struct handshake *h = new_handshake(tmpctx, my_id);
|
|
|
|
struct pubkey re;
|
|
|
|
|
|
|
|
act_one_responder(h, fd, &re);
|
|
|
|
act_two_responder(h, fd, &re);
|
|
|
|
act_three_responder(h, fd, their_id);
|
|
|
|
|
|
|
|
/* We need this for re-keying */
|
|
|
|
*ck = h->ck;
|
|
|
|
|
|
|
|
/* BOLT #8:
|
|
|
|
*
|
|
|
|
* * `rk, sk = HKDF(ck, zero)`
|
|
|
|
* * where `zero` is a zero-length plaintext, `rk` is the key to
|
|
|
|
* be used by the responder to decrypt the messages sent by the
|
|
|
|
* initiator, and `sk` is the key to be used by the responder
|
|
|
|
* to encrypt messages to the initiator,
|
|
|
|
*
|
|
|
|
* * This step generates the final encryption keys to be used for
|
|
|
|
* sending and receiving messages for the duration of the
|
|
|
|
* session.
|
|
|
|
*/
|
|
|
|
hkdf_two_keys(rk, sk, ck, NULL, 0);
|
|
|
|
status_trace("output: rk,sk=0x%s,0x%s",
|
|
|
|
tal_hexstr(trc, rk, sizeof(*rk)),
|
|
|
|
tal_hexstr(trc, sk, sizeof(*sk)));
|
|
|
|
tal_free(tmpctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifndef TESTING
|
|
|
|
/* We expect hsmfd as fd 3, clientfd as 4 */
|
|
|
|
int main(int argc, char *argv[])
|
|
|
|
{
|
|
|
|
u8 *msg;
|
|
|
|
struct pubkey my_id, their_id;
|
|
|
|
int hsmfd = 3, clientfd = 4;
|
|
|
|
struct secret ck, rk, sk;
|
|
|
|
struct crypto_state cs;
|
|
|
|
|
|
|
|
if (argc == 2 && streq(argv[1], "--version")) {
|
|
|
|
printf("%s\n", version());
|
|
|
|
exit(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
subdaemon_debug(argc, argv);
|
|
|
|
secp256k1_ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY
|
|
|
|
| SECP256K1_CONTEXT_SIGN);
|
|
|
|
status_setup(STATUS_FD);
|
|
|
|
|
|
|
|
hsm_setup(hsmfd);
|
|
|
|
|
|
|
|
msg = wire_sync_read(NULL, REQ_FD);
|
|
|
|
if (!msg)
|
|
|
|
status_failed(WIRE_HANDSHAKE_BAD_COMMAND, "%s", strerror(errno));
|
|
|
|
if (clientfd < 0)
|
|
|
|
status_failed(WIRE_HANDSHAKE_BAD_FDPASS, "%s", strerror(errno));
|
|
|
|
|
|
|
|
if (fromwire_handshake_responder_req(msg, NULL, &my_id)) {
|
|
|
|
responder(clientfd, &my_id, &their_id, &ck, &sk, &rk);
|
|
|
|
cs.rn = cs.sn = 0;
|
|
|
|
cs.sk = sk.s;
|
|
|
|
cs.rk = rk.s;
|
|
|
|
cs.r_ck = cs.s_ck = ck.s;
|
|
|
|
wire_sync_write(REQ_FD,
|
|
|
|
towire_handshake_responder_resp(msg,
|
|
|
|
&their_id,
|
|
|
|
&cs));
|
|
|
|
} else if (fromwire_handshake_initiator_req(msg, NULL, &my_id,
|
|
|
|
&their_id)) {
|
|
|
|
initiator(clientfd, &my_id, &their_id, &ck, &sk, &rk);
|
|
|
|
cs.rn = cs.sn = 0;
|
|
|
|
cs.sk = sk.s;
|
|
|
|
cs.rk = rk.s;
|
|
|
|
cs.r_ck = cs.s_ck = ck.s;
|
|
|
|
wire_sync_write(REQ_FD,
|
|
|
|
towire_handshake_initiator_resp(msg, &cs));
|
|
|
|
} else
|
|
|
|
status_failed(WIRE_HANDSHAKE_BAD_COMMAND, "%i", fromwire_peektype(msg));
|
|
|
|
|
|
|
|
/* Hand back the fd. */
|
|
|
|
fdpass_send(REQ_FD, clientfd);
|
|
|
|
|
|
|
|
/* Wait for exit command (avoid status close being read before reqfd) */
|
|
|
|
msg = wire_sync_read(msg, REQ_FD);
|
|
|
|
if (!msg)
|
|
|
|
status_failed(WIRE_HANDSHAKE_BAD_COMMAND, "%s", strerror(errno));
|
|
|
|
if (!fromwire_handshake_exit_req(msg, NULL))
|
|
|
|
status_failed(WIRE_HANDSHAKE_BAD_COMMAND, "Expected exit req not %i",
|
|
|
|
fromwire_peektype(msg));
|
|
|
|
tal_free(msg);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif /* TESTING */
|