Instead, send it the funding_signed message; it can watch, save to
database, and send it.
Now the openingd fundee path is a simple request and response, too.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Simplifies state machine. Master still has to calculate the tx to get
the signature and broadcast, but now the opening daemon funding path
is a simple request/response.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Like the fd, it's only useful when the peer is not in a daemon, so we
free & NULL it when that happens.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
1. We explicitly assert what state we're coming from, to make transitions
clearer.
2. Every transition has a state, even between owners while waiting for HSM.
3. Explictly step though getting the HSM signature on the funding tx
before starting channeld, rather than doing it in parallel: makes
states clearer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We currently create a peer struct, then complete handshake to find out
who it is. This means we have a half-formed peer, and worse: if it's
a reconnect we get two peers the same.
Add an explicit 'struct connection' for the handshake phase, and
construct a 'struct peer' once that's done.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather a big commit, but I couldn't figure out how to split it
nicely. It introduces a new message from the channel to the master
signaling that the channel has been announced, so that the master can
take care of announcing the node itself. A provisorial announcement is
created and passed to the HSM, which signs it and passes it back to
the master. Finally the master injects it into gossipd which will take
care of broadcasting it.
We alternated between using a sha256 and using a privkey, but there are
numerous places where we have a random 32 bytes which are neither.
This fixes many of them (plus, struct privkey is now defined in terms of
struct secret).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Under stress, the tests can mine blocks too soon, and the funding never
locks. This gives more of a chance, at least.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We were getting an assert "!secp256k1_fe_is_zero(&ge->x)", because
an all-zero pubkey is invalid. We allow marshal/unmarshal of NULL for
now, and clean up the error handling.
1. Use status_failed if master sends a bad message.
2. Similarly, kill the gossip daemon if it gives a bad reply.
3. Use an array for returned pubkeys: 0 or 2.
4. Use type_to_string(trc, struct short_channel_id, &scid) for tracing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I implemented this because a bug causes us to consider the HTLC malformed,
so I can trivially test it for now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since we now use the short_channel_id to identify the next hop we need
to resolve the channel_id to the pubkey of the next hop. This is done
by calling out to `gossipd` and stuffing the necessary information
into `htlc_end` and recovering it from there once we receive a reply.
Mainly switching from the old include to the new include and adjusting
the actual size of the onion packet. It also moves `channel.c` to use
`struct hop_data`.
It introduces a dummy next hop in `channel.c` that will be replaced in
the next commit.
Only the side *accepting* the connection gives a `minumum_depth`, but both
sides are supposed to wait that long:
BOLT #2:
### The `funding_locked` message
...
#### Requirements
The sender MUST wait until the funding transaction has reached
`minimum-depth` before sending this message.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of reusing HSMFD_ECDH, we have an explicit channeld hsm fd,
which can do ECDH and will soon do channel announce signatures as well.
Based-on: Christian Decker <decker.christian@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This lets us link HTLCs from one peer to another; but for the moment it
simply means we can adjust balance when an HTLC is fulfilled.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is an approximate result (it's only our confirmed balance, not showing
outstanding HTLCs), but it gives an easy way to check HTLCs have been
resolved.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
If a peer dies, and then we get a reply, that can cause access after free.
The usual way to handle this is to make the request a child of the peer,
but in fact we still want to catch (and disard) it, so it's a little
more complex internally.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>