#include "bitcoin/script.h" #include "bitcoin/tx.h" #include "chaintopology.h" #include "close_tx.h" #include "commit_tx.h" #include "controlled_time.h" #include "cryptopkt.h" #include "htlc.h" #include "lightningd.h" #include "log.h" #include "names.h" #include "packets.h" #include "peer.h" #include "protobuf_convert.h" #include "secrets.h" #include "state.h" #include "utils.h" #include #include #include #include #include #include #include #include #include /* Wrap (and own!) member inside Pkt */ static Pkt *make_pkt(const tal_t *ctx, Pkt__PktCase type, const void *msg) { Pkt *pkt = tal(ctx, Pkt); pkt__init(pkt); pkt->pkt_case = type; /* This is a union, so doesn't matter which we assign. */ pkt->error = (Error *)tal_steal(pkt, msg); /* This makes sure all packets are valid. */ #ifndef NDEBUG { size_t len; u8 *packed; Pkt *cpy; len = pkt__get_packed_size(pkt); packed = tal_arr(pkt, u8, len); pkt__pack(pkt, packed); cpy = pkt__unpack(NULL, len, memcheck(packed, len)); assert(cpy); pkt__free_unpacked(cpy, NULL); tal_free(packed); } #endif return pkt; } static void queue_raw_pkt(struct peer *peer, Pkt *pkt) { size_t n = tal_count(peer->outpkt); tal_resize(&peer->outpkt, n+1); peer->outpkt[n] = pkt; log_debug(peer->log, "Queued pkt %s", pkt_name(pkt->pkt_case)); /* In case it was waiting for output. */ io_wake(peer); } static void queue_pkt(struct peer *peer, Pkt__PktCase type, const void *msg) { queue_raw_pkt(peer, make_pkt(peer, type, msg)); } void queue_pkt_open(struct peer *peer, OpenChannel__AnchorOffer anchor) { OpenChannel *o = tal(peer, OpenChannel); open_channel__init(o); o->revocation_hash = sha256_to_proto(o, &peer->local.commit->revocation_hash); o->next_revocation_hash = sha256_to_proto(o, &peer->local.next_revocation_hash); o->commit_key = pubkey_to_proto(o, peer->dstate->secpctx, &peer->local.commitkey); o->final_key = pubkey_to_proto(o, peer->dstate->secpctx, &peer->local.finalkey); o->delay = tal(o, Locktime); locktime__init(o->delay); o->delay->locktime_case = LOCKTIME__LOCKTIME_BLOCKS; o->delay->blocks = rel_locktime_to_blocks(&peer->local.locktime); o->initial_fee_rate = peer->local.commit_fee_rate; if (anchor == OPEN_CHANNEL__ANCHOR_OFFER__WILL_CREATE_ANCHOR) assert(peer->local.offer_anchor == CMD_OPEN_WITH_ANCHOR); else { assert(anchor == OPEN_CHANNEL__ANCHOR_OFFER__WONT_CREATE_ANCHOR); assert(peer->local.offer_anchor == CMD_OPEN_WITHOUT_ANCHOR); } o->anch = anchor; o->min_depth = peer->local.mindepth; queue_pkt(peer, PKT__PKT_OPEN, o); } void queue_pkt_anchor(struct peer *peer) { OpenAnchor *a = tal(peer, OpenAnchor); open_anchor__init(a); a->txid = sha256_to_proto(a, &peer->anchor.txid.sha); a->output_index = peer->anchor.index; a->amount = peer->anchor.satoshis; queue_pkt(peer, PKT__PKT_OPEN_ANCHOR, a); } void queue_pkt_open_commit_sig(struct peer *peer) { OpenCommitSig *s = tal(peer, OpenCommitSig); open_commit_sig__init(s); s->sig = signature_to_proto(s, peer->dstate->secpctx, &peer->remote.commit->sig->sig); queue_pkt(peer, PKT__PKT_OPEN_COMMIT_SIG, s); } void queue_pkt_open_complete(struct peer *peer) { OpenComplete *o = tal(peer, OpenComplete); open_complete__init(o); queue_pkt(peer, PKT__PKT_OPEN_COMPLETE, o); } void queue_pkt_htlc_add(struct peer *peer, struct htlc *htlc) { UpdateAddHtlc *u = tal(peer, UpdateAddHtlc); update_add_htlc__init(u); u->id = htlc->id; u->amount_msat = htlc->msatoshis; u->r_hash = sha256_to_proto(u, &htlc->rhash); u->expiry = abs_locktime_to_proto(u, &htlc->expiry); u->route = tal(u, Routing); routing__init(u->route); u->route->info.data = tal_dup_arr(u, u8, htlc->routing, tal_count(htlc->routing), 0); u->route->info.len = tal_count(u->route->info.data); queue_pkt(peer, PKT__PKT_UPDATE_ADD_HTLC, u); } void queue_pkt_htlc_fulfill(struct peer *peer, struct htlc *htlc) { UpdateFulfillHtlc *f = tal(peer, UpdateFulfillHtlc); update_fulfill_htlc__init(f); f->id = htlc->id; f->r = rval_to_proto(f, htlc->r); queue_pkt(peer, PKT__PKT_UPDATE_FULFILL_HTLC, f); } void queue_pkt_htlc_fail(struct peer *peer, struct htlc *htlc) { UpdateFailHtlc *f = tal(peer, UpdateFailHtlc); update_fail_htlc__init(f); f->id = htlc->id; /* FIXME: reason! */ f->reason = tal(f, FailReason); fail_reason__init(f->reason); queue_pkt(peer, PKT__PKT_UPDATE_FAIL_HTLC, f); } /* OK, we're sending a signature for their pending changes. */ void queue_pkt_commit(struct peer *peer) { UpdateCommit *u = tal(peer, UpdateCommit); /* Now send message */ update_commit__init(u); u->sig = signature_to_proto(u, peer->dstate->secpctx, &peer->remote.commit->sig->sig); queue_pkt(peer, PKT__PKT_UPDATE_COMMIT, u); } /* Send a preimage for the old commit tx. The one we've just committed to is * in peer->local.commit. */ void queue_pkt_revocation(struct peer *peer, const struct sha256 *preimage, const struct sha256 *next_hash) { UpdateRevocation *u = tal(peer, UpdateRevocation); update_revocation__init(u); u->revocation_preimage = sha256_to_proto(u, preimage); u->next_revocation_hash = sha256_to_proto(u, &peer->local.next_revocation_hash); queue_pkt(peer, PKT__PKT_UPDATE_REVOCATION, u); } Pkt *pkt_err(struct peer *peer, const char *msg, ...) { Error *e = tal(peer, Error); va_list ap; error__init(e); va_start(ap, msg); e->problem = tal_vfmt(e, msg, ap); va_end(ap); log_unusual(peer->log, "Sending PKT_ERROR: %s", e->problem); return make_pkt(peer, PKT__PKT_ERROR, e); } void queue_pkt_err(struct peer *peer, Pkt *err) { queue_raw_pkt(peer, err); } void queue_pkt_close_clearing(struct peer *peer) { u8 *redeemscript; CloseClearing *c = tal(peer, CloseClearing); close_clearing__init(c); redeemscript = bitcoin_redeem_single(c, peer->dstate->secpctx, &peer->local.finalkey); peer->closing.our_script = scriptpubkey_p2sh(peer, redeemscript); c->scriptpubkey.data = tal_dup_arr(c, u8, peer->closing.our_script, tal_count(peer->closing.our_script), 0); c->scriptpubkey.len = tal_count(c->scriptpubkey.data); queue_pkt(peer, PKT__PKT_CLOSE_CLEARING, c); } void queue_pkt_close_signature(struct peer *peer) { CloseSignature *c = tal(peer, CloseSignature); struct bitcoin_tx *close_tx; struct signature our_close_sig; close_signature__init(c); close_tx = peer_create_close_tx(peer, peer->closing.our_fee); peer_sign_mutual_close(peer, close_tx, &our_close_sig); c->sig = signature_to_proto(c, peer->dstate->secpctx, &our_close_sig); c->close_fee = peer->closing.our_fee; log_info(peer->log, "queue_pkt_close_signature: offered close fee %" PRIu64, c->close_fee); queue_pkt(peer, PKT__PKT_CLOSE_SIGNATURE, c); } Pkt *pkt_err_unexpected(struct peer *peer, const Pkt *pkt) { return pkt_err(peer, "Unexpected packet %s", pkt_name(pkt->pkt_case)); } /* Process various packets: return an error packet on failure. */ Pkt *accept_pkt_open(struct peer *peer, const Pkt *pkt, struct sha256 *revocation_hash, struct sha256 *next_revocation_hash) { struct rel_locktime locktime; const OpenChannel *o = pkt->open; u64 feerate = get_feerate(peer->dstate); if (!proto_to_rel_locktime(o->delay, &locktime)) return pkt_err(peer, "Invalid delay"); if (o->delay->locktime_case != LOCKTIME__LOCKTIME_BLOCKS) return pkt_err(peer, "Delay in seconds not accepted"); if (o->delay->blocks > peer->dstate->config.locktime_max) return pkt_err(peer, "Delay too great"); if (o->min_depth > peer->dstate->config.anchor_confirms_max) return pkt_err(peer, "min_depth too great"); if (o->initial_fee_rate < feerate * peer->dstate->config.commitment_fee_min_percent / 100) return pkt_err(peer, "Commitment fee rate too low"); if (o->initial_fee_rate > feerate * peer->dstate->config.commitment_fee_max_percent / 100) return pkt_err(peer, "Commitment fee rate too low"); if (o->anch == OPEN_CHANNEL__ANCHOR_OFFER__WILL_CREATE_ANCHOR) peer->remote.offer_anchor = CMD_OPEN_WITH_ANCHOR; else if (o->anch == OPEN_CHANNEL__ANCHOR_OFFER__WONT_CREATE_ANCHOR) peer->remote.offer_anchor = CMD_OPEN_WITHOUT_ANCHOR; else return pkt_err(peer, "Unknown offer anchor value"); if (peer->remote.offer_anchor == peer->local.offer_anchor) return pkt_err(peer, "Only one side can offer anchor"); if (!proto_to_rel_locktime(o->delay, &peer->remote.locktime)) return pkt_err(peer, "Malformed locktime"); peer->remote.mindepth = o->min_depth; peer->remote.commit_fee_rate = o->initial_fee_rate; if (!proto_to_pubkey(peer->dstate->secpctx, o->commit_key, &peer->remote.commitkey)) return pkt_err(peer, "Bad commitkey"); if (!proto_to_pubkey(peer->dstate->secpctx, o->final_key, &peer->remote.finalkey)) return pkt_err(peer, "Bad finalkey"); proto_to_sha256(o->revocation_hash, revocation_hash); proto_to_sha256(o->next_revocation_hash, next_revocation_hash); return NULL; } Pkt *accept_pkt_anchor(struct peer *peer, const Pkt *pkt) { const OpenAnchor *a = pkt->open_anchor; /* They must be offering anchor for us to try accepting */ assert(peer->local.offer_anchor == CMD_OPEN_WITHOUT_ANCHOR); assert(peer->remote.offer_anchor == CMD_OPEN_WITH_ANCHOR); proto_to_sha256(a->txid, &peer->anchor.txid.sha); peer->anchor.index = a->output_index; peer->anchor.satoshis = a->amount; return NULL; } Pkt *accept_pkt_open_commit_sig(struct peer *peer, const Pkt *pkt, struct bitcoin_signature **sig) { const OpenCommitSig *s = pkt->open_commit_sig; struct signature signature; if (!proto_to_signature(peer->dstate->secpctx, s->sig, &signature)) return pkt_err(peer, "Malformed signature"); *sig = tal(peer, struct bitcoin_signature); (*sig)->stype = SIGHASH_ALL; (*sig)->sig = signature; return NULL; } Pkt *accept_pkt_open_complete(struct peer *peer, const Pkt *pkt) { return NULL; } /* * We add changes to both our staging cstate (as they did when they sent * it) and theirs (as they will when we ack it). */ Pkt *accept_pkt_htlc_add(struct peer *peer, const Pkt *pkt, struct htlc **h) { const UpdateAddHtlc *u = pkt->update_add_htlc; struct sha256 rhash; struct abs_locktime expiry; /* BOLT #2: * * `amount_msat` MUST BE greater than 0. */ if (u->amount_msat == 0) return pkt_err(peer, "Invalid amount_msat"); proto_to_sha256(u->r_hash, &rhash); if (!proto_to_abs_locktime(u->expiry, &expiry)) return pkt_err(peer, "Invalid HTLC expiry"); if (abs_locktime_is_seconds(&expiry)) return pkt_err(peer, "HTLC expiry in seconds not supported!"); /* BOLT #2: * * A node MUST NOT add a HTLC if it would result in it * offering more than 300 HTLCs in the remote commitment transaction. */ if (peer->remote.staging_cstate->side[THEIRS].num_htlcs == 300) return pkt_err(peer, "Too many HTLCs"); /* BOLT #2: * * A node MUST set `id` to a unique identifier for this HTLC * amongst all past or future `update_add_htlc` messages. */ /* Note that it's not *our* problem if they do this, it's * theirs (future confusion). Nonetheless, we detect and * error for them. */ if (htlc_get(&peer->htlcs, u->id, REMOTE)) return pkt_err(peer, "HTLC id %"PRIu64" clashes for you", u->id); /* BOLT #2: * * ...and the receiving node MUST add the HTLC addition to the * unacked changeset for its local commitment. */ *h = peer_new_htlc(peer, u->id, u->amount_msat, &rhash, abs_locktime_to_blocks(&expiry), u->route->info.data, u->route->info.len, NULL, RCVD_ADD_HTLC); return NULL; } static Pkt *find_commited_htlc(struct peer *peer, uint64_t id, struct htlc **local_htlc) { *local_htlc = htlc_get(&peer->htlcs, id, LOCAL); /* BOLT #2: * * A node MUST check that `id` corresponds to an HTLC in its * current commitment transaction, and MUST fail the * connection if it does not. */ if (!(*local_htlc)) return pkt_err(peer, "Did not find HTLC %"PRIu64, id); if ((*local_htlc)->state != SENT_ADD_ACK_REVOCATION) return pkt_err(peer, "HTLC %"PRIu64" state %s", id, htlc_state_name((*local_htlc)->state)); return NULL; } Pkt *accept_pkt_htlc_fail(struct peer *peer, const Pkt *pkt, struct htlc **h) { const UpdateFailHtlc *f = pkt->update_fail_htlc; Pkt *err; err = find_commited_htlc(peer, f->id, h); if (err) return err; /* FIXME: Save reason. */ return NULL; } Pkt *accept_pkt_htlc_fulfill(struct peer *peer, const Pkt *pkt, struct htlc **h) { const UpdateFulfillHtlc *f = pkt->update_fulfill_htlc; struct sha256 rhash; struct rval r; Pkt *err; err = find_commited_htlc(peer, f->id, h); if (err) return err; /* Now, it must solve the HTLC rhash puzzle. */ proto_to_rval(f->r, &r); sha256(&rhash, &r, sizeof(r)); if (!structeq(&rhash, &(*h)->rhash)) return pkt_err(peer, "Invalid r for %"PRIu64, f->id); assert(!(*h)->r); (*h)->r = tal_dup(*h, struct rval, &r); return NULL; } Pkt *accept_pkt_commit(struct peer *peer, const Pkt *pkt, struct bitcoin_signature *sig) { const UpdateCommit *c = pkt->update_commit; sig->stype = SIGHASH_ALL; if (!proto_to_signature(peer->dstate->secpctx, c->sig, &sig->sig)) return pkt_err(peer, "Malformed signature"); return NULL; } Pkt *accept_pkt_revocation(struct peer *peer, const Pkt *pkt) { const UpdateRevocation *r = pkt->update_revocation; struct sha256 h, preimage; assert(peer->their_prev_revocation_hash); proto_to_sha256(r->revocation_preimage, &preimage); /* BOLT #2: * * The receiver of `update_revocation` MUST check that the * SHA256 hash of `revocation_preimage` matches the previous commitment * transaction, and MUST fail if it does not. */ sha256(&h, &preimage, sizeof(preimage)); if (!structeq(&h, peer->their_prev_revocation_hash)) return pkt_err(peer, "complete preimage incorrect"); // save revocation preimages in shachain if (!shachain_add_hash(&peer->their_preimages, 0xFFFFFFFFFFFFFFFFL - (peer->remote.commit->commit_num - 1), &preimage)) return pkt_err(peer, "preimage not next in shachain"); /* Clear the previous revocation hash. */ peer->their_prev_revocation_hash = tal_free(peer->their_prev_revocation_hash); /* Save next revocation hash. */ proto_to_sha256(r->next_revocation_hash, &peer->remote.next_revocation_hash); return NULL; } Pkt *accept_pkt_close_clearing(struct peer *peer, const Pkt *pkt) { const CloseClearing *c = pkt->close_clearing; /* FIXME: Filter for non-standardness? */ peer->closing.their_script = tal_dup_arr(peer, u8, c->scriptpubkey.data, c->scriptpubkey.len, 0); return NULL; }