Browse Source
We can make this more efficient, but this works for now. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>ppa-0.6.1
Rusty Russell
9 years ago
2 changed files with 557 additions and 3 deletions
@ -0,0 +1,550 @@ |
|||
#define _GNU_SOURCE 1 |
|||
#include "secp256k1.h" |
|||
#include "secp256k1_ecdh.h" |
|||
#include <openssl/hmac.h> |
|||
#include <openssl/evp.h> |
|||
#include <openssl/aes.h> |
|||
#include <string.h> |
|||
#include <unistd.h> |
|||
#include <stdlib.h> |
|||
#include <err.h> |
|||
#include <stdbool.h> |
|||
#include <assert.h> |
|||
#include <ccan/tal/tal.h> |
|||
#include <ccan/mem/mem.h> |
|||
#include <ccan/crypto/sha256/sha256.h> |
|||
|
|||
/*
|
|||
* The client knows the server's public key S (which has corresponding |
|||
private key s) in advance. |
|||
* The client generates an ephemeral private key r, and its corresponding |
|||
public key R. |
|||
* The client computes K = ECDH(r, S), and sends R to the server at |
|||
connection establishing time. |
|||
* The server receives R, and computes K = ECHD(R, s). |
|||
* Both client and server compute Kenc = SHA256(K || 0) and Kmac = SHA256(K |
|||
|| 1), and now send HMAC-SHA256(key=Kmac, msg=AES(key=Kenc, msg=m)) instead |
|||
of m, for each message. |
|||
*/ |
|||
|
|||
//#define EXPORT_FRIENDLY 1 /* No crypto! */
|
|||
//#define NO_HMAC 1 /* No real hmac */
|
|||
|
|||
struct seckey { |
|||
struct sha256 k; |
|||
}; |
|||
|
|||
struct enckey { |
|||
struct sha256 k; |
|||
}; |
|||
|
|||
struct hmackey { |
|||
struct sha256 k; |
|||
}; |
|||
|
|||
struct iv { |
|||
unsigned char iv[AES_BLOCK_SIZE]; |
|||
}; |
|||
|
|||
static void sha_with_seed(const unsigned char secret[32], |
|||
unsigned char seed, |
|||
struct sha256 *res) |
|||
{ |
|||
struct sha256_ctx ctx; |
|||
|
|||
sha256_init(&ctx); |
|||
sha256_update(&ctx, memcheck(secret, 32), 32); |
|||
sha256_u8(&ctx, seed); |
|||
sha256_done(&ctx, res); |
|||
} |
|||
|
|||
static struct enckey enckey_from_secret(const unsigned char secret[32]) |
|||
{ |
|||
struct enckey enckey; |
|||
sha_with_seed(secret, 0, &enckey.k); |
|||
return enckey; |
|||
} |
|||
|
|||
static struct hmackey hmackey_from_secret(const unsigned char secret[32]) |
|||
{ |
|||
struct hmackey hmackey; |
|||
sha_with_seed(secret, 1, &hmackey.k); |
|||
memcheck(&hmackey, 1); |
|||
return hmackey; |
|||
} |
|||
|
|||
|
|||
static struct iv iv_from_secret(const unsigned char secret[32], size_t i) |
|||
{ |
|||
struct iv iv; |
|||
struct sha256 sha; |
|||
sha_with_seed(secret, 2, &sha); |
|||
memcpy(iv.iv, sha.u.u8, sizeof(iv.iv)); |
|||
#ifdef EXPORT_FRIENDLY |
|||
iv.iv[0] = i*2; |
|||
#endif |
|||
return iv; |
|||
} |
|||
|
|||
static struct iv pad_iv_from_secret(const unsigned char secret[32], size_t i) |
|||
{ |
|||
struct iv iv; |
|||
struct sha256 sha; |
|||
sha_with_seed(secret, 3, &sha); |
|||
memcpy(iv.iv, sha.u.u8, sizeof(iv.iv)); |
|||
#ifdef EXPORT_FRIENDLY |
|||
iv.iv[0] = i*2 + 1; |
|||
#endif |
|||
return iv; |
|||
} |
|||
|
|||
/* Not really! */ |
|||
static void random_bytes(void *dst, size_t n) |
|||
{ |
|||
size_t i; |
|||
unsigned char *d = dst; |
|||
|
|||
for (i = 0; i < n; i++) |
|||
d[i] = random() % 256; |
|||
} |
|||
|
|||
static void gen_keys(secp256k1_context *ctx, |
|||
struct seckey *seckey, secp256k1_pubkey *pubkey) |
|||
{ |
|||
do { |
|||
random_bytes(seckey->k.u.u8, sizeof(seckey->k)); |
|||
} while (!secp256k1_ec_pubkey_create(ctx, pubkey, seckey->k.u.u8)); |
|||
} |
|||
|
|||
/*
|
|||
* Onion routing: |
|||
* |
|||
* Each step decrypts the payload, and removes its message. It then |
|||
* pads at the end to keep constant size, by encrypting 0 bytes (ZPAD) |
|||
* |
|||
* You can see the result of the unwrapping here: |
|||
* |
|||
* ENC1(PKT1 ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD))))) |
|||
* After 1: ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))) |
|||
* ENC1(ZPAD) |
|||
* After 2: ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD))) |
|||
* DEC2(ENC1(ZPAD)) |
|||
* ENC2(ZPAD) |
|||
* After 3: ENC4(PKT4 ENC5(PKT5 RPAD))) |
|||
* DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD)) |
|||
* ENC3(ZPAD) |
|||
* After 4: ENC5(PKT5 RPAD) |
|||
* DEC4(DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD)) ENC3(ZPAD)) |
|||
* ENC4(ZPAD) |
|||
* |
|||
* ENC1(PKT1 ENC2(PKT2)) |
|||
* => ENC2(PKT2) ENC1(ZPAD) |
|||
* => PKT2 DEC2(ENC1(ZPAD)) |
|||
*/ |
|||
#define MESSAGE_SIZE 128 |
|||
#define MAX_HOPS 20 |
|||
|
|||
struct hop { |
|||
struct sha256 hmac; |
|||
/* FIXME: Must use parse/serialize functions. */ |
|||
secp256k1_pubkey pubkey; |
|||
unsigned char msg[MESSAGE_SIZE]; |
|||
}; |
|||
|
|||
struct onion { |
|||
struct hop hop[MAX_HOPS]; |
|||
}; |
|||
|
|||
static bool aes_encrypt(void *dst, const void *src, size_t len, |
|||
const struct enckey *enckey, const struct iv *iv) |
|||
{ |
|||
#ifdef EXPORT_FRIENDLY |
|||
unsigned char *dptr = dst; |
|||
const unsigned char *sptr = memcheck(src, len); |
|||
size_t i; |
|||
|
|||
for (i = 0; i < len; i++) |
|||
dptr[i] = sptr[i] + iv->iv[0] + i / sizeof(struct hop); |
|||
return true; |
|||
#else |
|||
EVP_CIPHER_CTX evpctx; |
|||
int outlen; |
|||
|
|||
/* Counter mode allows parallelism in future. */ |
|||
if (EVP_EncryptInit(&evpctx, EVP_aes_256_ctr(), |
|||
memcheck(enckey->k.u.u8, sizeof(enckey->k)), |
|||
memcheck(iv->iv, sizeof(iv->iv))) != 1) |
|||
return false; |
|||
|
|||
/* No padding, we're a multiple of 128 bits. */ |
|||
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1) |
|||
return false; |
|||
|
|||
EVP_EncryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len); |
|||
assert(outlen == len); |
|||
/* Shouldn't happen (no padding) */ |
|||
if (EVP_EncryptFinal(&evpctx, dst, &outlen) != 1) |
|||
return false; |
|||
assert(outlen == 0); |
|||
return true; |
|||
#endif |
|||
} |
|||
|
|||
static bool aes_decrypt(void *dst, const void *src, size_t len, |
|||
const struct enckey *enckey, const struct iv *iv) |
|||
{ |
|||
#ifdef EXPORT_FRIENDLY |
|||
unsigned char *dptr = dst; |
|||
const unsigned char *sptr = memcheck(src, len); |
|||
size_t i; |
|||
|
|||
for (i = 0; i < len; i++) |
|||
dptr[i] = sptr[i] - iv->iv[0] - i / sizeof(struct hop); |
|||
return true; |
|||
#else |
|||
EVP_CIPHER_CTX evpctx; |
|||
int outlen; |
|||
|
|||
/* Counter mode allows parallelism in future. */ |
|||
if (EVP_DecryptInit(&evpctx, EVP_aes_256_ctr(), |
|||
memcheck(enckey->k.u.u8, sizeof(enckey->k)), |
|||
memcheck(iv->iv, sizeof(iv->iv))) != 1) |
|||
return false; |
|||
|
|||
/* No padding, we're a multiple of 128 bits. */ |
|||
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1) |
|||
return false; |
|||
|
|||
EVP_DecryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len); |
|||
assert(outlen == len); |
|||
/* Shouldn't happen (no padding) */ |
|||
if (EVP_DecryptFinal(&evpctx, dst, &outlen) != 1) |
|||
return false; |
|||
assert(outlen == 0); |
|||
return true; |
|||
#endif |
|||
} |
|||
|
|||
void dump_contents(const void *data, size_t n) |
|||
{ |
|||
size_t i; |
|||
const unsigned char *p = memcheck(data, n); |
|||
|
|||
for (i = 0; i < n; i++) { |
|||
printf("%02x", p[i]); |
|||
if (i % 16 == 15) |
|||
printf("\n"); |
|||
} |
|||
} |
|||
|
|||
static bool decrypt_padding(struct hop *padding, size_t nhops, |
|||
const struct enckey *enckey, |
|||
const struct iv *iv) |
|||
{ |
|||
/*
|
|||
* FIXME: This would be easier if we could set the counter; instead |
|||
* we simulate it by decrypting junk before the actual padding. |
|||
*/ |
|||
struct hop tmp[MAX_HOPS]; |
|||
|
|||
/* Keep valgrind happy. */ |
|||
memset(tmp, 0, (MAX_HOPS - nhops) * sizeof(struct hop)); |
|||
|
|||
memcpy(tmp + MAX_HOPS - nhops, padding, nhops * sizeof(struct hop)); |
|||
|
|||
/* FIXME: Assumes we are allowed to decrypt in place! */ |
|||
if (!aes_decrypt((char *)tmp + offsetof(struct hop, msg), |
|||
(char *)tmp + offsetof(struct hop, msg), |
|||
sizeof(tmp) - offsetof(struct hop, msg), enckey, iv)) |
|||
return false; |
|||
|
|||
memcpy(padding, tmp + MAX_HOPS - nhops, nhops * sizeof(struct hop)); |
|||
return true; |
|||
} |
|||
|
|||
/* Padding is created by encrypting zeroes. */ |
|||
static void add_padding(struct hop *padding, |
|||
const struct enckey *enckey, |
|||
const struct iv *pad_iv) |
|||
{ |
|||
static struct hop zerohop; |
|||
|
|||
aes_encrypt(padding, &zerohop, sizeof(zerohop), enckey, pad_iv); |
|||
} |
|||
|
|||
static void make_hmac(const struct hop *hops, size_t num_hops, |
|||
const struct hop *padding, |
|||
const struct hmackey *hmackey, |
|||
struct sha256 *hmac) |
|||
{ |
|||
#ifdef NO_HMAC |
|||
/* Copy first byte of message on each hop. */ |
|||
size_t i; |
|||
|
|||
memset(hmac, 0, sizeof(*hmac)); |
|||
for (i = 0; i < MAX_HOPS; i++) { |
|||
if (i < num_hops) |
|||
hmac->u.u8[i] = hops[i].msg[0]; |
|||
else |
|||
hmac->u.u8[i] = padding[i - num_hops].msg[0]; |
|||
} |
|||
#else |
|||
HMAC_CTX ctx; |
|||
size_t len, padlen; |
|||
|
|||
/* Calculate HMAC of pubkey onwards, plus padding. */ |
|||
HMAC_CTX_init(&ctx); |
|||
HMAC_Init_ex(&ctx, memcheck(hmackey->k.u.u8, sizeof(hmackey->k)), |
|||
sizeof(hmackey->k), EVP_sha256(), NULL); |
|||
len = num_hops*sizeof(struct hop) - offsetof(struct hop, pubkey); |
|||
HMAC_Update(&ctx, memcheck((unsigned char *)hops + offsetof(struct hop, pubkey), |
|||
len), len); |
|||
padlen = (MAX_HOPS - num_hops) * sizeof(struct hop); |
|||
HMAC_Update(&ctx, memcheck((unsigned char *)padding, padlen), padlen); |
|||
HMAC_Final(&ctx, hmac->u.u8, NULL); |
|||
#endif |
|||
} |
|||
|
|||
static bool check_hmac(struct onion *onion, const struct hmackey *hmackey) |
|||
{ |
|||
struct sha256 hmac; |
|||
|
|||
make_hmac(onion->hop, MAX_HOPS, NULL, hmackey, &hmac); |
|||
return CRYPTO_memcmp(&hmac, &onion->hop[0].hmac, sizeof(hmac)) == 0; |
|||
} |
|||
|
|||
bool create_onion(const secp256k1_pubkey pubkey[], |
|||
char *const msg[], |
|||
size_t num, |
|||
struct onion *onion) |
|||
{ |
|||
int i; |
|||
struct seckey *seckeys = tal_arr(NULL, struct seckey, num); |
|||
secp256k1_pubkey *pubkeys = tal_arr(seckeys, secp256k1_pubkey, num); |
|||
struct enckey *enckeys = tal_arr(seckeys, struct enckey, num); |
|||
struct hmackey *hmackeys = tal_arr(seckeys, struct hmackey, num); |
|||
struct iv *ivs = tal_arr(seckeys, struct iv, num); |
|||
struct iv *pad_ivs = tal_arr(seckeys, struct iv, num); |
|||
struct hop **padding = tal_arr(seckeys, struct hop *, num); |
|||
struct hop **hops = tal_arr(seckeys, struct hop *, num); |
|||
size_t junk_hops; |
|||
secp256k1_context *ctx; |
|||
bool ok = false; |
|||
|
|||
if (num > MAX_HOPS) |
|||
goto fail; |
|||
|
|||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); |
|||
|
|||
/* First generate all the keys. */ |
|||
for (i = 0; i < num; i++) { |
|||
unsigned char secret[32]; |
|||
|
|||
gen_keys(ctx, &seckeys[i], &pubkeys[i]); |
|||
|
|||
/* Make shared secret. */ |
|||
if (!secp256k1_ecdh(ctx, secret, &pubkey[i], seckeys[i].k.u.u8)) |
|||
goto fail; |
|||
|
|||
hmackeys[i] = hmackey_from_secret(memcheck(secret, 32)); |
|||
enckeys[i] = enckey_from_secret(secret); |
|||
ivs[i] = iv_from_secret(secret, i); |
|||
pad_ivs[i] = pad_iv_from_secret(secret, i); |
|||
} |
|||
|
|||
/*
|
|||
* Building the onion is a little tricky. |
|||
* |
|||
* First, there is the padding. That's generated by previous nodes, |
|||
* and "decrypted" by the others. So we have to generate that |
|||
* forwards. |
|||
*/ |
|||
for (i = 1; i < num; i++) { |
|||
/* Each one has 1 padding from previous. */ |
|||
padding[i] = tal_arr(padding, struct hop, i); |
|||
|
|||
/* Copy padding from previous node. */ |
|||
memcpy(padding[i], padding[i-1], sizeof(struct hop)*(i-1)); |
|||
/* Previous node "decrypts" it before handing to us */ |
|||
if (!decrypt_padding(padding[i], i-1, |
|||
&enckeys[i-1], &ivs[i-1])) |
|||
goto fail; |
|||
/* And generates another lot of padding. */ |
|||
add_padding(padding[i]+i-1, &enckeys[i-1], &pad_ivs[i-1]); |
|||
} |
|||
|
|||
/*
|
|||
* Now the normal onion is generated backwards. |
|||
*/ |
|||
|
|||
/* Unused hops filled with random, so even recipient can't tell
|
|||
* how many were used. */ |
|||
junk_hops = MAX_HOPS - num; |
|||
|
|||
for (i = num - 1; i >= 0; i--) { |
|||
size_t other_hops; |
|||
struct hop *myonion; |
|||
|
|||
other_hops = num - i - 1 + junk_hops; |
|||
myonion = hops[i] = tal_arr(hops, struct hop, 1 + other_hops); |
|||
if (i == num - 1) { |
|||
/* Fill with junk. */ |
|||
random_bytes(myonion + 1, |
|||
other_hops * sizeof(struct hop)); |
|||
} else { |
|||
/* Copy from next hop. */ |
|||
memcpy(myonion + 1, hops[i+1], |
|||
other_hops * sizeof(struct hop)); |
|||
} |
|||
|
|||
/* Now populate our hop. */ |
|||
myonion->pubkey = pubkeys[i]; |
|||
/* Set message. */ |
|||
assert(strlen(msg[i]) < MESSAGE_SIZE); |
|||
memset(myonion->msg, 0, MESSAGE_SIZE); |
|||
strcpy((char *)myonion->msg, msg[i]); |
|||
|
|||
/* Encrypt whole thing from message onwards. */ |
|||
if (!aes_encrypt(&myonion->msg, &myonion->msg, |
|||
(1 + other_hops) * sizeof(struct hop) |
|||
- offsetof(struct hop, msg), |
|||
&enckeys[i], &ivs[i])) |
|||
goto fail; |
|||
|
|||
/* HMAC covers entire thing except hmac itself. */ |
|||
make_hmac(myonion, 1 + other_hops, padding[i], |
|||
&hmackeys[i], &myonion->hmac); |
|||
} |
|||
|
|||
/* Transfer results to onion, for first node. */ |
|||
assert(tal_count(hops[0]) == MAX_HOPS); |
|||
memcpy(onion->hop, hops[0], sizeof(onion->hop)); |
|||
ok = true; |
|||
|
|||
fail: |
|||
tal_free(seckeys); |
|||
secp256k1_context_destroy(ctx); |
|||
return ok; |
|||
} |
|||
|
|||
/*
|
|||
* Decrypt onion, return true if onion->hop[0] is valid. |
|||
* |
|||
* Returns enckey and pad_iv for use in unwrap. |
|||
*/ |
|||
bool decrypt_onion(const struct seckey *myseckey, struct onion *onion, |
|||
struct enckey *enckey, struct iv *pad_iv, size_t i) |
|||
{ |
|||
secp256k1_context *ctx; |
|||
unsigned char secret[32]; |
|||
struct hmackey hmackey; |
|||
struct iv iv; |
|||
|
|||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); |
|||
|
|||
/* Extract shared secret. */ |
|||
if (!secp256k1_ecdh(ctx, secret, &onion->hop[0].pubkey, |
|||
myseckey->k.u.u8)) |
|||
goto fail; |
|||
|
|||
hmackey = hmackey_from_secret(secret); |
|||
*enckey = enckey_from_secret(secret); |
|||
iv = iv_from_secret(secret, i); |
|||
*pad_iv = pad_iv_from_secret(secret, i); |
|||
|
|||
/* Check HMAC. */ |
|||
#if 0 |
|||
printf("Checking HMAC using key%02x%02x%02x%02x%02x%02x%02x%02x (offset %u len %zu) for %02x%02x%02x%02x%02x%02x%02x%02x...%02x%02x%02x\n", |
|||
hmackey.k[0], hmackey.k[1], |
|||
hmackey.k[2], hmackey.k[3], |
|||
hmackey.k[4], hmackey.k[5], |
|||
hmackey.k[6], hmackey.k[7], |
|||
SHA256_DIGEST_LENGTH, |
|||
sizeof(*onion) - SHA256_DIGEST_LENGTH, |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[0], |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[1], |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[2], |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[3], |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[4], |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[5], |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[6], |
|||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[7], |
|||
((unsigned char *)(onion + 1))[-3], |
|||
((unsigned char *)(onion + 1))[-2], |
|||
((unsigned char *)(onion + 1))[-1]); |
|||
dump_contents((unsigned char *)onion + SHA256_DIGEST_LENGTH, |
|||
sizeof(*onion) - SHA256_DIGEST_LENGTH); |
|||
#endif |
|||
if (!check_hmac(onion, &hmackey)) |
|||
goto fail; |
|||
|
|||
/* Decrypt everything after pubkey. */ |
|||
if (!aes_decrypt(onion->hop[0].msg, onion->hop[0].msg, |
|||
sizeof(*onion) - offsetof(struct hop, msg), |
|||
enckey, &iv)) |
|||
goto fail; |
|||
|
|||
secp256k1_context_destroy(ctx); |
|||
return true; |
|||
|
|||
fail: |
|||
secp256k1_context_destroy(ctx); |
|||
return false; |
|||
} |
|||
|
|||
/* Get next layer of onion, for forwarding. */ |
|||
bool peel_onion(struct onion *onion, |
|||
const struct enckey *enckey, const struct iv *pad_iv) |
|||
{ |
|||
/* Move next one to front. */ |
|||
memmove(&onion->hop[0], &onion->hop[1], |
|||
sizeof(*onion) - sizeof(onion->hop[0])); |
|||
|
|||
/* Add random-looking (but predictable) padding. */ |
|||
memset(&onion->hop[MAX_HOPS-1], 0, sizeof(onion->hop[MAX_HOPS-1])); |
|||
return aes_encrypt(&onion->hop[MAX_HOPS-1], &onion->hop[MAX_HOPS-1], |
|||
sizeof(onion->hop[MAX_HOPS-1]), enckey, pad_iv); |
|||
} |
|||
|
|||
int main(int argc, char *argv[]) |
|||
{ |
|||
secp256k1_context *ctx; |
|||
size_t i, hops; |
|||
struct seckey seckeys[MAX_HOPS]; |
|||
secp256k1_pubkey pubkeys[MAX_HOPS]; |
|||
char *msgs[MAX_HOPS]; |
|||
struct onion onion; |
|||
|
|||
assert(EVP_CIPHER_iv_length(EVP_aes_256_ctr()) == sizeof(struct iv)); |
|||
|
|||
if (argc != 2) |
|||
errx(1, "Usage: %s <num hops>", argv[0]); |
|||
hops = atoi(argv[1]); |
|||
if (hops == 0 || hops > MAX_HOPS) |
|||
errx(1, "%s is invalid number of hops", argv[1]); |
|||
|
|||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN); |
|||
for (i = 0; i < hops; i++) { |
|||
asprintf(&msgs[i], "Message to %zu", i); |
|||
gen_keys(ctx, &seckeys[i], &pubkeys[i]); |
|||
} |
|||
|
|||
if (!create_onion(pubkeys, msgs, hops, &onion)) |
|||
errx(1, "Creating onion packet failed"); |
|||
|
|||
/* Now parse and peel. */ |
|||
for (i = 0; i < hops; i++) { |
|||
struct enckey enckey; |
|||
struct iv pad_iv; |
|||
|
|||
printf("Decrypting with key %zi\n", i); |
|||
if (!decrypt_onion(&seckeys[i], &onion, &enckey, &pad_iv, i)) |
|||
errx(1, "Decrypting onion for hop %zi", i); |
|||
if (strcmp((char *)onion.hop[0].msg, msgs[i]) != 0) |
|||
errx(1, "Bad message for hop %zi", i); |
|||
if (!peel_onion(&onion, &enckey, &pad_iv)) |
|||
errx(1, "Peeling onion for hop %zi", i); |
|||
} |
|||
secp256k1_context_destroy(ctx); |
|||
return 0; |
|||
} |
Loading…
Reference in new issue