Rather a big commit, but I couldn't figure out how to split it
nicely. It introduces a new message from the channel to the master
signaling that the channel has been announced, so that the master can
take care of announcing the node itself. A provisorial announcement is
created and passed to the HSM, which signs it and passes it back to
the master. Finally the master injects it into gossipd which will take
care of broadcasting it.
We alternated between using a sha256 and using a privkey, but there are
numerous places where we have a random 32 bytes which are neither.
This fixes many of them (plus, struct privkey is now defined in terms of
struct secret).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Under stress, the tests can mine blocks too soon, and the funding never
locks. This gives more of a chance, at least.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We were getting an assert "!secp256k1_fe_is_zero(&ge->x)", because
an all-zero pubkey is invalid. We allow marshal/unmarshal of NULL for
now, and clean up the error handling.
1. Use status_failed if master sends a bad message.
2. Similarly, kill the gossip daemon if it gives a bad reply.
3. Use an array for returned pubkeys: 0 or 2.
4. Use type_to_string(trc, struct short_channel_id, &scid) for tracing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I implemented this because a bug causes us to consider the HTLC malformed,
so I can trivially test it for now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since we now use the short_channel_id to identify the next hop we need
to resolve the channel_id to the pubkey of the next hop. This is done
by calling out to `gossipd` and stuffing the necessary information
into `htlc_end` and recovering it from there once we receive a reply.
Mainly switching from the old include to the new include and adjusting
the actual size of the onion packet. It also moves `channel.c` to use
`struct hop_data`.
It introduces a dummy next hop in `channel.c` that will be replaced in
the next commit.
Only the side *accepting* the connection gives a `minumum_depth`, but both
sides are supposed to wait that long:
BOLT #2:
### The `funding_locked` message
...
#### Requirements
The sender MUST wait until the funding transaction has reached
`minimum-depth` before sending this message.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of reusing HSMFD_ECDH, we have an explicit channeld hsm fd,
which can do ECDH and will soon do channel announce signatures as well.
Based-on: Christian Decker <decker.christian@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This lets us link HTLCs from one peer to another; but for the moment it
simply means we can adjust balance when an HTLC is fulfilled.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is an approximate result (it's only our confirmed balance, not showing
outstanding HTLCs), but it gives an easy way to check HTLCs have been
resolved.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
If a peer dies, and then we get a reply, that can cause access after free.
The usual way to handle this is to make the request a child of the peer,
but in fact we still want to catch (and disard) it, so it's a little
more complex internally.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The gossip subdaemon previously passed the fd after init: this is
unnecessary for peers which simply want to gossip (and not establish
channels).
Now we hand the gossip fd back with the peer fd. This adds another
error message for when we fail to create the gossip fds.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of indicating where to place the fd, you say how many: the
fd array gets passed into the callback.
This is also clearer for the users.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>