This is the more normal case; find by ID. The low-level json commands are
really just for testing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The protocol still supports both, but we now only support blocks.
It's hard to do risk management with timeouts in seconds, given block
variance. This is also signficantly simpler, as HTLC timeouts are
always fired in response to blocks, not wall-clock times.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We need to know when changes are fully committed by both sides:
1) For their HTLC_ADDs, this is when we can fulfill/fail/route.
2) For their HTLC_FAILs, this is when we can fail incoming.
For HTLC_FULFULL we don't need to wait: as soon as we know the preimage
we can propogate it.
For the moment, we simply log and assert; acting on it comes later.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We've been stuffing these into sha256s, but they're actually nonces.
Create a new structure for that for clarity.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
And make the add/fail/fulfill arg a pointer to a union htlc_staging
directly, removing struct htlc_progress.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We no longer get bitcoind to manage our transactions for us, so we don't
need to -zapwallettxs when an anchor fails.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There's no real reason to avoid commands for the next commit; this has
the benefit that we can remove the infrastructure to queue commands.
The only exceptions are the commit command and the opening phase.
We still only allow one commit at a time, but that's mainly run off a
timer which can try again later. For the JSONRPC API used for
testing, we can simply fail the commit if one is in progress.
For opening we add an explicit peer_open_complete() call in place of
using the command infrastructure.
Commands are now outside the state machine altogether: we simply have
it return the new state instead of the command status. The JSONRPC
functions can also now run commands directly.
This removes the idea of "peercond" as well: you can simply examine
the states to determine whether an input is valid. There are
fine-grained helpers for this now, too.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We're about to allow changes while we're waiting for a commit ack.
This means we can't have a single "unacked changes" queue; when we
receive the revocation reply, we need to apply the unacked changes
known at the time we sent the commit, not any we've created since
then.
Note that we still only have a single staged_commit; we never have two
outstanding commits, since for simplicity we will still block
following update_commit pending the reply to the current one.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
As per lightning-rfc commit b8469aa758a1a7ebbd73c987be3e5207b778241b
("re-protocol: don't hand signature to non-funding side initially.")
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We still need to watch the anchor output in this case: that's what
makes us handle the commit transcction we broadcast.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We already removed the on-chain states, now we remove the "clearing" state
(which wasn't fully implemented anyway).
This turns into two smaller state machines: one for clearing, which
still allows HTLCs to be failed and fulfilled, and one for mutual
close negotiation which only allows close_signature messages.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Previous to this, we kept the remote side's 'struct channel_state'
backwards: peer->remote.commit->cstate.side[OURS] was their HTLCs,
and [THEIRS] was our HTLCs. This made some things easier, but was
horrible for readability.
This inverts things so we keep track of the remote side's state from
our point of view: [OURS] is ours, [THEIRS] is theirs. Which makes
much more sense.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
As per lightning-rfc commit 8ee09e749990a11fa53bea03d5961cfde4be4616,
we remove the acks from the protocol now they're no longer needed (and
all the infrastructure).
We also place the commit number in the commit_info where it logically
belongs, removing it from the peer struct.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
From BOLT#2 (rev 8ee09e749990a11fa53bea03d5961cfde4be4616):
Thus each node (conceptually) tracks:
...
3. Two *unacked changesets*: one for the local commitment (their proposals) and one for the remote (our proposals)
4. Two *acked changesets*: one for the local commitment (our proposals, acknowledged) and one for the remote (their proposals, acknowledged).
(Note that an implementation MAY optimize this internally, for
example, pre-applying the changesets in some cases).
In our case, we apply the unacked changes immediately into
staging_cstate, and save them in an unacked_changes array. That array
gets applied to staging_cstate as soon as it's acked (we only allow
one outstanding update_commit, so we only need one array).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
While useful for testing, it doesn't make sense to have an explicit commit
command; we should commit whenever there are outstanding changes.
We have a 10ms timer to allow limited batching, however.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is just generally good practice. All our other txs are single-input,
so we've not needed to permute inputs before.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Once we see an on-chain tx, we ignore the state machine and handle it
as per the onchain.md draft. This specifies a *resolution* for each
output, and we're done when they're irrevocable.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's not quite true: if we offer the anchor, we have a commitinfo
without their signature yet. So make it a pointer again. Since we
always allocate struct commit_info with talz, it starts as a NULL
pointer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is called when an HTLC times out, and we need to send it back to
ourselves. We also adjust the locktime, since in practice we should
refuse an HTLC less than our locktime.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We don't report conflicts, just depths. So we report 0 if it's in a
main chain which loses to another, otherwise it's always positive.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since bitcoind doesn't propagate non-main chains, there's little point
trying to be smart when we see them. This simplifies things immensely.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's primitive, but we re-broadcast any txs not included in the main
chain every time the tip moves. We only track transactions we are
watching, but that turns out to cover every transaction we generate
anyway.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>