We have things which we don't keep a pointer to, but aren't leaks.
Some are simply eternal (eg. listening sockets), others cases are
io_conn tied to the lifetime of an fd, and timers which expire.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is a primitive mark-and-sweep-style garbage detector. The core is
in common/ for later use by subdaemons, but for now it's just lightningd.
We initialize it before most other allocations.
We walk the tal tree to get all the pointers, then search the `ld`
object for those pointers, recursing down. Some specific helpers are
required for hashtables (which stash bits in the unused pointer bits,
so won't be found).
There's `notleak()` for annotating things that aren't leaks: things
like globals and timers, and other semi-transients.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The filter is being populated while initializing the daemon and by
adding new keys as they are being generated. The filter is then used
in connect_block to identify transactions of interest.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
The wire protocol uses this, in the assumption that we'll never see feerates
in excess of 4294967 satoshi per kiloweight.
So let's use that consistently internally as well.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Depending on what we're doing, we can want different ones. So use
IMMEDIATE (estimatesmartfee 2 CONSERVATIVE), NORMAL (estimatesmartfee
4 ECONOMICAL) and SLOW (estimatesmartfee 100 ECONOMICAL).
If one isn't available, we try making each one half the previous.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This means we convert it when retrieving from bitcoind; internally it's
always satoshi-per-1000-weight aka millisatoshi-per-weight.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is a subset of a "bitcoind: wrap callbacks in transaction." from
the everything-in-transaction branch, but we need the ld pointer now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is a bit messier than I'd like, but we want to clearly remove all
dev code (not just have it uncalled), so we remove fields and functions
altogether rather than stub them out. This means we put #ifdefs in callers
in some places, but at least it's explicit.
We still run tests, but only a subset, and we run with NO_VALGRIND under
Travis to avoid increasing test times too much.
See-also: #176
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We don't hit this in testing, since we wait for startup already. Hacking
tests to avoid that, I tested this code by hand.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Some fields were redundant, some are simply moved into 'struct lightningd'.
All routines updated to hand 'struct lightningd *ld' now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Also, we split the more sophisticated json_add helpers to avoid pulling in
everything into lightning-cli, and unify the routines to print struct
short_channel_id (it's ':', not '/' too).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
To avoid everything pulling in HTLCs stuff to the opening daemon, we
split the channel and commit_tx routines into initial_channel and
initial_commit_tx (no HTLC support) and move full HTLC supporting versions
into channeld.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is required for onchaind: we want to watch all descendents by default,
as to do otherwise would be racy, which means we need to traverse the outputs
when a tx appears.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The peer structure is only for the old daemon; instead move the list
of all outgoing txs for rebroadcasting into struct topology (still
owned by peers, so they are removed when it exits).
One subtlety: on exit, struct topology is free before the peers,
so they end up removing from a freed list. Thus we actually free
every outgoing tx manually on topology free.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The `dstate` reference was only an indirection to the `timers`
sub-structure anyway, so removing this indirection allows us to reuse
the timers in the subdaemon arch.
Other than being neater (no more global list to edit!), this lets the
new daemon and old daemon have their own separate routines.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
When initially reading the blockchain, we start 100 back from the
current block, or at the first block with a funding transaction,
whichever is earlier.
This slows testing slightly, so use whatever the "forever" value is
(10 on testnet, still 100 on mainnet).
make check -j12 times:
Before: 7m52.005s
After: 6m31.896s
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Instead of using wall-clock time, we use blocks. This is simpler and
better for database restores. And both sides will time out.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This allows us to add a new field for a callback at the end, but
more subtle, ensures broadcast in order (which simplifies testing).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
broadcast_remainder() does two things: get the error message for the
previous transaction, and send the next one (shrinking the array).
But it has two bugs:
1) It logs results on the tx at the end of the array, which is the one
it is *about* to send, and
2) The initial caller (rebroadcast_txs) hands it the complete array,
so the first tx gets broadcast twice.
The correct thing to do is to strip the array, then send the tail for
the next callback. And use nicely-named vars to help document what
we're doing.
Reported-by: Christian Decker
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is in preparation for the next step.
Note that we now don't add it to the linked list of txs we've send
until after it's sent by the immediate callback; this means it won't
get broadcast by the timer until after it's been done by broadcast_tx.
Also, this means we no longer steal the tx in broadcast_tx(); but we'll fix
up the leaks 4 patches later.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Added channel announcement serialization and parsing, as well as the
entrypoints for the IRC peer discovery. Announcements are signed by the
sending endpoint and signatures are verified before adding the channels
to the local view of the topology. We do not yet verify the existence of
the anchor transaction.