With fallback depending on chainparams: this means the first upgrade
will be slow, but after that it'll be fast.
Fixes: #990
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We error out for all kinds of reasons early on (eg. bitcoind down),
and printing a backtrace for them is pretty confusing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Includes closing off stdout and stderr. We don't do it directly in the
arg parser, as we want to interact normally (eg with other errors) before
we turn off stdout/stderr.
Fixes: #986
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This provides a sanity check that we are in sync, and also keeps the
logic in the program and out of the SQL.
Since the destructor now doesn't clean up the peer, there are some
wider changes to be made when cleaning up. Most notably we create
lots of channels in run-wallet.c and they previously freed the peer:
now we need free the peer explicitly, so we need to free them first.
Suggested-by: @cdecker
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Channels are within the peer structure, but the peer is freed only
when the last channel is freed.
We also implement channel_set_owner() and make peer_set_owner() a temporary
wrapper.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Much like the database; peer contains id, address, channel contains
per-channel information. Where we create a channel, we always create
the peer too.
For the moment, peer->log and channel->log coexist side-by-side, to
reduce some of the churn.
Note that this changes the API to dev-forget-channel: if we have more
than one channel, we insist they specify the short-channel-id.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Maintaining it was always fraught, since the command could go away
if the JSON RPC died. Most recently, it was broken again on shutdown
(see below).
In future we may allow pay commands to block on previous payments, so
it won't even be a 1:1 mapping. Generalize it: keep commands in a
simple list and do a lookup when a payment fails/succeeds.
Valgrind error file: valgrind-errors.5732
==5732== Invalid read of size 8
==5732== at 0x4149FD: remove_cmd_from_hout (pay.c:292)
==5732== by 0x468BAB: notify (tal.c:237)
==5732== by 0x469077: del_tree (tal.c:400)
==5732== by 0x4690C7: del_tree (tal.c:410)
==5732== by 0x46948A: tal_free (tal.c:509)
==5732== by 0x40F1EA: main (lightningd.c:362)
==5732== Address 0x69df148 is 1,512 bytes inside a block of size 1,544 free'd
==5732== at 0x4C2EDEB: free (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5732== by 0x469150: del_tree (tal.c:421)
==5732== by 0x46948A: tal_free (tal.c:509)
==5732== by 0x4198F2: free_htlcs (peer_control.c:1281)
==5732== by 0x40EBA9: shutdown_subdaemons (lightningd.c:209)
==5732== by 0x40F1DE: main (lightningd.c:360)
==5732== Block was alloc'd at
==5732== at 0x4C2DB8F: malloc (in /usr/lib/valgrind/vgpreload_memcheck-amd64-linux.so)
==5732== by 0x468C30: allocate (tal.c:250)
==5732== by 0x4691F7: tal_alloc_ (tal.c:448)
==5732== by 0x40A279: new_htlc_out (htlc_end.c:143)
==5732== by 0x41FD64: send_htlc_out (peer_htlcs.c:397)
==5732== by 0x41511C: send_payment (pay.c:388)
==5732== by 0x41589E: json_sendpay (pay.c:513)
==5732== by 0x40D9B1: parse_request (jsonrpc.c:600)
==5732== by 0x40DCAC: read_json (jsonrpc.c:667)
==5732== by 0x45C706: next_plan (io.c:59)
==5732== by 0x45D1DD: do_plan (io.c:387)
==5732== by 0x45D21B: io_ready (io.c:397)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Load the first block we're possibly interested in, then load the peers so
we can restore the tx watches, then finally replay to the current tip.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Eventually we want to save blockchain in db to avoid this scan, but
for the moment, we need to reload as far back as we may be interested in.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We use the tal notifiers to attach a `backtrace` object on every
allocation.
This also means moving backtrace_state from log.c into lightningd.c, so
we can hand it to memleak_init().
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is a primitive mark-and-sweep-style garbage detector. The core is
in common/ for later use by subdaemons, but for now it's just lightningd.
We initialize it before most other allocations.
We walk the tal tree to get all the pointers, then search the `ld`
object for those pointers, recursing down. Some specific helpers are
required for hashtables (which stash bits in the unused pointer bits,
so won't be found).
There's `notleak()` for annotating things that aren't leaks: things
like globals and timers, and other semi-transients.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The filter is being populated while initializing the daemon and by
adding new keys as they are being generated. The filter is then used
in connect_block to identify transactions of interest.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
Our testsuite uses --dev-fail-on-subdaemon-fail, so I didn't notice this
until I turned that off to chase a bug.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
In future it will have TOR support, so the name will be awkward.
We collect the to/fromwire functions in common/wireaddr.c, and the
parsing functions in lightningd/netaddress.c.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is a bit messier than I'd like, but we want to clearly remove all
dev code (not just have it uncalled), so we remove fields and functions
altogether rather than stub them out. This means we put #ifdefs in callers
in some places, but at least it's explicit.
We still run tests, but only a subset, and we run with NO_VALGRIND under
Travis to avoid increasing test times too much.
See-also: #176
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Makes it easier to compare before/after failures. Ideally, we should
run under Travis both with this option and with the seed based on the
entire tmp path (which is still reproducible with determination, but
not fixed every run like this is).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There are now only two kinds of subdaemons: global ones (hsmd, gossipd) and
per-peer ones. We can handle many callbacks internally now.
We can have a handler to set a new peer owner, and automatically do
the cleanup of the old one if necessary, since we now know which ones
are per-peer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Now the flow is much simpler from a lightningd POV:
1. If we want to connect to a peer, just send gossipd `gossipctl_reach_peer`.
2. Every new peer, gossipd hands up to lightningd, with global/local features
and the peer fd and a gossip fd using `gossip_peer_connected`
3. If lightningd doesn't want it, it just hands the peerfd and global/local
features back to gossipd using `gossipctl_handle_peer`
4. If a peer sends a non-gossip msg (eg `open_channel`) the gossipd sends
it up using `gossip_peer_nongossip`.
5. If lightningd wants to fund a channel, it simply calls `release_channel`.
Notes:
* There's no more "unique_id": we use the peer id.
* For the moment, we don't ask gossipd when we're told to list peers, so
connected peers without a channel don't appear in the JSON getpeers API.
* We add a `gossipctl_peer_addrhint` for the moment, so you can connect to
a specific ip/port, but using other sources is a TODO.
* We now (correctly) only give up on reaching a peer after we exchange init
messages, which changes the test_disconnect case.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We pull them from the database on-demand, where we're storing them
anyway. No need to keep them in memory as well.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
So far we were tracking the status by including it either in the paid
or the unpaid list. This refactor makes the state explicit, which
matches the planned DB schema much better.
Signed-off-by: Christian Decker <decker.christian@gmail.com>