This is a primitive mark-and-sweep-style garbage detector. The core is
in common/ for later use by subdaemons, but for now it's just lightningd.
We initialize it before most other allocations.
We walk the tal tree to get all the pointers, then search the `ld`
object for those pointers, recursing down. Some specific helpers are
required for hashtables (which stash bits in the unused pointer bits,
so won't be found).
There's `notleak()` for annotating things that aren't leaks: things
like globals and timers, and other semi-transients.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
jsonrpc handlers usually directly call command_success or
command_fail; not doing that implies they're waiting for something
async.
Put an explicit call (currently a noop) there, and add debugging
checks to make sure it's used.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
bitcoin_from_base58 returns a testnet flag, but json_withdraw
did not actually check it. Add a basic check that the given
withdraw address belongs to the same net lightningd is using.
Change all calls to use the correct serialization and deserialization
functions, include the correct headers and remove the control
messages.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
The filter is being populated while initializing the daemon and by
adding new keys as they are being generated. The filter is then used
in connect_block to identify transactions of interest.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
We weren't incrementing the `col` for the `local_shutdown_idx` field,
which meant that all following fields were incorrect. I removed the
`col` computation and opted for absolute indices instead, since they
are way less brittle. Just remember to add new fields to the query at
the end so we don't have to shift too often :-)
Reported-by: William Casarin @jb55
Signed-off-by: Christian Decker <decker.christian@gmail.com>
The wire protocol uses this, in the assumption that we'll never see feerates
in excess of 4294967 satoshi per kiloweight.
So let's use that consistently internally as well.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Used by the JSON-RPC for the listtransfers call. Currently does not
support any form of paging.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
We save location where transaction was started, in case we try to nest.
There's now no error case; db_exec_mayfail() is the only one.
This means the tests need to override fatal() if they want to intercept
these errors.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We're going to be always in a transaction soon.
Note the rollback we used to do was an optimization: the utxo destructors
would already clean up the new UTXOs in the database.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
we should never be doing two startups at once, but why take chances? Plus,
we can then assert that all db calls are in transactions.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is the only case where we actually rely on the db to ensure we don't
do something twice: don't error out if it fails.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Otherwise we find ourselves outside a commitment. This is a bandaid
until we remove nested commitments again at the end of this series.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Nesting is provided by only actually performing the outermost
transaction and simulating the nested ones. This still allows us to
ensure on lower levels that we are in the context of a transaction
without having to resort to keeping explicitly track of it in the
calling code.
Signed-off-by: Christian Decker <decker.christian@gmail.com>