Now in sync with 8ee57b97738b1e9467a1342ca8373d40f0c4aca5.
Our tool doesn't need to convert them any more, but we actually had a
mis-typed field in the HSM which needed fixing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The single string-based hostname and port has been retired in favor of
having multiple `struct ipaddr`s from the `node_announcement`. This
breaks the hostnames and ports from IRC, but I didn't bother to
backport ipaddr for it since it is only used in the legacy daemon.
Rather a big commit, but I couldn't figure out how to split it
nicely. It introduces a new message from the channel to the master
signaling that the channel has been announced, so that the master can
take care of announcing the node itself. A provisorial announcement is
created and passed to the HSM, which signs it and passes it back to
the master. Finally the master injects it into gossipd which will take
care of broadcasting it.
We alternated between using a sha256 and using a privkey, but there are
numerous places where we have a random 32 bytes which are neither.
This fixes many of them (plus, struct privkey is now defined in terms of
struct secret).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Under stress, the tests can mine blocks too soon, and the funding never
locks. This gives more of a chance, at least.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We were getting an assert "!secp256k1_fe_is_zero(&ge->x)", because
an all-zero pubkey is invalid. We allow marshal/unmarshal of NULL for
now, and clean up the error handling.
1. Use status_failed if master sends a bad message.
2. Similarly, kill the gossip daemon if it gives a bad reply.
3. Use an array for returned pubkeys: 0 or 2.
4. Use type_to_string(trc, struct short_channel_id, &scid) for tracing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I implemented this because a bug causes us to consider the HTLC malformed,
so I can trivially test it for now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since we now use the short_channel_id to identify the next hop we need
to resolve the channel_id to the pubkey of the next hop. This is done
by calling out to `gossipd` and stuffing the necessary information
into `htlc_end` and recovering it from there once we receive a reply.
This was overly complex since it was off-by-one and we were storing
some information elsewhere. Now this just loads the route as is into
structs, extracts some information for our outgoing HTLC, and then
shifts by the array of structs by one, and finally fills in the last
instruction, which is the terminal.
The new onion uses the `channel_id` instead of the `node_id` of the
next hop to identify where to forward the payment. So we return the
exact channel chosen by the routing algo, to avoid having to look it
up again later.
Mainly switching from the old include to the new include and adjusting
the actual size of the onion packet. It also moves `channel.c` to use
`struct hop_data`.
It introduces a dummy next hop in `channel.c` that will be replaced in
the next commit.
Adds a new command line flag `--dev-broadcast-interval=<ms>` that
allows us to specify how often the staggered broadcast should
trigger. The value is passed down to `gossipd` via an init message.
This is mainly useful for integration tests, since we do not want to
wait forever for gossip to propagate.
We were using an uninitialized `broadcast_index` on the peer which
would occasionally result in no forwardings at all, segmenting the
network. And during the `msg_queue` refactor, some wait targets were
not updated, resulting in the waits never to be woken up.
This moves all the non-legacy blackbox testing into python.
Before:
real 10m18.385s
After:
real 9m54.877s
Note that this doesn't valgrind the subdaemons: that patch seems to cause
some issues in the python framework which I am still chasing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>