/*~ Welcome to the connect daemon: maintainer of connectivity! * * This is another separate daemon which is responsible for reaching out to * other peers, and also accepting their incoming connections. It talks to * them for just long enough to validate their identity using a cryptographic * handshake, then receive and send supported feature sets; then it hands them * up to lightningd which will fire up a specific per-peer daemon to talk to * it. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /*~ We are passed two file descriptors when exec'ed from `lightningd`: the * first is a connection to `hsmd`, which we need for the cryptographic * handshake, and the second is to `gossipd`: it gathers network gossip and * thus may know how to reach certain peers. */ #define HSM_FD 3 #define GOSSIPCTL_FD 4 /*~ In C convention, constants are UPPERCASE macros. Not everything needs to * be a constant, but it soothes the programmer's conscience to encapsulate * arbitrary decisions like these in one place. */ #define MAX_CONNECT_ATTEMPTS 10 #define INITIAL_WAIT_SECONDS 1 #define MAX_WAIT_SECONDS 300 /*~ We keep a hash table (ccan/htable) of public keys, which tells us what * peers are already connected. The HTABLE_DEFINE_TYPE() macro needs a * keyof() function to extract the key. For this simple use case, that's the * identity function: */ static const struct node_id *node_id_keyof(const struct node_id *pc) { return pc; } /*~ We also need to define a hashing function. siphash24 is a fast yet * cryptographic hash in ccan/crypto/siphash24; we might be able to get away * with a slightly faster hash with fewer guarantees, but it's good hygiene to * use this unless it's a proven bottleneck. siphash_seed() is a function in * common/pseudorand which sets up a seed for our hashing; it's different * every time the program is run. */ static size_t node_id_hash(const struct node_id *id) { return siphash24(siphash_seed(), id->k, sizeof(id->k)); } /*~ This defines 'struct node_set' which contains 'struct node_id' pointers. */ HTABLE_DEFINE_TYPE(struct node_id, node_id_keyof, node_id_hash, node_id_eq, node_set); /*~ This is the global state, like `struct lightningd *ld` in lightningd. */ struct daemon { /* Who am I? */ struct node_id id; /* pubkey equivalent. */ struct pubkey mykey; /* Peers that we've handed to `lightningd`, which it hasn't told us * have disconnected. */ struct node_set peers; /* Peers we are trying to reach */ struct list_head connecting; /* Connection to main daemon. */ struct daemon_conn *master; /* Allow localhost to be considered "public": DEVELOPER-only option, * but for simplicity we don't #if DEVELOPER-wrap it here. */ bool dev_allow_localhost; /* We support use of a SOCKS5 proxy (e.g. Tor) */ struct addrinfo *proxyaddr; /* They can tell us we must use proxy even for non-Tor addresses. */ bool use_proxy_always; /* There are DNS seeds we can use to look up node addresses as a last * resort, but doing so leaks our address so can be disabled. */ bool use_dns; /* The address that the broken response returns instead of * NXDOMAIN. NULL if we have not detected a broken resolver. */ struct sockaddr *broken_resolver_response; /* File descriptors to listen on once we're activated. */ struct listen_fd *listen_fds; /* Allow to define the default behavior of tot services calls*/ bool use_v3_autotor; }; /* Peers we're trying to reach: we iterate through addrs until we succeed * or fail. */ struct connecting { /* daemon->connecting */ struct list_node list; struct daemon *daemon; /* The ID of the peer (not necessarily unique, in transit!) */ struct node_id id; /* We iterate through the tal_count(addrs) */ size_t addrnum; struct wireaddr_internal *addrs; /* NULL if there wasn't a hint. */ struct wireaddr_internal *addrhint; /* How far did we get? */ const char *connstate; /* Accumulated errors */ char *errors; /* How many seconds did we wait this time? */ u32 seconds_waited; }; /*~ C programs should generally be written bottom-to-top, with the root * function at the bottom, and functions it calls above it. That avoids * us having to pre-declare functions; but in the case of mutual recursion * pre-declarations are necessary (also, sometimes we do it to avoid making * a patch hard to review with gratuitous reorganizations). */ static void try_connect_one_addr(struct connecting *connect); /*~ Some ISP resolvers will reply with a dummy IP to queries that would otherwise * result in an NXDOMAIN reply. This just checks whether we have one such * resolver upstream and remembers its reply so we can try to filter future * dummies out. */ static bool broken_resolver(struct daemon *daemon) { struct addrinfo *addrinfo; struct addrinfo hints; const char *hostname = "nxdomain-test.doesntexist"; int err; /* If they told us to never do DNS queries, don't even do this one */ if (!daemon->use_dns) { daemon->broken_resolver_response = NULL; return false; } memset(&hints, 0, sizeof(hints)); hints.ai_family = AF_UNSPEC; hints.ai_socktype = SOCK_STREAM; hints.ai_protocol = 0; hints.ai_flags = AI_ADDRCONFIG; err = getaddrinfo(hostname, tal_fmt(tmpctx, "%d", 42), &hints, &addrinfo); /*~ Note the use of tal_dup here: it is a memdup for tal, but it's * type-aware so it's less error-prone. */ if (err == 0) { daemon->broken_resolver_response = tal_dup(daemon, struct sockaddr, addrinfo->ai_addr); freeaddrinfo(addrinfo); } else daemon->broken_resolver_response = NULL; return daemon->broken_resolver_response != NULL; } /*~ Here we see our first tal destructor: in this case the 'struct connect' * simply removes itself from the list of all 'connect' structs. */ static void destroy_connecting(struct connecting *connect) { /*~ We don't *need* the list_head here; `list_del(&connect->list)` * would work. But we have access to it, and `list_del_from()` is * clearer for readers, and also does a very brief sanity check that * the list isn't already empty which catches a surprising number of * bugs! (If CCAN_LIST_DEBUG were defined, it would perform a * complete list traverse to check it was in the list before * deletion). */ list_del_from(&connect->daemon->connecting, &connect->list); } /*~ Most simple search functions start with find_; in this case, search * for an existing attempt to connect the given peer id. */ static struct connecting *find_connecting(struct daemon *daemon, const struct node_id *id) { struct connecting *i; /*~ Note the pubkey_eq function: this is generally preferred over * doing a memcmp() manually, as it is both typesafe and can handle * any padding which the C compiler is allowed to insert between * members (unnecessary here, as there's no padding in a `struct * pubkey`). */ list_for_each(&daemon->connecting, i, list) if (node_id_eq(id, &i->id)) return i; return NULL; } /*~ Once we've connected, we disable the callback which would cause us to * to try the next address. */ static void connected_to_peer(struct daemon *daemon, struct io_conn *conn, const struct node_id *id) { /* Don't call destroy_io_conn */ io_set_finish(conn, NULL, NULL); /* We allocate 'conn' as a child of 'connect': we don't want to free * it just yet though. tal_steal() it onto the permanent 'daemon' * struct. */ tal_steal(daemon, conn); /* Now free the 'connecting' struct. */ tal_free(find_connecting(daemon, id)); } /*~ Every per-peer daemon needs a connection to the gossip daemon; this allows * it to forward gossip to/from the peer. The gossip daemon needs to know a * few of the features of the peer and its id (for reporting). * * Every peer also has read-only access to the gossip_store, which is handed * out by gossipd too, and also a "gossip_state" indicating where we're up to. * * 'features' is a field in the `init` message, indicating properties of the * node. */ static bool get_gossipfds(struct daemon *daemon, const struct node_id *id, const u8 *features, struct per_peer_state *pps) { bool gossip_queries_feature, initial_routing_sync, success; u8 *msg; /*~ The way features generally work is that both sides need to offer it; * we always offer `gossip_queries`, but this check is explicit. */ gossip_queries_feature = feature_negotiated(features, OPT_GOSSIP_QUERIES); /*~ `initial_routing_sync` is supported by every node, since it was in * the initial lightning specification: it means the peer wants the * backlog of existing gossip. */ initial_routing_sync = feature_offered(features, OPT_INITIAL_ROUTING_SYNC); /*~ We do this communication sync, since gossipd is our friend and * it's easier. If gossipd fails, we fail. */ msg = towire_gossip_new_peer(NULL, id, gossip_queries_feature, initial_routing_sync); if (!wire_sync_write(GOSSIPCTL_FD, take(msg))) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Failed writing to gossipctl: %s", strerror(errno)); msg = wire_sync_read(tmpctx, GOSSIPCTL_FD); if (!fromwire_gossip_new_peer_reply(pps, msg, &success, &pps->gs)) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Failed parsing msg gossipctl: %s", tal_hex(tmpctx, msg)); /* Gossipd might run out of file descriptors, so it tells us, and we * give up on connecting this peer. */ if (!success) { status_broken("Gossipd did not give us an fd: losing peer %s", type_to_string(tmpctx, struct node_id, id)); return false; } /* Otherwise, the next thing in the socket will be the file descriptors * for the per-peer daemon. */ pps->gossip_fd = fdpass_recv(GOSSIPCTL_FD); pps->gossip_store_fd = fdpass_recv(GOSSIPCTL_FD); return true; } /*~ This is an ad-hoc marshalling structure where we store arguments so we * can call peer_connected again. */ struct peer_reconnected { struct daemon *daemon; struct node_id id; struct wireaddr_internal addr; struct crypto_state cs; const u8 *features; }; /*~ For simplicity, lightningd only ever deals with a single connection per * peer. So if we already know about a peer, we tell lightning to disconnect * the old one and retry once it does. */ static struct io_plan *retry_peer_connected(struct io_conn *conn, struct peer_reconnected *pr) { struct io_plan *plan; /*~ As you can see, we've had issues with this code before :( */ status_debug("peer %s: processing now old peer gone", type_to_string(tmpctx, struct node_id, &pr->id)); /*~ Usually the pattern is to return this directly, but we have to free * our temporary structure. */ plan = peer_connected(conn, pr->daemon, &pr->id, &pr->addr, &pr->cs, take(pr->features)); tal_free(pr); return plan; } /*~ If we already know about this peer, we tell lightningd and it disconnects * the old one. We wait until it tells us that's happened. */ static struct io_plan *peer_reconnected(struct io_conn *conn, struct daemon *daemon, const struct node_id *id, const struct wireaddr_internal *addr, const struct crypto_state *cs, const u8 *features TAKES) { u8 *msg; struct peer_reconnected *pr; status_debug("peer %s: reconnect", type_to_string(tmpctx, struct node_id, id)); /* Tell master to kill it: will send peer_disconnect */ msg = towire_connect_reconnected(NULL, id); daemon_conn_send(daemon->master, take(msg)); /* Save arguments for next time. */ pr = tal(daemon, struct peer_reconnected); pr->daemon = daemon; pr->id = *id; pr->cs = *cs; pr->addr = *addr; /*~ Note that tal_dup_arr() will do handle the take() of features * (turning it into a simply tal_steal() in those cases). */ pr->features = tal_dup_arr(pr, u8, features, tal_count(features), 0); /*~ ccan/io supports waiting on an address: in this case, the key in * the peer set. When someone calls `io_wake()` on that address, it * will call retry_peer_connected above. */ return io_wait(conn, node_set_get(&daemon->peers, id), /*~ The notleak() wrapper is a DEVELOPER-mode hack so * that our memory leak detection doesn't consider 'pr' * (which is not referenced from our code) to be a * memory leak. */ retry_peer_connected, notleak(pr)); } /*~ Note the lack of static: this is called by peer_exchange_initmsg.c once the * INIT messages are exchanged, and also by the retry code above. */ struct io_plan *peer_connected(struct io_conn *conn, struct daemon *daemon, const struct node_id *id, const struct wireaddr_internal *addr, const struct crypto_state *cs, const u8 *features TAKES) { u8 *msg; struct per_peer_state *pps; if (node_set_get(&daemon->peers, id)) return peer_reconnected(conn, daemon, id, addr, cs, features); /* We've successfully connected. */ connected_to_peer(daemon, conn, id); /* We promised we'd take it by marking it TAKEN above; prepare to free it. */ if (taken(features)) tal_steal(tmpctx, features); /* This contains the per-peer state info; gossipd fills in pps->gs */ pps = new_per_peer_state(tmpctx, cs); /* If gossipd can't give us a file descriptor, we give up connecting. */ if (!get_gossipfds(daemon, id, features, pps)) return io_close(conn); /* Create message to tell master peer has connected. */ msg = towire_connect_peer_connected(NULL, id, addr, pps, features); /*~ daemon_conn is a message queue for inter-daemon communication: we * queue up the `connect_peer_connected` message to tell lightningd * we have connected, and give the peer and gossip fds. */ daemon_conn_send(daemon->master, take(msg)); /* io_conn_fd() extracts the fd from ccan/io's io_conn */ daemon_conn_send_fd(daemon->master, io_conn_fd(conn)); daemon_conn_send_fd(daemon->master, pps->gossip_fd); daemon_conn_send_fd(daemon->master, pps->gossip_store_fd); /* Don't try to close these on freeing. */ pps->gossip_store_fd = pps->gossip_fd = -1; /*~ Finally, we add it to the set of pubkeys: tal_dup will handle * take() args for us, by simply tal_steal()ing it. */ node_set_add(&daemon->peers, tal_dup(daemon, struct node_id, id)); /*~ We want to free the connection, but not close the fd (which is * queued to go to lightningd), so use this variation on io_close: */ return io_close_taken_fd(conn); } /*~ handshake.c's handles setting up the crypto state once we get a connection * in; we hand it straight to peer_exchange_initmsg() to send and receive INIT * and call peer_connected(). */ static struct io_plan *handshake_in_success(struct io_conn *conn, const struct pubkey *id_key, const struct wireaddr_internal *addr, const struct crypto_state *cs, struct daemon *daemon) { struct node_id id; node_id_from_pubkey(&id, id_key); status_debug("Connect IN from %s", type_to_string(tmpctx, struct node_id, &id)); return peer_exchange_initmsg(conn, daemon, cs, &id, addr); } /*~ When we get a connection in we set up its network address then call * handshake.c to set up the crypto state. */ static struct io_plan *connection_in(struct io_conn *conn, struct daemon *daemon) { struct wireaddr_internal addr; struct sockaddr_storage s = {}; socklen_t len = sizeof(s); /* The cast here is a weird Berkeley sockets API feature... */ if (getpeername(io_conn_fd(conn), (struct sockaddr *)&s, &len) != 0) { status_debug("Failed to get peername for incoming conn: %s", strerror(errno)); return io_close(conn); } if (s.ss_family == AF_INET6) { struct sockaddr_in6 *s6 = (void *)&s; addr.itype = ADDR_INTERNAL_WIREADDR; wireaddr_from_ipv6(&addr.u.wireaddr, &s6->sin6_addr, ntohs(s6->sin6_port)); } else if (s.ss_family == AF_INET) { struct sockaddr_in *s4 = (void *)&s; addr.itype = ADDR_INTERNAL_WIREADDR; wireaddr_from_ipv4(&addr.u.wireaddr, &s4->sin_addr, ntohs(s4->sin_port)); } else if (s.ss_family == AF_UNIX) { struct sockaddr_un *sun = (void *)&s; addr.itype = ADDR_INTERNAL_SOCKNAME; memcpy(addr.u.sockname, sun->sun_path, sizeof(sun->sun_path)); } else { status_broken("Unknown socket type %i for incoming conn", s.ss_family); return io_close(conn); } /* FIXME: Timeout */ /*~ The crypto handshake differs depending on whether you received or * initiated the socket connection, so there are two entry points. * Note, again, the notleak() to avoid our simplistic leak detection * code from thinking `conn` (which we don't keep a pointer to) is * leaked */ return responder_handshake(notleak(conn), &daemon->mykey, &addr, handshake_in_success, daemon); } /*~ These are the mirror functions for the connecting-out case. */ static struct io_plan *handshake_out_success(struct io_conn *conn, const struct pubkey *key, const struct wireaddr_internal *addr, const struct crypto_state *cs, struct connecting *connect) { struct node_id id; node_id_from_pubkey(&id, key); connect->connstate = "Exchanging init messages"; status_debug("Connect OUT to %s", type_to_string(tmpctx, struct node_id, &id)); return peer_exchange_initmsg(conn, connect->daemon, cs, &id, addr); } struct io_plan *connection_out(struct io_conn *conn, struct connecting *connect) { struct pubkey outkey; /* This shouldn't happen: lightningd should not give invalid ids! */ if (!pubkey_from_node_id(&outkey, &connect->id)) { status_broken("Connection out to invalid id %s", type_to_string(tmpctx, struct node_id, &connect->id)); return io_close(conn); } /* FIXME: Timeout */ status_debug("Connected out for %s", type_to_string(tmpctx, struct node_id, &connect->id)); connect->connstate = "Cryptographic handshake"; return initiator_handshake(conn, &connect->daemon->mykey, &outkey, &connect->addrs[connect->addrnum], handshake_out_success, connect); } /*~ When we've exhausted all addresses without success, we come here. * * Note that gcc gets upset if we put the PRINTF_FMT at the end like this if * it's an actual function definition, but etags gets confused and ignores the * rest of the file if we put PRINTF_FMT at the front. So we put it at the * end, in a gratuitous declaration. */ static void connect_failed(struct daemon *daemon, const struct node_id *id, u32 seconds_waited, const struct wireaddr_internal *addrhint, const char *errfmt, ...) PRINTF_FMT(5,6); static void connect_failed(struct daemon *daemon, const struct node_id *id, u32 seconds_waited, const struct wireaddr_internal *addrhint, const char *errfmt, ...) { u8 *msg; va_list ap; char *err; u32 wait_seconds; va_start(ap, errfmt); err = tal_vfmt(tmpctx, errfmt, ap); va_end(ap); /* Wait twice as long to reconnect, between min and max. */ wait_seconds = seconds_waited * 2; if (wait_seconds > MAX_WAIT_SECONDS) wait_seconds = MAX_WAIT_SECONDS; if (wait_seconds < INITIAL_WAIT_SECONDS) wait_seconds = INITIAL_WAIT_SECONDS; /* lightningd may have a connect command waiting to know what * happened. We leave it to lightningd to decide if it wants to try * again, with the wait_seconds as a hint of how long before * asking. */ msg = towire_connectctl_connect_failed(NULL, id, err, wait_seconds, addrhint); daemon_conn_send(daemon->master, take(msg)); status_debug("Failed connected out for %s: %s", type_to_string(tmpctx, struct node_id, id), err); } /*~ This is the destructor for the (unsuccessful) connection. We accumulate * the errors which occurred, so we can report to lightningd properly in case * they all fail, and try the next address. * * This is a specialized form of destructor which takes an extra argument; * it set up by either the creatively-named tal_add_destructor2(), or by * the ccan/io's io_set_finish() on a connection. */ static void destroy_io_conn(struct io_conn *conn, struct connecting *connect) { /*~ tal_append_fmt appends to a tal string. It's terribly convenient */ const char *errstr = strerror(errno); /* errno 0 means they hung up on us. */ if (errno == 0) { errstr = "peer closed connection"; if (streq(connect->connstate, "Cryptographic handshake")) errstr = "peer closed connection (wrong key?)"; } tal_append_fmt(&connect->errors, "%s: %s: %s. ", type_to_string(tmpctx, struct wireaddr_internal, &connect->addrs[connect->addrnum]), connect->connstate, errstr); connect->addrnum++; try_connect_one_addr(connect); } /* This initializes a fresh io_conn by setting it to io_connect to the * destination */ static struct io_plan *conn_init(struct io_conn *conn, struct connecting *connect) { /*~ I generally dislike the pattern of "set to NULL, assert if NULL at * bottom". On -O2 and above the compiler will warn you at compile time * if a there is a path by which the variable is not set, which is always * preferable to a runtime assertion. In this case, it's the best way * to use the "enum in a switch" trick to make sure we handle all enum * cases, so I use it. */ struct addrinfo *ai = NULL; const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum]; switch (addr->itype) { case ADDR_INTERNAL_SOCKNAME: ai = wireaddr_internal_to_addrinfo(tmpctx, addr); break; case ADDR_INTERNAL_ALLPROTO: status_failed(STATUS_FAIL_INTERNAL_ERROR, "Can't connect to all protocols"); break; case ADDR_INTERNAL_AUTOTOR: status_failed(STATUS_FAIL_INTERNAL_ERROR, "Can't connect to autotor address"); break; case ADDR_INTERNAL_FORPROXY: status_failed(STATUS_FAIL_INTERNAL_ERROR, "Can't connect to forproxy address"); break; case ADDR_INTERNAL_WIREADDR: /* If it was a Tor address, we wouldn't be here. */ ai = wireaddr_to_addrinfo(tmpctx, &addr->u.wireaddr); break; } assert(ai); io_set_finish(conn, destroy_io_conn, connect); return io_connect(conn, ai, connection_out, connect); } /* This initializes a fresh io_conn by setting it to io_connect to the * SOCKS proxy, as handled in tor.c. */ static struct io_plan *conn_proxy_init(struct io_conn *conn, struct connecting *connect) { const char *host = NULL; u16 port; const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum]; switch (addr->itype) { case ADDR_INTERNAL_FORPROXY: host = addr->u.unresolved.name; port = addr->u.unresolved.port; break; case ADDR_INTERNAL_WIREADDR: host = fmt_wireaddr_without_port(tmpctx, &addr->u.wireaddr); port = addr->u.wireaddr.port; break; case ADDR_INTERNAL_SOCKNAME: case ADDR_INTERNAL_ALLPROTO: case ADDR_INTERNAL_AUTOTOR: break; } if (!host) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Can't connect to %u address", addr->itype); io_set_finish(conn, destroy_io_conn, connect); return io_tor_connect(conn, connect->daemon->proxyaddr, host, port, connect); } /*~ This is the routine which tries to connect. */ static void try_connect_one_addr(struct connecting *connect) { int fd, af; bool use_proxy = connect->daemon->use_proxy_always; const struct wireaddr_internal *addr = &connect->addrs[connect->addrnum]; /* Out of addresses? */ if (connect->addrnum == tal_count(connect->addrs)) { connect_failed(connect->daemon, &connect->id, connect->seconds_waited, connect->addrhint, "%s", connect->errors); tal_free(connect); return; } /* Might not even be able to create eg. IPv6 sockets */ af = -1; switch (addr->itype) { case ADDR_INTERNAL_SOCKNAME: af = AF_LOCAL; /* Local sockets don't use tor proxy */ use_proxy = false; break; case ADDR_INTERNAL_ALLPROTO: status_failed(STATUS_FAIL_INTERNAL_ERROR, "Can't connect ALLPROTO"); case ADDR_INTERNAL_AUTOTOR: status_failed(STATUS_FAIL_INTERNAL_ERROR, "Can't connect AUTOTOR"); case ADDR_INTERNAL_FORPROXY: use_proxy = true; break; case ADDR_INTERNAL_WIREADDR: switch (addr->u.wireaddr.type) { case ADDR_TYPE_TOR_V2: case ADDR_TYPE_TOR_V3: use_proxy = true; break; case ADDR_TYPE_IPV4: af = AF_INET; break; case ADDR_TYPE_IPV6: af = AF_INET6; break; } } /* If we have to use proxy but we don't have one, we fail. */ if (use_proxy) { if (!connect->daemon->proxyaddr) { status_debug("Need proxy"); af = -1; } else af = connect->daemon->proxyaddr->ai_family; } if (af == -1) { fd = -1; errno = EPROTONOSUPPORT; } else fd = socket(af, SOCK_STREAM, 0); /* We might not have eg. IPv6 support, or it might be an onion addr * and we have no proxy. */ if (fd < 0) { tal_append_fmt(&connect->errors, "%s: opening %i socket gave %s. ", type_to_string(tmpctx, struct wireaddr_internal, addr), af, strerror(errno)); /* This causes very limited recursion. */ connect->addrnum++; try_connect_one_addr(connect); return; } /* This creates the new connection using our fd, with the initialization * function one of the above. */ if (use_proxy) notleak(io_new_conn(connect, fd, conn_proxy_init, connect)); else notleak(io_new_conn(connect, fd, conn_init, connect)); } /*~ connectd is responsible for incoming connections, but it's the process of * setting up the listening ports which gives us information we need for startup * (such as our own address). So we perform setup in two phases: first we bind * the sockets according to the command line arguments (if any), then we start * listening for connections to them once lightningd is ready. * * This stores the fds we're going to listen on: */ struct listen_fd { int fd; /* If we bind() IPv6 then IPv4 to same port, we *may* fail to listen() * on the IPv4 socket: under Linux, by default, the IPv6 listen() * covers IPv4 too. Normally we'd consider failing to listen on a * port to be fatal, so we note this when setting up addresses. */ bool mayfail; }; static void add_listen_fd(struct daemon *daemon, int fd, bool mayfail) { /*~ utils.h contains a convenience macro tal_arr_expand which * reallocates a tal_arr to make it one longer, then returns a pointer * to the (new) last element. */ struct listen_fd l; l.fd = fd; l.mayfail = mayfail; tal_arr_expand(&daemon->listen_fds, l); } /*~ Helper routine to create and bind a socket of a given type; like many * daemons we set it SO_REUSEADDR so we won't have to wait 2 minutes to reuse * it on restart. * * I generally avoid "return -1 on error", but for file-descriptors it's the * UNIX standard, so it's not as offensive here as it would be in other * contexts. */ static int make_listen_fd(int domain, void *addr, socklen_t len, bool mayfail) { int fd = socket(domain, SOCK_STREAM, 0); int on = 1; if (fd < 0) { if (!mayfail) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Failed to create %u socket: %s", domain, strerror(errno)); status_debug("Failed to create %u socket: %s", domain, strerror(errno)); return -1; } /* Re-use, please.. */ if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on))) status_unusual("Failed setting socket reuse: %s", strerror(errno)); if (bind(fd, addr, len) != 0) { if (!mayfail) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Failed to bind on %u socket: %s", domain, strerror(errno)); status_debug("Failed to create %u socket: %s", domain, strerror(errno)); goto fail; } return fd; fail: /*~ ccan/noerr contains convenient routines which don't clobber the * errno global; in this case, the caller can report errno. */ close_noerr(fd); return -1; } /* Return true if it created socket successfully. */ static bool handle_wireaddr_listen(struct daemon *daemon, const struct wireaddr *wireaddr, bool mayfail) { int fd; struct sockaddr_in addr; struct sockaddr_in6 addr6; /* Note the use of a switch() over enum here, even though it must be * IPv4 or IPv6 here; that will catch future changes. */ switch (wireaddr->type) { case ADDR_TYPE_IPV4: wireaddr_to_ipv4(wireaddr, &addr); /* We might fail if IPv6 bound to port first */ fd = make_listen_fd(AF_INET, &addr, sizeof(addr), mayfail); if (fd >= 0) { status_debug("Created IPv4 listener on port %u", wireaddr->port); add_listen_fd(daemon, fd, mayfail); return true; } return false; case ADDR_TYPE_IPV6: wireaddr_to_ipv6(wireaddr, &addr6); fd = make_listen_fd(AF_INET6, &addr6, sizeof(addr6), mayfail); if (fd >= 0) { status_debug("Created IPv6 listener on port %u", wireaddr->port); add_listen_fd(daemon, fd, mayfail); return true; } return false; case ADDR_TYPE_TOR_V2: case ADDR_TYPE_TOR_V3: break; } status_failed(STATUS_FAIL_INTERNAL_ERROR, "Invalid listener wireaddress type %u", wireaddr->type); } /* If it's a wildcard, turns it into a real address pointing to internet */ static bool public_address(struct daemon *daemon, struct wireaddr *wireaddr) { if (wireaddr_is_wildcard(wireaddr)) { if (!guess_address(wireaddr)) return false; } /* --dev-allow-localhost treats the localhost as "public" for testing */ return address_routable(wireaddr, daemon->dev_allow_localhost); } static void add_announcable(struct wireaddr **announcable, const struct wireaddr *addr) { tal_arr_expand(announcable, *addr); } static void add_binding(struct wireaddr_internal **binding, const struct wireaddr_internal *addr) { tal_arr_expand(binding, *addr); } /*~ ccan/asort provides a type-safe sorting function; it requires a comparison * function, which takes an optional extra argument which is usually unused as * here, but deeply painful if you need it and don't have it! */ static int wireaddr_cmp_type(const struct wireaddr *a, const struct wireaddr *b, void *unused) { /* Returns > 0 if a belongs after b, < 0 if before, == 0 if don't care */ return (int)a->type - (int)b->type; } /*~ The spec for we-can't-remember reasons specifies only one address of each * type. I think there was a bias against "hubs" which would want this. So * we sort and uniquify. */ static void finalize_announcable(struct wireaddr **announcable) { size_t n = tal_count(*announcable); /* BOLT #7: * * The origin node: *... * - MUST NOT include more than one `address descriptor` of the same * type. */ asort(*announcable, n, wireaddr_cmp_type, NULL); for (size_t i = 1; i < n; i++) { /* Note we use > instead of !=: catches asort bugs too. */ if ((*announcable)[i].type > (*announcable)[i-1].type) continue; status_unusual("WARNING: Cannot announce address %s," " already announcing %s", type_to_string(tmpctx, struct wireaddr, &(*announcable)[i]), type_to_string(tmpctx, struct wireaddr, &(*announcable)[i-1])); /* Move and shrink; step back because i++ above would skip. */ memmove(*announcable + i, *announcable + i + 1, (n - i - 1) * sizeof((*announcable)[0])); tal_resize(announcable, --n); --i; } } /*~ The user can specify three kinds of addresses: ones we bind to but don't * announce, ones we announce but don't bind to, and ones we bind to and * announce if they seem to be public addresses. * * This routine sorts out the mess: it populates the daemon->announcable array, * and returns the addresses we bound to (by convention, return is allocated * off `ctx` argument). */ static struct wireaddr_internal *setup_listeners(const tal_t *ctx, struct daemon *daemon, /* The proposed address. */ const struct wireaddr_internal *proposed_wireaddr, /* For each one, listen, announce or both */ const enum addr_listen_announce *proposed_listen_announce, const char *tor_password, struct wireaddr **announcable) { struct sockaddr_un addrun; int fd; struct wireaddr_internal *binding; /* Start with empty arrays, for tal_arr_expand() */ binding = tal_arr(ctx, struct wireaddr_internal, 0); *announcable = tal_arr(ctx, struct wireaddr, 0); /* Add addresses we've explicitly been told to *first*: implicit * addresses will be discarded then if we have multiple. */ for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) { struct wireaddr_internal wa = proposed_wireaddr[i]; /* We want announce-only addresses. */ if (proposed_listen_announce[i] & ADDR_LISTEN) continue; assert(proposed_listen_announce[i] & ADDR_ANNOUNCE); /* You can only announce wiretypes, not internal formats! */ assert(proposed_wireaddr[i].itype == ADDR_INTERNAL_WIREADDR); add_announcable(announcable, &wa.u.wireaddr); } /* Now look for listening addresses. */ for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) { struct wireaddr_internal wa = proposed_wireaddr[i]; bool announce = (proposed_listen_announce[i] & ADDR_ANNOUNCE); if (!(proposed_listen_announce[i] & ADDR_LISTEN)) continue; switch (wa.itype) { /* We support UNIX domain sockets, but can't announce */ case ADDR_INTERNAL_SOCKNAME: addrun.sun_family = AF_UNIX; memcpy(addrun.sun_path, wa.u.sockname, sizeof(addrun.sun_path)); /* Remove any existing one. */ unlink(wa.u.sockname); fd = make_listen_fd(AF_UNIX, &addrun, sizeof(addrun), false); status_debug("Created socket listener on file %s", addrun.sun_path); add_listen_fd(daemon, fd, false); /* We don't announce socket names, though we allow * them to lazily specify --addr=/socket. */ add_binding(&binding, &wa); continue; case ADDR_INTERNAL_AUTOTOR: /* We handle these after we have all bindings. */ continue; /* Special case meaning IPv6 and IPv4 */ case ADDR_INTERNAL_ALLPROTO: { bool ipv6_ok; wa.itype = ADDR_INTERNAL_WIREADDR; wa.u.wireaddr.port = wa.u.port; /* First, create wildcard IPv6 address. */ wa.u.wireaddr.type = ADDR_TYPE_IPV6; wa.u.wireaddr.addrlen = 16; memset(wa.u.wireaddr.addr, 0, sizeof(wa.u.wireaddr.addr)); ipv6_ok = handle_wireaddr_listen(daemon, &wa.u.wireaddr, true); if (ipv6_ok) { add_binding(&binding, &wa); if (announce && public_address(daemon, &wa.u.wireaddr)) add_announcable(announcable, &wa.u.wireaddr); } /* Now, create wildcard IPv4 address. */ wa.u.wireaddr.type = ADDR_TYPE_IPV4; wa.u.wireaddr.addrlen = 4; memset(wa.u.wireaddr.addr, 0, sizeof(wa.u.wireaddr.addr)); /* OK if this fails, as long as one succeeds! */ if (handle_wireaddr_listen(daemon, &wa.u.wireaddr, ipv6_ok)) { add_binding(&binding, &wa); if (announce && public_address(daemon, &wa.u.wireaddr)) add_announcable(announcable, &wa.u.wireaddr); } continue; } /* This is a vanilla wireaddr as per BOLT #7 */ case ADDR_INTERNAL_WIREADDR: handle_wireaddr_listen(daemon, &wa.u.wireaddr, false); add_binding(&binding, &wa); if (announce && public_address(daemon, &wa.u.wireaddr)) add_announcable(announcable, &wa.u.wireaddr); continue; case ADDR_INTERNAL_FORPROXY: break; } /* Shouldn't happen. */ status_failed(STATUS_FAIL_INTERNAL_ERROR, "Invalid listener address type %u", proposed_wireaddr[i].itype); } /* Now we have bindings, set up any Tor auto addresses: we will point * it at the first bound IPv4 or IPv6 address we have. */ for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) { if (!(proposed_listen_announce[i] & ADDR_LISTEN)) continue; if (proposed_wireaddr[i].itype != ADDR_INTERNAL_AUTOTOR) continue; if (!(proposed_listen_announce[i] & ADDR_ANNOUNCE)) { tor_autoservice(tmpctx, &proposed_wireaddr[i].u.torservice, tor_password, binding, daemon->use_v3_autotor); continue; }; add_announcable(announcable, tor_autoservice(tmpctx, &proposed_wireaddr[i].u.torservice, tor_password, binding, daemon->use_v3_autotor)); } /* Sort and uniquify. */ finalize_announcable(announcable); return binding; } /*~ Parse the incoming connect init message from lightningd ("master") and * assign config variables to the daemon; it should be the first message we * get. */ static struct io_plan *connect_init(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct wireaddr *proxyaddr; struct wireaddr_internal *binding; struct wireaddr_internal *proposed_wireaddr; enum addr_listen_announce *proposed_listen_announce; struct wireaddr *announcable; char *tor_password; /* Fields which require allocation are allocated off daemon */ if (!fromwire_connectctl_init( daemon, msg, &daemon->id, &proposed_wireaddr, &proposed_listen_announce, &proxyaddr, &daemon->use_proxy_always, &daemon->dev_allow_localhost, &daemon->use_dns, &tor_password, &daemon->use_v3_autotor)) { /* This is a helper which prints the type expected and the actual * message, then exits (it should never be called!). */ master_badmsg(WIRE_CONNECTCTL_INIT, msg); } if (!pubkey_from_node_id(&daemon->mykey, &daemon->id)) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Invalid id for me %s", type_to_string(tmpctx, struct node_id, &daemon->id)); /* Resolve Tor proxy address if any: we need an addrinfo to connect() * to. */ if (proxyaddr) { status_debug("Proxy address: %s", fmt_wireaddr(tmpctx, proxyaddr)); daemon->proxyaddr = wireaddr_to_addrinfo(daemon, proxyaddr); tal_free(proxyaddr); } else daemon->proxyaddr = NULL; if (broken_resolver(daemon)) { status_debug("Broken DNS resolver detected, will check for " "dummy replies"); } /* Figure out our addresses. */ binding = setup_listeners(tmpctx, daemon, proposed_wireaddr, proposed_listen_announce, tor_password, &announcable); /* Free up old allocations */ tal_free(proposed_wireaddr); tal_free(proposed_listen_announce); tal_free(tor_password); /* Tell it we're ready, handing it the addresses we have. */ daemon_conn_send(daemon->master, take(towire_connectctl_init_reply(NULL, binding, announcable))); /* Read the next message. */ return daemon_conn_read_next(conn, daemon->master); } /*~ lightningd tells us to go! */ static struct io_plan *connect_activate(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { bool do_listen; if (!fromwire_connectctl_activate(msg, &do_listen)) master_badmsg(WIRE_CONNECTCTL_ACTIVATE, msg); /* If we're --offline, lightningd tells us not to actually listen. */ if (do_listen) { for (size_t i = 0; i < tal_count(daemon->listen_fds); i++) { /* On Linux, at least, we may bind to all addresses * for IPv4 and IPv6, but we'll fail to listen. */ if (listen(daemon->listen_fds[i].fd, 64) != 0) { if (daemon->listen_fds[i].mayfail) continue; status_failed(STATUS_FAIL_INTERNAL_ERROR, "Failed to listen on socket: %s", strerror(errno)); } notleak(io_new_listener(daemon, daemon->listen_fds[i].fd, connection_in, daemon)); } } /* Free, with NULL assignment just as an extra sanity check. */ daemon->listen_fds = tal_free(daemon->listen_fds); /* OK, we're ready! */ daemon_conn_send(daemon->master, take(towire_connectctl_activate_reply(NULL))); return daemon_conn_read_next(conn, daemon->master); } /* BOLT #10: * * The DNS seed: * ... * - upon receiving a _node_ query: * - MUST select the record matching the `node_id`, if any, AND return all * addresses associated with that node. */ static const char **seednames(const tal_t *ctx, const struct node_id *id) { char bech32[100]; u5 *data = tal_arr(ctx, u5, 0); const char **seednames = tal_arr(ctx, const char *, 0); bech32_push_bits(&data, id->k, ARRAY_SIZE(id->k)*8); bech32_encode(bech32, "ln", data, tal_count(data), sizeof(bech32)); /* This is cdecker's seed */ tal_arr_expand(&seednames, tal_fmt(seednames, "%s.lseed.bitcoinstats.com", bech32)); return seednames; } /*~ As a last resort, we do a DNS lookup to the lightning DNS seed to * resolve a node name when they say to connect to it. This is synchronous, * so connectd blocks, but it's not very common so we haven't fixed it. * * This "seed by DNS" approach is similar to what bitcoind uses, and in fact * has the nice property that DNS is cached, and the seed only sees a request * from the ISP, not directly from the user. */ static void add_seed_addrs(struct wireaddr_internal **addrs, const struct node_id *id, struct sockaddr *broken_reply) { struct wireaddr *new_addrs; const char **hostnames = seednames(tmpctx, id); for (size_t i = 0; i < tal_count(hostnames); i++) { status_debug("Resolving %s", hostnames[i]); new_addrs = wireaddr_from_hostname(tmpctx, hostnames[i], DEFAULT_PORT, NULL, broken_reply, NULL); if (new_addrs) { for (size_t j = 0; j < tal_count(new_addrs); j++) { struct wireaddr_internal a; a.itype = ADDR_INTERNAL_WIREADDR; a.u.wireaddr = new_addrs[j]; status_debug("Resolved %s to %s", hostnames[i], type_to_string(tmpctx, struct wireaddr, &a.u.wireaddr)); tal_arr_expand(addrs, a); } } else status_debug("Could not resolve %s", hostnames[i]); } } /*~ This asks gossipd for any addresses advertized by the node. */ static void add_gossip_addrs(struct wireaddr_internal **addrs, const struct node_id *id) { u8 *msg; struct wireaddr *normal_addrs; /* For simplicity, we do this synchronous. */ msg = towire_gossip_get_addrs(NULL, id); if (!wire_sync_write(GOSSIPCTL_FD, take(msg))) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Failed writing to gossipctl: %s", strerror(errno)); /* This returns 'struct wireaddr's since that's what's supported by * the BOLT #7 protocol. */ msg = wire_sync_read(tmpctx, GOSSIPCTL_FD); if (!fromwire_gossip_get_addrs_reply(tmpctx, msg, &normal_addrs)) status_failed(STATUS_FAIL_INTERNAL_ERROR, "Failed parsing get_addrs_reply gossipctl: %s", tal_hex(tmpctx, msg)); /* Wrap each one in a wireaddr_internal and add to addrs. */ for (size_t i = 0; i < tal_count(normal_addrs); i++) { struct wireaddr_internal addr; addr.itype = ADDR_INTERNAL_WIREADDR; addr.u.wireaddr = normal_addrs[i]; tal_arr_expand(addrs, addr); } } /*~ Consumes addrhint if not NULL. * * That's a pretty ugly interface: we should use TAKEN, but we only have one * caller so it's marginal. */ static void try_connect_peer(struct daemon *daemon, const struct node_id *id, u32 seconds_waited, struct wireaddr_internal *addrhint) { struct wireaddr_internal *addrs; bool use_proxy = daemon->use_proxy_always; struct connecting *connect; /* Already done? May happen with timer. */ if (node_set_get(&daemon->peers, id)) return; /* If we're trying to connect it right now, that's OK. */ if (find_connecting(daemon, id)) return; /* Start an array of addresses to try. */ addrs = tal_arr(tmpctx, struct wireaddr_internal, 0); /* They can supply an optional address for the connect RPC */ if (addrhint) tal_arr_expand(&addrs, *addrhint); add_gossip_addrs(&addrs, id); if (tal_count(addrs) == 0) { /* Don't resolve via DNS seed if we're supposed to use proxy. */ if (use_proxy) { /* You're allowed to use names with proxies; in fact it's * a good idea. */ struct wireaddr_internal unresolved; const char **hostnames = seednames(tmpctx, id); for (size_t i = 0; i < tal_count(hostnames); i++) { wireaddr_from_unresolved(&unresolved, hostnames[i], DEFAULT_PORT); tal_arr_expand(&addrs, unresolved); } } else if (daemon->use_dns) { add_seed_addrs(&addrs, id, daemon->broken_resolver_response); } } /* Still no address? Fail immediately. Lightningd can still choose * to retry; an address may get gossiped or appear on the DNS seed. */ if (tal_count(addrs) == 0) { connect_failed(daemon, id, seconds_waited, addrhint, "No address known"); return; } /* Start connecting to it: since this is the only place we allocate * a 'struct connecting' we don't write a separate new_connecting(). */ connect = tal(daemon, struct connecting); connect->daemon = daemon; connect->id = *id; connect->addrs = tal_steal(connect, addrs); connect->addrnum = 0; /* connstate is supposed to be updated as we go, to give context for * errors which occur. We miss it in a few places; would be nice to * fix! */ connect->connstate = "Connection establishment"; connect->seconds_waited = seconds_waited; connect->addrhint = tal_steal(connect, addrhint); connect->errors = tal_strdup(connect, ""); list_add_tail(&daemon->connecting, &connect->list); tal_add_destructor(connect, destroy_connecting); /* Now we kick it off by recursively trying connect->addrs[connect->addrnum] */ try_connect_one_addr(connect); } /* lightningd tells us to connect to a peer by id, with optional addr hint. */ static struct io_plan *connect_to_peer(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id id; u32 seconds_waited; struct wireaddr_internal *addrhint; if (!fromwire_connectctl_connect_to_peer(tmpctx, msg, &id, &seconds_waited, &addrhint)) master_badmsg(WIRE_CONNECTCTL_CONNECT_TO_PEER, msg); try_connect_peer(daemon, &id, seconds_waited, addrhint); return daemon_conn_read_next(conn, daemon->master); } /* lightningd tells us a peer has disconnected. */ static struct io_plan *peer_disconnected(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id id, *node; if (!fromwire_connectctl_peer_disconnected(msg, &id)) master_badmsg(WIRE_CONNECTCTL_PEER_DISCONNECTED, msg); /* We should stay in sync with lightningd at all times. */ node = node_set_get(&daemon->peers, &id); if (!node) status_failed(STATUS_FAIL_INTERNAL_ERROR, "peer_disconnected unknown peer: %s", type_to_string(tmpctx, struct node_id, &id)); node_set_del(&daemon->peers, node); /* Wake up in case there's a reconnecting peer waiting in io_wait. */ io_wake(node); /* Note: deleting from a htable (a-la node_set_del) does not free it: * htable doesn't assume it's a tal object at all. */ tal_free(node); /* Read the next message from lightningd. */ return daemon_conn_read_next(conn, daemon->master); } #if DEVELOPER static struct io_plan *dev_connect_memleak(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct htable *memtable; bool found_leak; memtable = memleak_enter_allocations(tmpctx, msg, msg); /* Now delete daemon and those which it has pointers to. */ memleak_remove_referenced(memtable, daemon); found_leak = dump_memleak(memtable); daemon_conn_send(daemon->master, take(towire_connect_dev_memleak_reply(NULL, found_leak))); return daemon_conn_read_next(conn, daemon->master); } #endif /* DEVELOPER */ static struct io_plan *recv_req(struct io_conn *conn, const u8 *msg, struct daemon *daemon) { enum connect_wire_type t = fromwire_peektype(msg); /* Demux requests from lightningd: we expect INIT then ACTIVATE, then * connect requests and disconnected messages. */ switch (t) { case WIRE_CONNECTCTL_INIT: return connect_init(conn, daemon, msg); case WIRE_CONNECTCTL_ACTIVATE: return connect_activate(conn, daemon, msg); case WIRE_CONNECTCTL_CONNECT_TO_PEER: return connect_to_peer(conn, daemon, msg); case WIRE_CONNECTCTL_PEER_DISCONNECTED: return peer_disconnected(conn, daemon, msg); case WIRE_CONNECT_DEV_MEMLEAK: #if DEVELOPER return dev_connect_memleak(conn, daemon, msg); #endif /* We send these, we don't receive them */ case WIRE_CONNECTCTL_INIT_REPLY: case WIRE_CONNECTCTL_ACTIVATE_REPLY: case WIRE_CONNECT_PEER_CONNECTED: case WIRE_CONNECT_RECONNECTED: case WIRE_CONNECTCTL_CONNECT_FAILED: case WIRE_CONNECT_DEV_MEMLEAK_REPLY: break; } /* Master shouldn't give bad requests. */ status_failed(STATUS_FAIL_MASTER_IO, "%i: %s", t, tal_hex(tmpctx, msg)); } /*~ Helper for handshake.c: we ask `hsmd` to do the ECDH to get the shared * secret. It's here because it's nicer then giving the handshake code * knowledge of the HSM, but also at one stage I made a hacky gossip vampire * tool which used the handshake code, so it's nice to keep that * standalone. */ struct secret *hsm_do_ecdh(const tal_t *ctx, const struct pubkey *point) { u8 *req = towire_hsm_ecdh_req(tmpctx, point), *resp; struct secret *secret = tal(ctx, struct secret); if (!wire_sync_write(HSM_FD, req)) return tal_free(secret); resp = wire_sync_read(req, HSM_FD); if (!resp) return tal_free(secret); /* Note: hsmd will actually hang up on us if it can't ECDH: that implies * that our node private key is invalid, and we shouldn't have made * it this far. */ if (!fromwire_hsm_ecdh_resp(resp, secret)) return tal_free(secret); return secret; } /*~ UNUSED is defined to an __attribute__ for GCC; at one stage we tried to use * it ubiquitously to make us compile cleanly with -Wunused, but it's bitrotted * and we'd need to start again. * * The C++ method of omitting unused parameter names is *much* neater, and I * hope we'll eventually see it in a C standard. */ static void master_gone(struct daemon_conn *master UNUSED) { /* Can't tell master, it's gone. */ exit(2); } /*~ This is a hook used by the memleak code (if DEVELOPER=1): it can't see * pointers inside hash tables, so we give it a hint here. */ #if DEVELOPER static void memleak_daemon_cb(struct htable *memtable, struct daemon *daemon) { memleak_remove_htable(memtable, &daemon->peers.raw); } #endif /* DEVELOPER */ int main(int argc, char *argv[]) { setup_locale(); struct daemon *daemon; /* Common subdaemon setup code. */ subdaemon_setup(argc, argv); /* Allocate and set up our simple top-level structure. */ daemon = tal(NULL, struct daemon); node_set_init(&daemon->peers); memleak_add_helper(daemon, memleak_daemon_cb); list_head_init(&daemon->connecting); daemon->listen_fds = tal_arr(daemon, struct listen_fd, 0); /* stdin == control */ daemon->master = daemon_conn_new(daemon, STDIN_FILENO, recv_req, NULL, daemon); tal_add_destructor(daemon->master, master_gone); /* This tells the status_* subsystem to use this connection to send * our status_ and failed messages. */ status_setup_async(daemon->master); /* Should never exit. */ io_loop(NULL, NULL); abort(); } /*~ Getting bored? This was a pretty simple daemon! * * The good news is that the next daemon gossipd/gossipd.c is the most complex * global daemon we have! */