We use a different 'struct peer' in the new daemons, so make sure
the structure isn't assumed in any shared files.
This is a temporary shim.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The peer structure is only for the old daemon; instead move the list
of all outgoing txs for rebroadcasting into struct topology (still
owned by peers, so they are removed when it exits).
One subtlety: on exit, struct topology is free before the peers,
so they end up removing from a freed list. Thus we actually free
every outgoing tx manually on topology free.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Moved the broadcast functionality to broadcast.[ch]. So far this
includes only the enqueuing side of broadcasts, the dequeuing and
actual push to the peer is daemon dependent. This also adds the
broadcast_state to the routing_state and the last broadcast index to
the peer for the legacy daemon.
It's possible that we won't have sent the anchor, but state is
committed in db. And our current philosophy is that we retransmit all
the txs dumbly, all the time.
Our --restart --timeout-anchor test trigger this case, too, so
re-enable that now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of using wall-clock time, we use blocks. This is simpler and
better for database restores. And both sides will time out.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The simplest way is to always use peer_received_unexpected_pkt() which
sends the error packet, and ensure it doesn't do so in response to
pkt_err.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since we no longer feed it into state.c, we can just us a bool.
And that's the last of the CMD_* in the enum state_input, so remove them
all.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Now broadcast_tx() doesn't take ownership of the tx, make sure callers
free; a bit of refactoring to make it clear when we're making a new tx
vs. accessing an existing one, to make this clearer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is in preparation for the next step.
Note that we now don't add it to the linked list of txs we've send
until after it's sent by the immediate callback; this means it won't
get broadcast by the timer until after it's been done by broadcast_tx.
Also, this means we no longer steal the tx in broadcast_tx(); but we'll fix
up the leaks 4 patches later.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This gives much better errors, and allows us to return the peer id.
Closes: #37
Reported-by: Glenn Willen
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is important when we put payments in the database: they need to be
updated atomically as the HTLC is.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is important when we put payments in the database: they need to be
updated atomically as the HTLC is.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We create a logging object when we connect, then carry it through. If
it comes from the database, we just use the peerid as the log prefix.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We stopped automatically retransmitting locally-generated add/removes
after a reconnect, but this breaks the "pay" interface as it stands.
The correct solution to this is to make the pay interface idempotent:
you can trigger it as many times as you want and it will only succeed
once.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's not currently encrypted, but at least you get some idea now why
an HTLC failed. We (ab)use HTTP error codes for the moment.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I originally overloaded struct htlc for this, as they go through the
same states, but separating them turned out to be clearer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This makes more sense eventually: we may know the network addresses of
many peers, not just those we're connecting to. So keep a mapping, and
update it when we successfully connect outwards.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
1. Fix #ifdef DEBUG code in signature.c so it compiles.
2. Don't set peer->closing.our_script in queue_pkt_close_shutdown: it's
assigned in caller already.
3. Wrap setting of htlc's rval in set_htlc_rval() function.
4. Log where we were when unexpected packet comes in.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
More of a pure allocator, for when we load peers from db. Also moves
shachain_init out of secrets and into new_peer where it logically
belongs.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This gives us a clear way to indicate "invalid", and also sqlite3 stores
signed 64-bit numbers, so it's clearer this way.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is dumb, since one side will never succeed. But in future when
there is a method for nodes to broadcast their public address (or send
their address inline to connected nodes), either side should try to
connect.
Importantly though, there are places which will queue packets at
various times (eg. HTLC timeout), so we need to clear the queue just
before re-transmitting, not when disconnecting.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
To do this we keep an order counter so we know how to retransmit. We
could simply keep old packets, but this is a little clearer for now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We no longer need it anywhere. This simplifies things to the point where
we might as well just not include dust outputs as we go, rather than
explicitly removing them, which gets rid of remove_dust.c as well.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Similar to the way we derive which outputs are which for old transactions
we steal, we derive them even for their current transaction.
We keep track of this information in peer->closing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We want to stop keeping old commitment information (except the minimal
txid to commitment-number mapping). One place we currently use it is
after sending a commitment signature, and before we've received the
revocation for the old commitment. For this duration, there are two
valid commitment transactions.
So we store "their_prev_revocation_hash" explicitly for this duration.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's a data-leak to send ack before we have verified identity of peer.
Plus, we can't send it until we know which peer it is, anyway!
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
And use this to resolve old transactions by comparing outputs with
HTLCs.
Rather than remembering the output ordering for every one of their
previous commitment transactions, we just remember the commitment
number for each commitment txid, and when we see it, derive all the
HTLC scriptpubkeys and the to-us and to-them scriptpubkeys, and figure
out which is which.
This avoids us having to save information on disk, except for the
txid->commitment-number mapping (and the shachain).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>