From 04b3e8f91d319808861f56b659c74bd1999fa22c Mon Sep 17 00:00:00 2001 From: Rusty Russell Date: Wed, 29 Jun 2016 06:49:20 +0930 Subject: [PATCH] daemon: use siphash for hashes. Remove ccan/hash (aka Jenkins lookup3) altogether. Signed-off-by: Rusty Russell --- Makefile | 6 +- ccan/ccan/hash/LICENSE | 1 - ccan/ccan/hash/_info | 32 - ccan/ccan/hash/hash.c | 926 -------------------------- ccan/ccan/hash/hash.h | 313 --------- ccan/ccan/hash/test/api-hash_stable.c | 300 --------- ccan/ccan/hash/test/run.c | 149 ----- daemon/pseudorand.c | 28 +- daemon/pseudorand.h | 6 + daemon/watch.c | 11 +- 10 files changed, 38 insertions(+), 1734 deletions(-) delete mode 120000 ccan/ccan/hash/LICENSE delete mode 100644 ccan/ccan/hash/_info delete mode 100644 ccan/ccan/hash/hash.c delete mode 100644 ccan/ccan/hash/hash.h delete mode 100644 ccan/ccan/hash/test/api-hash_stable.c delete mode 100644 ccan/ccan/hash/test/run.c diff --git a/Makefile b/Makefile index 493a4ff66..747eb871d 100644 --- a/Makefile +++ b/Makefile @@ -58,8 +58,8 @@ CCAN_OBJS := \ ccan-crypto-sha256.o \ ccan-crypto-shachain.o \ ccan-asort.o \ + ccan-crypto-siphash24.o \ ccan-err.o \ - ccan-hash.o \ ccan-htable.o \ ccan-ilog.o \ ccan-io-io.o \ @@ -99,9 +99,9 @@ CCAN_HEADERS := \ $(CCANDIR)/ccan/crypto/ripemd160/ripemd160.h \ $(CCANDIR)/ccan/crypto/sha256/sha256.h \ $(CCANDIR)/ccan/crypto/shachain/shachain.h \ + $(CCANDIR)/ccan/crypto/siphash24/siphash24.h \ $(CCANDIR)/ccan/endian/endian.h \ $(CCANDIR)/ccan/err/err.h \ - $(CCANDIR)/ccan/hash/hash.h \ $(CCANDIR)/ccan/htable/htable.h \ $(CCANDIR)/ccan/htable/htable_type.h \ $(CCANDIR)/ccan/ilog/ilog.h \ @@ -389,7 +389,7 @@ ccan-cdump.o: $(CCANDIR)/ccan/cdump/cdump.c $(CC) $(CFLAGS) -c -o $@ $< ccan-strmap.o: $(CCANDIR)/ccan/strmap/strmap.c $(CC) $(CFLAGS) -c -o $@ $< -ccan-hash.o: $(CCANDIR)/ccan/hash/hash.c +ccan-crypto-siphash24.o: $(CCANDIR)/ccan/crypto/siphash24/siphash24.c $(CC) $(CFLAGS) -c -o $@ $< ccan-htable.o: $(CCANDIR)/ccan/htable/htable.c $(CC) $(CFLAGS) -c -o $@ $< diff --git a/ccan/ccan/hash/LICENSE b/ccan/ccan/hash/LICENSE deleted file mode 120000 index b7951dabd..000000000 --- a/ccan/ccan/hash/LICENSE +++ /dev/null @@ -1 +0,0 @@ -../../licenses/CC0 \ No newline at end of file diff --git a/ccan/ccan/hash/_info b/ccan/ccan/hash/_info deleted file mode 100644 index bbb3685b5..000000000 --- a/ccan/ccan/hash/_info +++ /dev/null @@ -1,32 +0,0 @@ -#include "config.h" -#include -#include - -/** - * hash - routines for hashing bytes - * - * When creating a hash table it's important to have a hash function - * which mixes well and is fast. This package supplies such functions. - * - * The hash functions come in two flavors: the normal ones and the - * stable ones. The normal ones can vary from machine-to-machine and - * may change if we find better or faster hash algorithms in future. - * The stable ones will always give the same results on any computer, - * and on any version of this package. - * - * License: CC0 (Public domain) - * Maintainer: Rusty Russell - * Author: Bob Jenkins - */ -int main(int argc, char *argv[]) -{ - if (argc != 2) - return 1; - - if (strcmp(argv[1], "depends") == 0) { - printf("ccan/build_assert\n"); - return 0; - } - - return 1; -} diff --git a/ccan/ccan/hash/hash.c b/ccan/ccan/hash/hash.c deleted file mode 100644 index 5ccc69550..000000000 --- a/ccan/ccan/hash/hash.c +++ /dev/null @@ -1,926 +0,0 @@ -/* CC0 (Public domain) - see LICENSE file for details */ -/* -------------------------------------------------------------------------------- -lookup3.c, by Bob Jenkins, May 2006, Public Domain. - -These are functions for producing 32-bit hashes for hash table lookup. -hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() -are externally useful functions. Routines to test the hash are included -if SELF_TEST is defined. You can use this free for any purpose. It's in -the public domain. It has no warranty. - -You probably want to use hashlittle(). hashlittle() and hashbig() -hash byte arrays. hashlittle() is is faster than hashbig() on -little-endian machines. Intel and AMD are little-endian machines. -On second thought, you probably want hashlittle2(), which is identical to -hashlittle() except it returns two 32-bit hashes for the price of one. -You could implement hashbig2() if you wanted but I haven't bothered here. - -If you want to find a hash of, say, exactly 7 integers, do - a = i1; b = i2; c = i3; - mix(a,b,c); - a += i4; b += i5; c += i6; - mix(a,b,c); - a += i7; - final(a,b,c); -then use c as the hash value. If you have a variable length array of -4-byte integers to hash, use hash_word(). If you have a byte array (like -a character string), use hashlittle(). If you have several byte arrays, or -a mix of things, see the comments above hashlittle(). - -Why is this so big? I read 12 bytes at a time into 3 4-byte integers, -then mix those integers. This is fast (you can do a lot more thorough -mixing with 12*3 instructions on 3 integers than you can with 3 instructions -on 1 byte), but shoehorning those bytes into integers efficiently is messy. -------------------------------------------------------------------------------- -*/ -//#define SELF_TEST 1 - -#if 0 -#include /* defines printf for tests */ -#include /* defines time_t for timings in the test */ -#include /* defines uint32_t etc */ -#include /* attempt to define endianness */ - -#ifdef linux -# include /* attempt to define endianness */ -#endif - -/* - * My best guess at if you are big-endian or little-endian. This may - * need adjustment. - */ -#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && \ - __BYTE_ORDER == __LITTLE_ENDIAN) || \ - (defined(i386) || defined(__i386__) || defined(__i486__) || \ - defined(__i586__) || defined(__i686__) || defined(__x86_64) || \ - defined(vax) || defined(MIPSEL)) -# define HASH_LITTLE_ENDIAN 1 -# define HASH_BIG_ENDIAN 0 -#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && \ - __BYTE_ORDER == __BIG_ENDIAN) || \ - (defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) -# define HASH_LITTLE_ENDIAN 0 -# define HASH_BIG_ENDIAN 1 -#else -# error Unknown endian -#endif -#endif /* old hash.c headers. */ - -#include "hash.h" - -#if HAVE_LITTLE_ENDIAN -#define HASH_LITTLE_ENDIAN 1 -#define HASH_BIG_ENDIAN 0 -#elif HAVE_BIG_ENDIAN -#define HASH_LITTLE_ENDIAN 0 -#define HASH_BIG_ENDIAN 1 -#else -#error Unknown endian -#endif - -#define hashsize(n) ((uint32_t)1<<(n)) -#define hashmask(n) (hashsize(n)-1) -#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k)))) - -/* -------------------------------------------------------------------------------- -mix -- mix 3 32-bit values reversibly. - -This is reversible, so any information in (a,b,c) before mix() is -still in (a,b,c) after mix(). - -If four pairs of (a,b,c) inputs are run through mix(), or through -mix() in reverse, there are at least 32 bits of the output that -are sometimes the same for one pair and different for another pair. -This was tested for: -* pairs that differed by one bit, by two bits, in any combination - of top bits of (a,b,c), or in any combination of bottom bits of - (a,b,c). -* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed - the output delta to a Gray code (a^(a>>1)) so a string of 1's (as - is commonly produced by subtraction) look like a single 1-bit - difference. -* the base values were pseudorandom, all zero but one bit set, or - all zero plus a counter that starts at zero. - -Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that -satisfy this are - 4 6 8 16 19 4 - 9 15 3 18 27 15 - 14 9 3 7 17 3 -Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing -for "differ" defined as + with a one-bit base and a two-bit delta. I -used http://burtleburtle.net/bob/hash/avalanche.html to choose -the operations, constants, and arrangements of the variables. - -This does not achieve avalanche. There are input bits of (a,b,c) -that fail to affect some output bits of (a,b,c), especially of a. The -most thoroughly mixed value is c, but it doesn't really even achieve -avalanche in c. - -This allows some parallelism. Read-after-writes are good at doubling -the number of bits affected, so the goal of mixing pulls in the opposite -direction as the goal of parallelism. I did what I could. Rotates -seem to cost as much as shifts on every machine I could lay my hands -on, and rotates are much kinder to the top and bottom bits, so I used -rotates. -------------------------------------------------------------------------------- -*/ -#define mix(a,b,c) \ -{ \ - a -= c; a ^= rot(c, 4); c += b; \ - b -= a; b ^= rot(a, 6); a += c; \ - c -= b; c ^= rot(b, 8); b += a; \ - a -= c; a ^= rot(c,16); c += b; \ - b -= a; b ^= rot(a,19); a += c; \ - c -= b; c ^= rot(b, 4); b += a; \ -} - -/* -------------------------------------------------------------------------------- -final -- final mixing of 3 32-bit values (a,b,c) into c - -Pairs of (a,b,c) values differing in only a few bits will usually -produce values of c that look totally different. This was tested for -* pairs that differed by one bit, by two bits, in any combination - of top bits of (a,b,c), or in any combination of bottom bits of - (a,b,c). -* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed - the output delta to a Gray code (a^(a>>1)) so a string of 1's (as - is commonly produced by subtraction) look like a single 1-bit - difference. -* the base values were pseudorandom, all zero but one bit set, or - all zero plus a counter that starts at zero. - -These constants passed: - 14 11 25 16 4 14 24 - 12 14 25 16 4 14 24 -and these came close: - 4 8 15 26 3 22 24 - 10 8 15 26 3 22 24 - 11 8 15 26 3 22 24 -------------------------------------------------------------------------------- -*/ -#define final(a,b,c) \ -{ \ - c ^= b; c -= rot(b,14); \ - a ^= c; a -= rot(c,11); \ - b ^= a; b -= rot(a,25); \ - c ^= b; c -= rot(b,16); \ - a ^= c; a -= rot(c,4); \ - b ^= a; b -= rot(a,14); \ - c ^= b; c -= rot(b,24); \ -} - -/* --------------------------------------------------------------------- - This works on all machines. To be useful, it requires - -- that the key be an array of uint32_t's, and - -- that the length be the number of uint32_t's in the key - - The function hash_word() is identical to hashlittle() on little-endian - machines, and identical to hashbig() on big-endian machines, - except that the length has to be measured in uint32_ts rather than in - bytes. hashlittle() is more complicated than hash_word() only because - hashlittle() has to dance around fitting the key bytes into registers. --------------------------------------------------------------------- -*/ -uint32_t hash_u32( -const uint32_t *k, /* the key, an array of uint32_t values */ -size_t length, /* the length of the key, in uint32_ts */ -uint32_t initval) /* the previous hash, or an arbitrary value */ -{ - uint32_t a,b,c; - - /* Set up the internal state */ - a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval; - - /*------------------------------------------------- handle most of the key */ - while (length > 3) - { - a += k[0]; - b += k[1]; - c += k[2]; - mix(a,b,c); - length -= 3; - k += 3; - } - - /*------------------------------------------- handle the last 3 uint32_t's */ - switch(length) /* all the case statements fall through */ - { - case 3 : c+=k[2]; - case 2 : b+=k[1]; - case 1 : a+=k[0]; - final(a,b,c); - case 0: /* case 0: nothing left to add */ - break; - } - /*------------------------------------------------------ report the result */ - return c; -} - -/* -------------------------------------------------------------------------------- -hashlittle() -- hash a variable-length key into a 32-bit value - k : the key (the unaligned variable-length array of bytes) - length : the length of the key, counting by bytes - val2 : IN: can be any 4-byte value OUT: second 32 bit hash. -Returns a 32-bit value. Every bit of the key affects every bit of -the return value. Two keys differing by one or two bits will have -totally different hash values. Note that the return value is better -mixed than val2, so use that first. - -The best hash table sizes are powers of 2. There is no need to do -mod a prime (mod is sooo slow!). If you need less than 32 bits, -use a bitmask. For example, if you need only 10 bits, do - h = (h & hashmask(10)); -In which case, the hash table should have hashsize(10) elements. - -If you are hashing n strings (uint8_t **)k, do it like this: - for (i=0, h=0; i 12) - { - a += k[0]; - b += k[1]; - c += k[2]; - mix(a,b,c); - length -= 12; - k += 3; - } - - /*----------------------------- handle the last (probably partial) block */ - /* - * "k[2]&0xffffff" actually reads beyond the end of the string, but - * then masks off the part it's not allowed to read. Because the - * string is aligned, the masked-off tail is in the same word as the - * rest of the string. Every machine with memory protection I've seen - * does it on word boundaries, so is OK with this. But VALGRIND will - * still catch it and complain. The masking trick does make the hash - * noticably faster for short strings (like English words). - * - * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR. - */ -#if 0 - switch(length) - { - case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; - case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; - case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; - case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; - case 8 : b+=k[1]; a+=k[0]; break; - case 7 : b+=k[1]&0xffffff; a+=k[0]; break; - case 6 : b+=k[1]&0xffff; a+=k[0]; break; - case 5 : b+=k[1]&0xff; a+=k[0]; break; - case 4 : a+=k[0]; break; - case 3 : a+=k[0]&0xffffff; break; - case 2 : a+=k[0]&0xffff; break; - case 1 : a+=k[0]&0xff; break; - case 0 : return c; /* zero length strings require no mixing */ - } - -#else /* make valgrind happy */ - - k8 = (const uint8_t *)k; - switch(length) - { - case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; - case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ - case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ - case 9 : c+=k8[8]; /* fall through */ - case 8 : b+=k[1]; a+=k[0]; break; - case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ - case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ - case 5 : b+=k8[4]; /* fall through */ - case 4 : a+=k[0]; break; - case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ - case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ - case 1 : a+=k8[0]; break; - case 0 : return c; - } - -#endif /* !valgrind */ - - } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { - const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ - const uint8_t *k8; - - /*--------------- all but last block: aligned reads and different mixing */ - while (length > 12) - { - a += k[0] + (((uint32_t)k[1])<<16); - b += k[2] + (((uint32_t)k[3])<<16); - c += k[4] + (((uint32_t)k[5])<<16); - mix(a,b,c); - length -= 12; - k += 6; - } - - /*----------------------------- handle the last (probably partial) block */ - k8 = (const uint8_t *)k; - switch(length) - { - case 12: c+=k[4]+(((uint32_t)k[5])<<16); - b+=k[2]+(((uint32_t)k[3])<<16); - a+=k[0]+(((uint32_t)k[1])<<16); - break; - case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ - case 10: c+=k[4]; - b+=k[2]+(((uint32_t)k[3])<<16); - a+=k[0]+(((uint32_t)k[1])<<16); - break; - case 9 : c+=k8[8]; /* fall through */ - case 8 : b+=k[2]+(((uint32_t)k[3])<<16); - a+=k[0]+(((uint32_t)k[1])<<16); - break; - case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ - case 6 : b+=k[2]; - a+=k[0]+(((uint32_t)k[1])<<16); - break; - case 5 : b+=k8[4]; /* fall through */ - case 4 : a+=k[0]+(((uint32_t)k[1])<<16); - break; - case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ - case 2 : a+=k[0]; - break; - case 1 : a+=k8[0]; - break; - case 0 : return c; /* zero length requires no mixing */ - } - - } else { /* need to read the key one byte at a time */ - const uint8_t *k = (const uint8_t *)key; - - /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ - while (length > 12) - { - a += k[0]; - a += ((uint32_t)k[1])<<8; - a += ((uint32_t)k[2])<<16; - a += ((uint32_t)k[3])<<24; - b += k[4]; - b += ((uint32_t)k[5])<<8; - b += ((uint32_t)k[6])<<16; - b += ((uint32_t)k[7])<<24; - c += k[8]; - c += ((uint32_t)k[9])<<8; - c += ((uint32_t)k[10])<<16; - c += ((uint32_t)k[11])<<24; - mix(a,b,c); - length -= 12; - k += 12; - } - - /*-------------------------------- last block: affect all 32 bits of (c) */ - switch(length) /* all the case statements fall through */ - { - case 12: c+=((uint32_t)k[11])<<24; - case 11: c+=((uint32_t)k[10])<<16; - case 10: c+=((uint32_t)k[9])<<8; - case 9 : c+=k[8]; - case 8 : b+=((uint32_t)k[7])<<24; - case 7 : b+=((uint32_t)k[6])<<16; - case 6 : b+=((uint32_t)k[5])<<8; - case 5 : b+=k[4]; - case 4 : a+=((uint32_t)k[3])<<24; - case 3 : a+=((uint32_t)k[2])<<16; - case 2 : a+=((uint32_t)k[1])<<8; - case 1 : a+=k[0]; - break; - case 0 : return c; - } - } - - final(a,b,c); - *val2 = b; - return c; -} - -/* - * hashbig(): - * This is the same as hash_word() on big-endian machines. It is different - * from hashlittle() on all machines. hashbig() takes advantage of - * big-endian byte ordering. - */ -static uint32_t hashbig( const void *key, size_t length, uint32_t *val2) -{ - uint32_t a,b,c; - union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */ - - /* Set up the internal state */ - a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2; - - u.ptr = key; - if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) { - const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ - const uint8_t *k8; - - /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ - while (length > 12) - { - a += k[0]; - b += k[1]; - c += k[2]; - mix(a,b,c); - length -= 12; - k += 3; - } - - /*----------------------------- handle the last (probably partial) block */ - /* - * "k[2]<<8" actually reads beyond the end of the string, but - * then shifts out the part it's not allowed to read. Because the - * string is aligned, the illegal read is in the same word as the - * rest of the string. Every machine with memory protection I've seen - * does it on word boundaries, so is OK with this. But VALGRIND will - * still catch it and complain. The masking trick does make the hash - * noticably faster for short strings (like English words). - * - * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR. - */ -#if 0 - switch(length) - { - case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; - case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break; - case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break; - case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break; - case 8 : b+=k[1]; a+=k[0]; break; - case 7 : b+=k[1]&0xffffff00; a+=k[0]; break; - case 6 : b+=k[1]&0xffff0000; a+=k[0]; break; - case 5 : b+=k[1]&0xff000000; a+=k[0]; break; - case 4 : a+=k[0]; break; - case 3 : a+=k[0]&0xffffff00; break; - case 2 : a+=k[0]&0xffff0000; break; - case 1 : a+=k[0]&0xff000000; break; - case 0 : return c; /* zero length strings require no mixing */ - } - -#else /* make valgrind happy */ - - k8 = (const uint8_t *)k; - switch(length) /* all the case statements fall through */ - { - case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; - case 11: c+=((uint32_t)k8[10])<<8; /* fall through */ - case 10: c+=((uint32_t)k8[9])<<16; /* fall through */ - case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */ - case 8 : b+=k[1]; a+=k[0]; break; - case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */ - case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */ - case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */ - case 4 : a+=k[0]; break; - case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */ - case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */ - case 1 : a+=((uint32_t)k8[0])<<24; break; - case 0 : return c; - } - -#endif /* !VALGRIND */ - - } else { /* need to read the key one byte at a time */ - const uint8_t *k = (const uint8_t *)key; - - /*--------------- all but the last block: affect some 32 bits of (a,b,c) */ - while (length > 12) - { - a += ((uint32_t)k[0])<<24; - a += ((uint32_t)k[1])<<16; - a += ((uint32_t)k[2])<<8; - a += ((uint32_t)k[3]); - b += ((uint32_t)k[4])<<24; - b += ((uint32_t)k[5])<<16; - b += ((uint32_t)k[6])<<8; - b += ((uint32_t)k[7]); - c += ((uint32_t)k[8])<<24; - c += ((uint32_t)k[9])<<16; - c += ((uint32_t)k[10])<<8; - c += ((uint32_t)k[11]); - mix(a,b,c); - length -= 12; - k += 12; - } - - /*-------------------------------- last block: affect all 32 bits of (c) */ - switch(length) /* all the case statements fall through */ - { - case 12: c+=k[11]; - case 11: c+=((uint32_t)k[10])<<8; - case 10: c+=((uint32_t)k[9])<<16; - case 9 : c+=((uint32_t)k[8])<<24; - case 8 : b+=k[7]; - case 7 : b+=((uint32_t)k[6])<<8; - case 6 : b+=((uint32_t)k[5])<<16; - case 5 : b+=((uint32_t)k[4])<<24; - case 4 : a+=k[3]; - case 3 : a+=((uint32_t)k[2])<<8; - case 2 : a+=((uint32_t)k[1])<<16; - case 1 : a+=((uint32_t)k[0])<<24; - break; - case 0 : return c; - } - } - - final(a,b,c); - *val2 = b; - return c; -} - -/* I basically use hashlittle here, but use native endian within each - * element. This delivers least-surprise: hash such as "int arr[] = { - * 1, 2 }; hash_stable(arr, 2, 0);" will be the same on big and little - * endian machines, even though a bytewise hash wouldn't be. */ -uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base) -{ - const uint64_t *k = key; - uint32_t a,b,c; - - /* Set up the internal state */ - a = b = c = 0xdeadbeef + ((uint32_t)n*8) + (base >> 32) + base; - - while (n > 3) { - a += (uint32_t)k[0]; - b += (uint32_t)(k[0] >> 32); - c += (uint32_t)k[1]; - mix(a,b,c); - a += (uint32_t)(k[1] >> 32); - b += (uint32_t)k[2]; - c += (uint32_t)(k[2] >> 32); - mix(a,b,c); - n -= 3; - k += 3; - } - switch (n) { - case 2: - a += (uint32_t)k[0]; - b += (uint32_t)(k[0] >> 32); - c += (uint32_t)k[1]; - mix(a,b,c); - a += (uint32_t)(k[1] >> 32); - break; - case 1: - a += (uint32_t)k[0]; - b += (uint32_t)(k[0] >> 32); - break; - case 0: - return c; - } - final(a,b,c); - return ((uint64_t)b << 32) | c; -} - -uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base) -{ - const uint32_t *k = key; - uint32_t a,b,c; - - /* Set up the internal state */ - a = b = c = 0xdeadbeef + ((uint32_t)n*4) + (base >> 32) + base; - - while (n > 3) { - a += k[0]; - b += k[1]; - c += k[2]; - mix(a,b,c); - - n -= 3; - k += 3; - } - switch (n) { - case 2: - b += (uint32_t)k[1]; - case 1: - a += (uint32_t)k[0]; - break; - case 0: - return c; - } - final(a,b,c); - return ((uint64_t)b << 32) | c; -} - -uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base) -{ - const uint16_t *k = key; - uint32_t a,b,c; - - /* Set up the internal state */ - a = b = c = 0xdeadbeef + ((uint32_t)n*2) + (base >> 32) + base; - - while (n > 6) { - a += (uint32_t)k[0] + ((uint32_t)k[1] << 16); - b += (uint32_t)k[2] + ((uint32_t)k[3] << 16); - c += (uint32_t)k[4] + ((uint32_t)k[5] << 16); - mix(a,b,c); - - n -= 6; - k += 6; - } - - switch (n) { - case 5: - c += (uint32_t)k[4]; - case 4: - b += ((uint32_t)k[3] << 16); - case 3: - b += (uint32_t)k[2]; - case 2: - a += ((uint32_t)k[1] << 16); - case 1: - a += (uint32_t)k[0]; - break; - case 0: - return c; - } - final(a,b,c); - return ((uint64_t)b << 32) | c; -} - -uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base) -{ - uint32_t b32 = base + (base >> 32); - uint32_t lower = hashlittle(key, n, &b32); - - return ((uint64_t)b32 << 32) | lower; -} - -uint32_t hash_any(const void *key, size_t length, uint32_t base) -{ - if (HASH_BIG_ENDIAN) - return hashbig(key, length, &base); - else - return hashlittle(key, length, &base); -} - -uint32_t hash_stable_64(const void *key, size_t n, uint32_t base) -{ - return hash64_stable_64(key, n, base); -} - -uint32_t hash_stable_32(const void *key, size_t n, uint32_t base) -{ - return hash64_stable_32(key, n, base); -} - -uint32_t hash_stable_16(const void *key, size_t n, uint32_t base) -{ - return hash64_stable_16(key, n, base); -} - -uint32_t hash_stable_8(const void *key, size_t n, uint32_t base) -{ - return hashlittle(key, n, &base); -} - -/* Jenkins' lookup8 is a 64 bit hash, but he says it's obsolete. Use - * the plain one and recombine into 64 bits. */ -uint64_t hash64_any(const void *key, size_t length, uint64_t base) -{ - uint32_t b32 = base + (base >> 32); - uint32_t lower; - - if (HASH_BIG_ENDIAN) - lower = hashbig(key, length, &b32); - else - lower = hashlittle(key, length, &b32); - - return ((uint64_t)b32 << 32) | lower; -} - -#ifdef SELF_TEST - -/* used for timings */ -void driver1() -{ - uint8_t buf[256]; - uint32_t i; - uint32_t h=0; - time_t a,z; - - time(&a); - for (i=0; i<256; ++i) buf[i] = 'x'; - for (i=0; i<1; ++i) - { - h = hashlittle(&buf[0],1,h); - } - time(&z); - if (z-a > 0) printf("time %d %.8x\n", z-a, h); -} - -/* check that every input bit changes every output bit half the time */ -#define HASHSTATE 1 -#define HASHLEN 1 -#define MAXPAIR 60 -#define MAXLEN 70 -void driver2() -{ - uint8_t qa[MAXLEN+1], qb[MAXLEN+2], *a = &qa[0], *b = &qb[1]; - uint32_t c[HASHSTATE], d[HASHSTATE], i=0, j=0, k, l, m=0, z; - uint32_t e[HASHSTATE],f[HASHSTATE],g[HASHSTATE],h[HASHSTATE]; - uint32_t x[HASHSTATE],y[HASHSTATE]; - uint32_t hlen; - - printf("No more than %d trials should ever be needed \n",MAXPAIR/2); - for (hlen=0; hlen < MAXLEN; ++hlen) - { - z=0; - for (i=0; i>(8-j)); - c[0] = hashlittle(a, hlen, m); - b[i] ^= ((k+1)<>(8-j)); - d[0] = hashlittle(b, hlen, m); - /* check every bit is 1, 0, set, and not set at least once */ - for (l=0; lz) z=k; - if (k==MAXPAIR) - { - printf("Some bit didn't change: "); - printf("%.8x %.8x %.8x %.8x %.8x %.8x ", - e[0],f[0],g[0],h[0],x[0],y[0]); - printf("i %d j %d m %d len %d\n", i, j, m, hlen); - } - if (z==MAXPAIR) goto done; - } - } - } - done: - if (z < MAXPAIR) - { - printf("Mix success %2d bytes %2d initvals ",i,m); - printf("required %d trials\n", z/2); - } - } - printf("\n"); -} - -/* Check for reading beyond the end of the buffer and alignment problems */ -void driver3() -{ - uint8_t buf[MAXLEN+20], *b; - uint32_t len; - uint8_t q[] = "This is the time for all good men to come to the aid of their country..."; - uint32_t h; - uint8_t qq[] = "xThis is the time for all good men to come to the aid of their country..."; - uint32_t i; - uint8_t qqq[] = "xxThis is the time for all good men to come to the aid of their country..."; - uint32_t j; - uint8_t qqqq[] = "xxxThis is the time for all good men to come to the aid of their country..."; - uint32_t ref,x,y; - uint8_t *p; - - printf("Endianness. These lines should all be the same (for values filled in):\n"); - printf("%.8x %.8x %.8x\n", - hash_word((const uint32_t *)q, (sizeof(q)-1)/4, 13), - hash_word((const uint32_t *)q, (sizeof(q)-5)/4, 13), - hash_word((const uint32_t *)q, (sizeof(q)-9)/4, 13)); - p = q; - printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", - hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), - hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), - hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), - hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), - hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), - hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); - p = &qq[1]; - printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", - hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), - hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), - hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), - hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), - hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), - hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); - p = &qqq[2]; - printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", - hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), - hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), - hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), - hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), - hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), - hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); - p = &qqqq[3]; - printf("%.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x %.8x\n", - hashlittle(p, sizeof(q)-1, 13), hashlittle(p, sizeof(q)-2, 13), - hashlittle(p, sizeof(q)-3, 13), hashlittle(p, sizeof(q)-4, 13), - hashlittle(p, sizeof(q)-5, 13), hashlittle(p, sizeof(q)-6, 13), - hashlittle(p, sizeof(q)-7, 13), hashlittle(p, sizeof(q)-8, 13), - hashlittle(p, sizeof(q)-9, 13), hashlittle(p, sizeof(q)-10, 13), - hashlittle(p, sizeof(q)-11, 13), hashlittle(p, sizeof(q)-12, 13)); - printf("\n"); - - /* check that hashlittle2 and hashlittle produce the same results */ - i=47; j=0; - hashlittle2(q, sizeof(q), &i, &j); - if (hashlittle(q, sizeof(q), 47) != i) - printf("hashlittle2 and hashlittle mismatch\n"); - - /* check that hash_word2 and hash_word produce the same results */ - len = 0xdeadbeef; - i=47, j=0; - hash_word2(&len, 1, &i, &j); - if (hash_word(&len, 1, 47) != i) - printf("hash_word2 and hash_word mismatch %x %x\n", - i, hash_word(&len, 1, 47)); - - /* check hashlittle doesn't read before or after the ends of the string */ - for (h=0, b=buf+1; h<8; ++h, ++b) - { - for (i=0; i -#include -#include - -/* Stolen mostly from: lookup3.c, by Bob Jenkins, May 2006, Public Domain. - * - * http://burtleburtle.net/bob/c/lookup3.c - */ - -/** - * hash - fast hash of an array for internal use - * @p: the array or pointer to first element - * @num: the number of elements to hash - * @base: the base number to roll into the hash (usually 0) - * - * The memory region pointed to by p is combined with the base to form - * a 32-bit hash. - * - * This hash will have different results on different machines, so is - * only useful for internal hashes (ie. not hashes sent across the - * network or saved to disk). - * - * It may also change with future versions: it could even detect at runtime - * what the fastest hash to use is. - * - * See also: hash64, hash_stable. - * - * Example: - * #include - * #include - * #include - * #include - * - * // Simple demonstration: idential strings will have the same hash, but - * // two different strings will probably not. - * int main(int argc, char *argv[]) - * { - * uint32_t hash1, hash2; - * - * if (argc != 3) - * err(1, "Usage: %s ", argv[0]); - * - * hash1 = hash(argv[1], strlen(argv[1]), 0); - * hash2 = hash(argv[2], strlen(argv[2]), 0); - * printf("Hash is %s\n", hash1 == hash2 ? "same" : "different"); - * return 0; - * } - */ -#define hash(p, num, base) hash_any((p), (num)*sizeof(*(p)), (base)) - -/** - * hash_stable - hash of an array for external use - * @p: the array or pointer to first element - * @num: the number of elements to hash - * @base: the base number to roll into the hash (usually 0) - * - * The array of simple integer types pointed to by p is combined with - * the base to form a 32-bit hash. - * - * This hash will have the same results on different machines, so can - * be used for external hashes (ie. hashes sent across the network or - * saved to disk). The results will not change in future versions of - * this module. - * - * Note that it is only legal to hand an array of simple integer types - * to this hash (ie. char, uint16_t, int64_t, etc). In these cases, - * the same values will have the same hash result, even though the - * memory representations of integers depend on the machine - * endianness. - * - * See also: - * hash64_stable - * - * Example: - * #include - * #include - * #include - * #include - * - * int main(int argc, char *argv[]) - * { - * if (argc != 2) - * err(1, "Usage: %s ", argv[0]); - * - * printf("Hash stable result is %u\n", - * hash_stable(argv[1], strlen(argv[1]), 0)); - * return 0; - * } - */ -#define hash_stable(p, num, base) \ - (BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \ - || sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \ - sizeof(*(p)) == 8 ? hash_stable_64((p), (num), (base)) \ - : sizeof(*(p)) == 4 ? hash_stable_32((p), (num), (base)) \ - : sizeof(*(p)) == 2 ? hash_stable_16((p), (num), (base)) \ - : hash_stable_8((p), (num), (base))) - -/** - * hash_u32 - fast hash an array of 32-bit values for internal use - * @key: the array of uint32_t - * @num: the number of elements to hash - * @base: the base number to roll into the hash (usually 0) - * - * The array of uint32_t pointed to by @key is combined with the base - * to form a 32-bit hash. This is 2-3 times faster than hash() on small - * arrays, but the advantage vanishes over large hashes. - * - * This hash will have different results on different machines, so is - * only useful for internal hashes (ie. not hashes sent across the - * network or saved to disk). - */ -uint32_t hash_u32(const uint32_t *key, size_t num, uint32_t base); - -/** - * hash_string - very fast hash of an ascii string - * @str: the nul-terminated string - * - * The string is hashed, using a hash function optimized for ASCII and - * similar strings. It's weaker than the other hash functions. - * - * This hash may have different results on different machines, so is - * only useful for internal hashes (ie. not hashes sent across the - * network or saved to disk). The results will be different from the - * other hash functions in this module, too. - */ -static inline uint32_t hash_string(const char *string) -{ - /* This is Karl Nelson 's X31 hash. - * It's a little faster than the (much better) lookup3 hash(): 56ns vs - * 84ns on my 2GHz Intel Core Duo 2 laptop for a 10 char string. */ - uint32_t ret; - - for (ret = 0; *string; string++) - ret = (ret << 5) - ret + *string; - - return ret; -} - -/** - * hash64 - fast 64-bit hash of an array for internal use - * @p: the array or pointer to first element - * @num: the number of elements to hash - * @base: the 64-bit base number to roll into the hash (usually 0) - * - * The memory region pointed to by p is combined with the base to form - * a 64-bit hash. - * - * This hash will have different results on different machines, so is - * only useful for internal hashes (ie. not hashes sent across the - * network or saved to disk). - * - * It may also change with future versions: it could even detect at runtime - * what the fastest hash to use is. - * - * See also: hash. - * - * Example: - * #include - * #include - * #include - * #include - * - * // Simple demonstration: idential strings will have the same hash, but - * // two different strings will probably not. - * int main(int argc, char *argv[]) - * { - * uint64_t hash1, hash2; - * - * if (argc != 3) - * err(1, "Usage: %s ", argv[0]); - * - * hash1 = hash64(argv[1], strlen(argv[1]), 0); - * hash2 = hash64(argv[2], strlen(argv[2]), 0); - * printf("Hash is %s\n", hash1 == hash2 ? "same" : "different"); - * return 0; - * } - */ -#define hash64(p, num, base) hash64_any((p), (num)*sizeof(*(p)), (base)) - -/** - * hash64_stable - 64 bit hash of an array for external use - * @p: the array or pointer to first element - * @num: the number of elements to hash - * @base: the base number to roll into the hash (usually 0) - * - * The array of simple integer types pointed to by p is combined with - * the base to form a 64-bit hash. - * - * This hash will have the same results on different machines, so can - * be used for external hashes (ie. hashes sent across the network or - * saved to disk). The results will not change in future versions of - * this module. - * - * Note that it is only legal to hand an array of simple integer types - * to this hash (ie. char, uint16_t, int64_t, etc). In these cases, - * the same values will have the same hash result, even though the - * memory representations of integers depend on the machine - * endianness. - * - * See also: - * hash_stable - * - * Example: - * #include - * #include - * #include - * #include - * - * int main(int argc, char *argv[]) - * { - * if (argc != 2) - * err(1, "Usage: %s ", argv[0]); - * - * printf("Hash stable result is %llu\n", - * (long long)hash64_stable(argv[1], strlen(argv[1]), 0)); - * return 0; - * } - */ -#define hash64_stable(p, num, base) \ - (BUILD_ASSERT_OR_ZERO(sizeof(*(p)) == 8 || sizeof(*(p)) == 4 \ - || sizeof(*(p)) == 2 || sizeof(*(p)) == 1) + \ - sizeof(*(p)) == 8 ? hash64_stable_64((p), (num), (base)) \ - : sizeof(*(p)) == 4 ? hash64_stable_32((p), (num), (base)) \ - : sizeof(*(p)) == 2 ? hash64_stable_16((p), (num), (base)) \ - : hash64_stable_8((p), (num), (base))) - - -/** - * hashl - fast 32/64-bit hash of an array for internal use - * @p: the array or pointer to first element - * @num: the number of elements to hash - * @base: the base number to roll into the hash (usually 0) - * - * This is either hash() or hash64(), on 32/64 bit long machines. - */ -#define hashl(p, num, base) \ - (BUILD_ASSERT_OR_ZERO(sizeof(long) == sizeof(uint32_t) \ - || sizeof(long) == sizeof(uint64_t)) + \ - (sizeof(long) == sizeof(uint64_t) \ - ? hash64((p), (num), (base)) : hash((p), (num), (base)))) - -/* Our underlying operations. */ -uint32_t hash_any(const void *key, size_t length, uint32_t base); -uint32_t hash_stable_64(const void *key, size_t n, uint32_t base); -uint32_t hash_stable_32(const void *key, size_t n, uint32_t base); -uint32_t hash_stable_16(const void *key, size_t n, uint32_t base); -uint32_t hash_stable_8(const void *key, size_t n, uint32_t base); -uint64_t hash64_any(const void *key, size_t length, uint64_t base); -uint64_t hash64_stable_64(const void *key, size_t n, uint64_t base); -uint64_t hash64_stable_32(const void *key, size_t n, uint64_t base); -uint64_t hash64_stable_16(const void *key, size_t n, uint64_t base); -uint64_t hash64_stable_8(const void *key, size_t n, uint64_t base); - -/** - * hash_pointer - hash a pointer for internal use - * @p: the pointer value to hash - * @base: the base number to roll into the hash (usually 0) - * - * The pointer p (not what p points to!) is combined with the base to form - * a 32-bit hash. - * - * This hash will have different results on different machines, so is - * only useful for internal hashes (ie. not hashes sent across the - * network or saved to disk). - * - * Example: - * #include - * - * // Code to keep track of memory regions. - * struct region { - * struct region *chain; - * void *start; - * unsigned int size; - * }; - * // We keep a simple hash table. - * static struct region *region_hash[128]; - * - * static void add_region(struct region *r) - * { - * unsigned int h = hash_pointer(r->start, 0); - * - * r->chain = region_hash[h]; - * region_hash[h] = r->chain; - * } - * - * static struct region *find_region(const void *start) - * { - * struct region *r; - * - * for (r = region_hash[hash_pointer(start, 0)]; r; r = r->chain) - * if (r->start == start) - * return r; - * return NULL; - * } - */ -static inline uint32_t hash_pointer(const void *p, uint32_t base) -{ - if (sizeof(p) % sizeof(uint32_t) == 0) { - /* This convoluted union is the right way of aliasing. */ - union { - uint32_t a[sizeof(p) / sizeof(uint32_t)]; - const void *p; - } u; - u.p = p; - return hash_u32(u.a, sizeof(p) / sizeof(uint32_t), base); - } else - return hash(&p, 1, base); -} -#endif /* HASH_H */ diff --git a/ccan/ccan/hash/test/api-hash_stable.c b/ccan/ccan/hash/test/api-hash_stable.c deleted file mode 100644 index bb58d16b1..000000000 --- a/ccan/ccan/hash/test/api-hash_stable.c +++ /dev/null @@ -1,300 +0,0 @@ -#include -#include -#include -#include - -#define ARRAY_WORDS 5 - -int main(int argc, char *argv[]) -{ - unsigned int i; - uint8_t u8array[ARRAY_WORDS]; - uint16_t u16array[ARRAY_WORDS]; - uint32_t u32array[ARRAY_WORDS]; - uint64_t u64array[ARRAY_WORDS]; - - /* Initialize arrays. */ - for (i = 0; i < ARRAY_WORDS; i++) { - u8array[i] = i; - u16array[i] = i; - u32array[i] = i; - u64array[i] = i; - } - - plan_tests(264); - - /* hash_stable is API-guaranteed. */ - ok1(hash_stable(u8array, ARRAY_WORDS, 0) == 0x1d4833cc); - ok1(hash_stable(u8array, ARRAY_WORDS, 1) == 0x37125e2 ); - ok1(hash_stable(u8array, ARRAY_WORDS, 2) == 0x330a007a); - ok1(hash_stable(u8array, ARRAY_WORDS, 4) == 0x7b0df29b); - ok1(hash_stable(u8array, ARRAY_WORDS, 8) == 0xe7e5d741); - ok1(hash_stable(u8array, ARRAY_WORDS, 16) == 0xaae57471); - ok1(hash_stable(u8array, ARRAY_WORDS, 32) == 0xc55399e5); - ok1(hash_stable(u8array, ARRAY_WORDS, 64) == 0x67f21f7 ); - ok1(hash_stable(u8array, ARRAY_WORDS, 128) == 0x1d795b71); - ok1(hash_stable(u8array, ARRAY_WORDS, 256) == 0xeb961671); - ok1(hash_stable(u8array, ARRAY_WORDS, 512) == 0xc2597247); - ok1(hash_stable(u8array, ARRAY_WORDS, 1024) == 0x3f5c4d75); - ok1(hash_stable(u8array, ARRAY_WORDS, 2048) == 0xe65cf4f9); - ok1(hash_stable(u8array, ARRAY_WORDS, 4096) == 0xf2cd06cb); - ok1(hash_stable(u8array, ARRAY_WORDS, 8192) == 0x443041e1); - ok1(hash_stable(u8array, ARRAY_WORDS, 16384) == 0xdfc618f5); - ok1(hash_stable(u8array, ARRAY_WORDS, 32768) == 0x5e3d5b97); - ok1(hash_stable(u8array, ARRAY_WORDS, 65536) == 0xd5f64730); - ok1(hash_stable(u8array, ARRAY_WORDS, 131072) == 0x372bbecc); - ok1(hash_stable(u8array, ARRAY_WORDS, 262144) == 0x7c194c8d); - ok1(hash_stable(u8array, ARRAY_WORDS, 524288) == 0x16cbb416); - ok1(hash_stable(u8array, ARRAY_WORDS, 1048576) == 0x53e99222); - ok1(hash_stable(u8array, ARRAY_WORDS, 2097152) == 0x6394554a); - ok1(hash_stable(u8array, ARRAY_WORDS, 4194304) == 0xd83a506d); - ok1(hash_stable(u8array, ARRAY_WORDS, 8388608) == 0x7619d9a4); - ok1(hash_stable(u8array, ARRAY_WORDS, 16777216) == 0xfe98e5f6); - ok1(hash_stable(u8array, ARRAY_WORDS, 33554432) == 0x6c262927); - ok1(hash_stable(u8array, ARRAY_WORDS, 67108864) == 0x3f0106fd); - ok1(hash_stable(u8array, ARRAY_WORDS, 134217728) == 0xc91e3a28); - ok1(hash_stable(u8array, ARRAY_WORDS, 268435456) == 0x14229579); - ok1(hash_stable(u8array, ARRAY_WORDS, 536870912) == 0x9dbefa76); - ok1(hash_stable(u8array, ARRAY_WORDS, 1073741824) == 0xb05c0c78); - ok1(hash_stable(u8array, ARRAY_WORDS, 2147483648U) == 0x88f24d81); - - ok1(hash_stable(u16array, ARRAY_WORDS, 0) == 0xecb5f507); - ok1(hash_stable(u16array, ARRAY_WORDS, 1) == 0xadd666e6); - ok1(hash_stable(u16array, ARRAY_WORDS, 2) == 0xea0f214c); - ok1(hash_stable(u16array, ARRAY_WORDS, 4) == 0xae4051ba); - ok1(hash_stable(u16array, ARRAY_WORDS, 8) == 0x6ed28026); - ok1(hash_stable(u16array, ARRAY_WORDS, 16) == 0xa3917a19); - ok1(hash_stable(u16array, ARRAY_WORDS, 32) == 0xf370f32b); - ok1(hash_stable(u16array, ARRAY_WORDS, 64) == 0x807af460); - ok1(hash_stable(u16array, ARRAY_WORDS, 128) == 0xb4c8cd83); - ok1(hash_stable(u16array, ARRAY_WORDS, 256) == 0xa10cb5b0); - ok1(hash_stable(u16array, ARRAY_WORDS, 512) == 0x8b7d7387); - ok1(hash_stable(u16array, ARRAY_WORDS, 1024) == 0x9e49d1c ); - ok1(hash_stable(u16array, ARRAY_WORDS, 2048) == 0x288830d1); - ok1(hash_stable(u16array, ARRAY_WORDS, 4096) == 0xbe078a43); - ok1(hash_stable(u16array, ARRAY_WORDS, 8192) == 0xa16d5d88); - ok1(hash_stable(u16array, ARRAY_WORDS, 16384) == 0x46839fcd); - ok1(hash_stable(u16array, ARRAY_WORDS, 32768) == 0x9db9bd4f); - ok1(hash_stable(u16array, ARRAY_WORDS, 65536) == 0xedff58f8); - ok1(hash_stable(u16array, ARRAY_WORDS, 131072) == 0x95ecef18); - ok1(hash_stable(u16array, ARRAY_WORDS, 262144) == 0x23c31b7d); - ok1(hash_stable(u16array, ARRAY_WORDS, 524288) == 0x1d85c7d0); - ok1(hash_stable(u16array, ARRAY_WORDS, 1048576) == 0x25218842); - ok1(hash_stable(u16array, ARRAY_WORDS, 2097152) == 0x711d985c); - ok1(hash_stable(u16array, ARRAY_WORDS, 4194304) == 0x85470eca); - ok1(hash_stable(u16array, ARRAY_WORDS, 8388608) == 0x99ed4ceb); - ok1(hash_stable(u16array, ARRAY_WORDS, 16777216) == 0x67b3710c); - ok1(hash_stable(u16array, ARRAY_WORDS, 33554432) == 0x77f1ab35); - ok1(hash_stable(u16array, ARRAY_WORDS, 67108864) == 0x81f688aa); - ok1(hash_stable(u16array, ARRAY_WORDS, 134217728) == 0x27b56ca5); - ok1(hash_stable(u16array, ARRAY_WORDS, 268435456) == 0xf21ba203); - ok1(hash_stable(u16array, ARRAY_WORDS, 536870912) == 0xd48d1d1 ); - ok1(hash_stable(u16array, ARRAY_WORDS, 1073741824) == 0xa542b62d); - ok1(hash_stable(u16array, ARRAY_WORDS, 2147483648U) == 0xa04c7058); - - ok1(hash_stable(u32array, ARRAY_WORDS, 0) == 0x13305f8c); - ok1(hash_stable(u32array, ARRAY_WORDS, 1) == 0x171abf74); - ok1(hash_stable(u32array, ARRAY_WORDS, 2) == 0x7646fcc7); - ok1(hash_stable(u32array, ARRAY_WORDS, 4) == 0xa758ed5); - ok1(hash_stable(u32array, ARRAY_WORDS, 8) == 0x2dedc2e4); - ok1(hash_stable(u32array, ARRAY_WORDS, 16) == 0x28e2076b); - ok1(hash_stable(u32array, ARRAY_WORDS, 32) == 0xb73091c5); - ok1(hash_stable(u32array, ARRAY_WORDS, 64) == 0x87daf5db); - ok1(hash_stable(u32array, ARRAY_WORDS, 128) == 0xa16dfe20); - ok1(hash_stable(u32array, ARRAY_WORDS, 256) == 0x300c63c3); - ok1(hash_stable(u32array, ARRAY_WORDS, 512) == 0x255c91fc); - ok1(hash_stable(u32array, ARRAY_WORDS, 1024) == 0x6357b26); - ok1(hash_stable(u32array, ARRAY_WORDS, 2048) == 0x4bc5f339); - ok1(hash_stable(u32array, ARRAY_WORDS, 4096) == 0x1301617c); - ok1(hash_stable(u32array, ARRAY_WORDS, 8192) == 0x506792c9); - ok1(hash_stable(u32array, ARRAY_WORDS, 16384) == 0xcd596705); - ok1(hash_stable(u32array, ARRAY_WORDS, 32768) == 0xa8713cac); - ok1(hash_stable(u32array, ARRAY_WORDS, 65536) == 0x94d9794); - ok1(hash_stable(u32array, ARRAY_WORDS, 131072) == 0xac753e8); - ok1(hash_stable(u32array, ARRAY_WORDS, 262144) == 0xcd8bdd20); - ok1(hash_stable(u32array, ARRAY_WORDS, 524288) == 0xd44faf80); - ok1(hash_stable(u32array, ARRAY_WORDS, 1048576) == 0x2547ccbe); - ok1(hash_stable(u32array, ARRAY_WORDS, 2097152) == 0xbab06dbc); - ok1(hash_stable(u32array, ARRAY_WORDS, 4194304) == 0xaac0e882); - ok1(hash_stable(u32array, ARRAY_WORDS, 8388608) == 0x443f48d0); - ok1(hash_stable(u32array, ARRAY_WORDS, 16777216) == 0xdff49fcc); - ok1(hash_stable(u32array, ARRAY_WORDS, 33554432) == 0x9ce0fd65); - ok1(hash_stable(u32array, ARRAY_WORDS, 67108864) == 0x9ddb1def); - ok1(hash_stable(u32array, ARRAY_WORDS, 134217728) == 0x86096f25); - ok1(hash_stable(u32array, ARRAY_WORDS, 268435456) == 0xe713b7b5); - ok1(hash_stable(u32array, ARRAY_WORDS, 536870912) == 0x5baeffc5); - ok1(hash_stable(u32array, ARRAY_WORDS, 1073741824) == 0xde874f52); - ok1(hash_stable(u32array, ARRAY_WORDS, 2147483648U) == 0xeca13b4e); - - ok1(hash_stable(u64array, ARRAY_WORDS, 0) == 0x12ef6302); - ok1(hash_stable(u64array, ARRAY_WORDS, 1) == 0xe9aeb406); - ok1(hash_stable(u64array, ARRAY_WORDS, 2) == 0xc4218ceb); - ok1(hash_stable(u64array, ARRAY_WORDS, 4) == 0xb3d11412); - ok1(hash_stable(u64array, ARRAY_WORDS, 8) == 0xdafbd654); - ok1(hash_stable(u64array, ARRAY_WORDS, 16) == 0x9c336cba); - ok1(hash_stable(u64array, ARRAY_WORDS, 32) == 0x65059721); - ok1(hash_stable(u64array, ARRAY_WORDS, 64) == 0x95b5bbe6); - ok1(hash_stable(u64array, ARRAY_WORDS, 128) == 0xe7596b84); - ok1(hash_stable(u64array, ARRAY_WORDS, 256) == 0x503622a2); - ok1(hash_stable(u64array, ARRAY_WORDS, 512) == 0xecdcc5ca); - ok1(hash_stable(u64array, ARRAY_WORDS, 1024) == 0xc40d0513); - ok1(hash_stable(u64array, ARRAY_WORDS, 2048) == 0xaab25e4d); - ok1(hash_stable(u64array, ARRAY_WORDS, 4096) == 0xcc353fb9); - ok1(hash_stable(u64array, ARRAY_WORDS, 8192) == 0x18e2319f); - ok1(hash_stable(u64array, ARRAY_WORDS, 16384) == 0xfddaae8d); - ok1(hash_stable(u64array, ARRAY_WORDS, 32768) == 0xef7976f2); - ok1(hash_stable(u64array, ARRAY_WORDS, 65536) == 0x86359fc9); - ok1(hash_stable(u64array, ARRAY_WORDS, 131072) == 0x8b5af385); - ok1(hash_stable(u64array, ARRAY_WORDS, 262144) == 0x80d4ee31); - ok1(hash_stable(u64array, ARRAY_WORDS, 524288) == 0x42f5f85b); - ok1(hash_stable(u64array, ARRAY_WORDS, 1048576) == 0x9a6920e1); - ok1(hash_stable(u64array, ARRAY_WORDS, 2097152) == 0x7b7c9850); - ok1(hash_stable(u64array, ARRAY_WORDS, 4194304) == 0x69573e09); - ok1(hash_stable(u64array, ARRAY_WORDS, 8388608) == 0xc942bc0e); - ok1(hash_stable(u64array, ARRAY_WORDS, 16777216) == 0x7a89f0f1); - ok1(hash_stable(u64array, ARRAY_WORDS, 33554432) == 0x2dd641ca); - ok1(hash_stable(u64array, ARRAY_WORDS, 67108864) == 0x89bbd391); - ok1(hash_stable(u64array, ARRAY_WORDS, 134217728) == 0xbcf88e31); - ok1(hash_stable(u64array, ARRAY_WORDS, 268435456) == 0xfa7a3460); - ok1(hash_stable(u64array, ARRAY_WORDS, 536870912) == 0x49a37be0); - ok1(hash_stable(u64array, ARRAY_WORDS, 1073741824) == 0x1b346394); - ok1(hash_stable(u64array, ARRAY_WORDS, 2147483648U) == 0x6c3a1592); - - ok1(hash64_stable(u8array, ARRAY_WORDS, 0) == 16887282882572727244ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 1) == 12032777473133454818ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 2) == 18183407363221487738ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 4) == 17860764172704150171ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 8) == 18076051600675559233ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 16) == 9909361918431556721ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 32) == 12937969888744675813ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 64) == 5245669057381736951ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 128) == 4376874646406519665ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 256) == 14219974419871569521ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 512) == 2263415354134458951ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 1024) == 4953859694526221685ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 2048) == 3432228642067641593ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 4096) == 1219647244417697483ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 8192) == 7629939424585859553ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 16384) == 10041660531376789749ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 32768) == 13859885793922603927ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 65536) == 15069060338344675120ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 131072) == 818163430835601100ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 262144) == 14914314323019517069ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 524288) == 17518437749769352214ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 1048576) == 14920048004901212706ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 2097152) == 8758567366332536138ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 4194304) == 6226655736088907885ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 8388608) == 13716650013685832100ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 16777216) == 305325651636315638ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 33554432) == 16784147606583781671ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 67108864) == 16509467555140798205ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 134217728) == 8717281234694060584ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 268435456) == 8098476701725660537ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 536870912) == 16345871539461094006ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 1073741824) == 3755557000429964408ULL); - ok1(hash64_stable(u8array, ARRAY_WORDS, 2147483648U) == 15017348801959710081ULL); - - ok1(hash64_stable(u16array, ARRAY_WORDS, 0) == 1038028831307724039ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 1) == 10155473272642627302ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 2) == 5714751190106841420ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 4) == 3923885607767527866ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 8) == 3931017318293995558ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 16) == 1469696588339313177ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 32) == 11522218526952715051ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 64) == 6953517591561958496ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 128) == 7406689491740052867ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 256) == 10101844489704093104ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 512) == 12511348870707245959ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 1024) == 1614019938016861468ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 2048) == 5294796182374592721ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 4096) == 16089570706643716675ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 8192) == 1689302638424579464ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 16384) == 1446340172370386893ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 32768) == 16535503506744393039ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 65536) == 3496794142527150328ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 131072) == 6568245367474548504ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 262144) == 9487676460765485949ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 524288) == 4519762130966530000ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 1048576) == 15623412069215340610ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 2097152) == 544013388676438108ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 4194304) == 5594904760290840266ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 8388608) == 18098755780041592043ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 16777216) == 6389168672387330316ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 33554432) == 896986127732419381ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 67108864) == 13232626471143901354ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 134217728) == 53378562890493093ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 268435456) == 10072361400297824771ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 536870912) == 14511948118285144529ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 1073741824) == 6981033484844447277ULL); - ok1(hash64_stable(u16array, ARRAY_WORDS, 2147483648U) == 5619339091684126808ULL); - - ok1(hash64_stable(u32array, ARRAY_WORDS, 0) == 3037571077312110476ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 1) == 14732398743825071988ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 2) == 14949132158206672071ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 4) == 1291370080511561429ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 8) == 10792665964172133092ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 16) == 14250138032054339435ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 32) == 17136741522078732741ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 64) == 3260193403318236635ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 128) == 10526616652205653536ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 256) == 9019690373358576579ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 512) == 6997491436599677436ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 1024) == 18302783371416533798ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 2048) == 10149320644446516025ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 4096) == 7073759949410623868ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 8192) == 17442399482223760073ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 16384) == 2983906194216281861ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 32768) == 4975845419129060524ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 65536) == 594019910205413268ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 131072) == 11903010186073691112ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 262144) == 7339636527154847008ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 524288) == 15243305400579108736ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 1048576) == 16737926245392043198ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 2097152) == 15725083267699862972ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 4194304) == 12527834265678833794ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 8388608) == 13908436455987824848ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 16777216) == 9672773345173872588ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 33554432) == 2305314279896710501ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 67108864) == 1866733780381408751ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 134217728) == 11906263969465724709ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 268435456) == 5501594918093830069ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 536870912) == 15823785789276225477ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 1073741824) == 17353000723889475410ULL); - ok1(hash64_stable(u32array, ARRAY_WORDS, 2147483648U) == 7494736910655503182ULL); - - ok1(hash64_stable(u64array, ARRAY_WORDS, 0) == 9765419389786481410ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 1) == 11182806172127114246ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 2) == 2559155171395472619ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 4) == 3311692033324815378ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 8) == 1297175419505333844ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 16) == 617896928653569210ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 32) == 1517398559958603553ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 64) == 4504821917445110758ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 128) == 1971743331114904452ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 256) == 6177667912354374306ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 512) == 15570521289777792458ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 1024) == 9204559632415917331ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 2048) == 9008982669760028237ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 4096) == 14803537660281700281ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 8192) == 2873966517448487327ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 16384) == 5859277625928363661ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 32768) == 15520461285618185970ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 65536) == 16746489793331175369ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 131072) == 514952025484227461ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 262144) == 10867212269810675249ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 524288) == 9822204377278314587ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 1048576) == 3295088921987850465ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 2097152) == 7559197431498053712ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 4194304) == 1667267269116771849ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 8388608) == 2916804068951374862ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 16777216) == 14422558383125688561ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 33554432) == 10083112683694342602ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 67108864) == 7222777647078298513ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 134217728) == 18424513674048212529ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 268435456) == 14913668581101810784ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 536870912) == 14377721174297902048ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 1073741824) == 6031715005667500948ULL); - ok1(hash64_stable(u64array, ARRAY_WORDS, 2147483648U) == 4827100319722378642ULL); - - return exit_status(); -} diff --git a/ccan/ccan/hash/test/run.c b/ccan/ccan/hash/test/run.c deleted file mode 100644 index dad8e86b9..000000000 --- a/ccan/ccan/hash/test/run.c +++ /dev/null @@ -1,149 +0,0 @@ -#include -#include -#include -#include -#include - -#define ARRAY_WORDS 5 - -int main(int argc, char *argv[]) -{ - unsigned int i, j, k; - uint32_t array[ARRAY_WORDS], val; - char array2[sizeof(array) + sizeof(uint32_t)]; - uint32_t results[256]; - - /* Initialize array. */ - for (i = 0; i < ARRAY_WORDS; i++) - array[i] = i; - - plan_tests(39); - /* Hash should be the same, indep of memory alignment. */ - val = hash(array, ARRAY_WORDS, 0); - for (i = 0; i < sizeof(uint32_t); i++) { - memcpy(array2 + i, array, sizeof(array)); - ok(hash(array2 + i, ARRAY_WORDS, 0) != val, - "hash matched at offset %i", i); - } - - /* Hash of random values should have random distribution: - * check one byte at a time. */ - for (i = 0; i < sizeof(uint32_t); i++) { - unsigned int lowest = -1U, highest = 0; - - memset(results, 0, sizeof(results)); - - for (j = 0; j < 256000; j++) { - for (k = 0; k < ARRAY_WORDS; k++) - array[k] = random(); - results[(hash(array, ARRAY_WORDS, 0) >> i*8)&0xFF]++; - } - - for (j = 0; j < 256; j++) { - if (results[j] < lowest) - lowest = results[j]; - if (results[j] > highest) - highest = results[j]; - } - /* Expect within 20% */ - ok(lowest > 800, "Byte %i lowest %i", i, lowest); - ok(highest < 1200, "Byte %i highest %i", i, highest); - diag("Byte %i, range %u-%u", i, lowest, highest); - } - - /* Hash of random values should have random distribution: - * check one byte at a time. */ - for (i = 0; i < sizeof(uint64_t); i++) { - unsigned int lowest = -1U, highest = 0; - - memset(results, 0, sizeof(results)); - - for (j = 0; j < 256000; j++) { - for (k = 0; k < ARRAY_WORDS; k++) - array[k] = random(); - results[(hash64(array, sizeof(array)/sizeof(uint64_t), - 0) >> i*8)&0xFF]++; - } - - for (j = 0; j < 256; j++) { - if (results[j] < lowest) - lowest = results[j]; - if (results[j] > highest) - highest = results[j]; - } - /* Expect within 20% */ - ok(lowest > 800, "Byte %i lowest %i", i, lowest); - ok(highest < 1200, "Byte %i highest %i", i, highest); - diag("Byte %i, range %u-%u", i, lowest, highest); - } - - /* Hash of pointer values should also have random distribution. */ - for (i = 0; i < sizeof(uint32_t); i++) { - unsigned int lowest = -1U, highest = 0; - char *p = malloc(256000); - - memset(results, 0, sizeof(results)); - - for (j = 0; j < 256000; j++) - results[(hash_pointer(p + j, 0) >> i*8)&0xFF]++; - free(p); - - for (j = 0; j < 256; j++) { - if (results[j] < lowest) - lowest = results[j]; - if (results[j] > highest) - highest = results[j]; - } - /* Expect within 20% */ - ok(lowest > 800, "hash_pointer byte %i lowest %i", i, lowest); - ok(highest < 1200, "hash_pointer byte %i highest %i", - i, highest); - diag("hash_pointer byte %i, range %u-%u", i, lowest, highest); - } - - if (sizeof(long) == sizeof(uint32_t)) - ok1(hashl(array, ARRAY_WORDS, 0) - == hash(array, ARRAY_WORDS, 0)); - else - ok1(hashl(array, ARRAY_WORDS, 0) - == hash64(array, ARRAY_WORDS, 0)); - - /* String hash: weak, so only test bottom byte */ - for (i = 0; i < 1; i++) { - unsigned int num = 0, cursor, lowest = -1U, highest = 0; - char p[5]; - - memset(results, 0, sizeof(results)); - - memset(p, 'A', sizeof(p)); - p[sizeof(p)-1] = '\0'; - - for (;;) { - for (cursor = 0; cursor < sizeof(p)-1; cursor++) { - p[cursor]++; - if (p[cursor] <= 'z') - break; - p[cursor] = 'A'; - } - if (cursor == sizeof(p)-1) - break; - - results[(hash_string(p) >> i*8)&0xFF]++; - num++; - } - - for (j = 0; j < 256; j++) { - if (results[j] < lowest) - lowest = results[j]; - if (results[j] > highest) - highest = results[j]; - } - /* Expect within 20% */ - ok(lowest > 35000, "hash_pointer byte %i lowest %i", i, lowest); - ok(highest < 53000, "hash_pointer byte %i highest %i", - i, highest); - diag("hash_pointer byte %i, range %u-%u", i, lowest, highest); - } - - return exit_status(); -} diff --git a/daemon/pseudorand.c b/daemon/pseudorand.c index 27394eca3..e0a090994 100644 --- a/daemon/pseudorand.c +++ b/daemon/pseudorand.c @@ -1,28 +1,42 @@ #include "pseudorand.h" #include +#include #include #include #include -#include -#include +#include #include +#include static struct isaac64_ctx isaac64; +static struct siphash_seed siphashseed; static bool pseudorand_initted = false; -uint64_t pseudorand(uint64_t max) +static void init_if_needed(void) { if (unlikely(!pseudorand_initted)) { unsigned char seedbuf[16]; - /* PRNG */ - if (RAND_bytes(seedbuf, sizeof(seedbuf)) != 1) - errx(1, "Could not seed PRNG: %s", - ERR_error_string(ERR_get_error(), NULL)); + randombytes_buf(seedbuf, sizeof(seedbuf)); isaac64_init(&isaac64, seedbuf, sizeof(seedbuf)); + memcpy(&siphashseed, seedbuf, sizeof(siphashseed)); pseudorand_initted = true; } +} + +uint64_t pseudorand(uint64_t max) +{ + init_if_needed(); + assert(max); return isaac64_next_uint(&isaac64, max); } + +const struct siphash_seed *siphash_seed(void) +{ + init_if_needed(); + + return &siphashseed; +} + diff --git a/daemon/pseudorand.h b/daemon/pseudorand.h index 50c233ff0..e91226c9e 100644 --- a/daemon/pseudorand.h +++ b/daemon/pseudorand.h @@ -7,4 +7,10 @@ * pseudorand - pseudo (guessable!) random number between 0 and max-1. */ uint64_t pseudorand(uint64_t max); + +/** + * Get the siphash seed for hash tables. + */ +const struct siphash_seed *siphash_seed(void); + #endif /* LIGHTNING_DAEMON_PSEUDORAND_H */ diff --git a/daemon/watch.c b/daemon/watch.c index 9abff89a9..0f8c48e80 100644 --- a/daemon/watch.c +++ b/daemon/watch.c @@ -33,9 +33,10 @@ #include "lightningd.h" #include "log.h" #include "peer.h" +#include "pseudorand.h" #include "timeout.h" #include "watch.h" -#include +#include #include #include @@ -46,7 +47,11 @@ const struct txwatch_output *txowatch_keyof(const struct txowatch *w) size_t txo_hash(const struct txwatch_output *out) { - return hash(&out->txid, 1, out->index); + /* This hash-in-one-go trick only works if they're consecutive. */ + BUILD_ASSERT(offsetof(struct txwatch_output, index) + == sizeof(((struct txwatch_output *)NULL)->txid)); + return siphash24(siphash_seed(), &out->txid, + sizeof(out->txid) + sizeof(out->index)); } bool txowatch_eq(const struct txowatch *w, const struct txwatch_output *out) @@ -67,7 +72,7 @@ const struct sha256_double *txwatch_keyof(const struct txwatch *w) size_t txid_hash(const struct sha256_double *txid) { - return hash(txid->sha.u.u8, sizeof(txid->sha.u.u8), 0); + return siphash24(siphash_seed(), txid->sha.u.u8, sizeof(txid->sha.u.u8)); } bool txwatch_eq(const struct txwatch *w, const struct sha256_double *txid)