We'd expect stop_commands to stop all commands, but we (ab)used
CMD_SEND_HTLC_FULFILL to send us R values even in closing state.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
By terminating in either NORMAL state, we halve the time to run the
coverage test.
Before:
real 0m50.083s
After:
real 0m28.548s
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Once both are longer listening to their packets, we don't need to
simulate all variants of what each are doing.
(With -O3 -flto, gcc 5.1)
Before:
real 11m40.032s
After:
real 0m50.083s
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
For loop detection, we don't need entire state. So extract a core,
which we can put in hash table.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This requires our state exerciser to be smarter. In particular, it
needs to track individual HTLCs rather than just sending random
inputs.
To do this:
1) We keep data associated with packets as they flow (where
those packets are associated with HTLCs).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
These tests are wrong, and are handled properly anyway when they
fire (the other one is disabled).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We should always have a packet in flight unless we're in the two
waiting-for-anchor-to-mature states, or at the top of the main loop.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The state machine is infinite, but if we eliminate the normal inner
state loop, and a couple of other unusual cases where inputs can
repeat, we should be able to traverse it all.
This is slower than simply stopping when we hit a repeated state
though.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>