
Reahing The Ground With Lightning (draft

0.1)

Rusty Russell <rusty�blokstream.om>

July 24, 2015

Abstrat

The Lightning Network (as proposed by Joseph Poon and Thaddeus

Dryja[5℄) requires some new sighash modes in order to work with Bitoin.

This paper proposes a simpli�ed variant whih requires only modi�a-

tions whih are already proposed for bitoin, and slightly simpli�es the

revoation of existing ontrats.

Keywords: bitoin, lightning, revoation hash, HTLC

1 Introdution

The Bitoin network[3℄ allows the transfer of value between peers using trans-

ations. Eah bitoin transation onsists of one or more outputs (typially

speifying the hash of the reipient's key), and one or more inputs (typially

ontaining the reipient's key and a signature of the transation). Thus one

transfers value to another peer by reating a transation whih spends one or

more outputs and reates an output whih the reipient an spent using their

private key.

While suh ryptographi transfer of value is near-instantaneous, ensuring

that the transation has been inluded in the onsensus of the shared ledger (aka.

blokhain) reates delays ranging from a few minutes to hours, depending on

the level of reliability required. Inlusion in the blokhain is performed by

miners, who preferentially inlude transations paying greatest fee per byte.

Thus using the blokhain diretly is slow, and too expensive for genuinely

small transfers (typial fees are a few ents).

2 Previous Work

To work around the bitoin network's delays and fees, several forms of o�-hain

transation patterns have been developed, where series of transations are sent

diretly between two parties, with only the initial opening transation and �nal

redemption transation being inluded in the bitoin blokhain.

1

The Lightning Network paper proposed a solution, but at the ost of intro-

duing new signature variants (sighash ops). Adding a new signature opode

would allow many other improvements

12

but that is preisely why it's a matter

for longer term researh and unlikely to be deployed in Bitoin in the immediate

future.

2.1 Payment Channels

The onept of payment hannels (sometimes alled miropayment hannels) has

existed in various forms for several years[1℄. The simplest form is as follows, and

allows A to quikly and heaply pay B a stream of slightly inreasing amounts:

1. A reates an anhor transation to open the hannel whih:

(a) Outputs $1,

(b) Requires the signatures of both A and B to redeem.

2. A sends the transation ID of the anhor, whih output to spend, and the

amount of that output to B.

3. B signs a �refund� transation whih:

(a) spends that anhor output,

(b) outputs the $1 to an address ontrolled by A, and

() an only be spent in 24 hours (using the loktime �eld)

4. B sends A the refund transation.

5. A broadasts the anhor transation, knowing she an get the funds bak

in 24 hours using the refund if B vanishes.

A an now pay B 1 ent by signing a new ommitment transation to send to

B, whih spends the anhor output and has two outputs: one pays A 99, and

the other pays B 1 ent. A an later pay B another ent by signing another

transation (�updating the ommitment�) for B whih pays A 98 and B 2, et.

At any point, B an �lose the hannel� by signing and broadasting the

latest ommitment transation to ollet the money. B should do this before 24

hours pass, otherwise A an use the refund transation.

2.1.1 Limitations Of Simple Payment Channels

Simple hannels have several limitations:

Single reipient. A new reipient requires a new hannel, whih must wait for

onsensus on the anhor transation.

1

Shnorr signatures o�er faster bath validation, aording to

https://github.om/ElementsProjet/elementsprojet.github.io#shnorr-signature-validation

2

DER enoding adds unneessary bytes and is a ause of malleability

2

One way. They annot be reversed: A an sign a transation whih pays B less

money than the last, but B ould still broadast the older transation.

Vulnerable to malleability. The anhor transation ould be altered in sev-

eral ways (without invaliding it ompletely) before inlusion in the blokhain:

this alters its transation id and thus makes the refund transation unus-

able.

This last issue is a ommon one with omplex bitoin transations, and BIP62[7℄

is proposed to prevent non-signing parties from being able to malleate transa-

tions.

2.2 Generalized Payment Channels Using Revoable Trans-

ations

The Lightning network introdued generalized, bi-diretional payment hannels,

referred to here as Poon-Dryja hannels. These use a mutual anhor, whih

both reate to provide the hannel funding, and a symmetrial pair of updatable

ommitment transations rather than the single transation used in the one-way

hannel ase, as shown in �gure 1.

Figure 1: Figure 1 from the Lightning Network Draft 0.5

To update the ommitment, A sends B a signature for B's new ommitment

transation, and B sends A a signature for A's new ommitment transation.

As before, eah ommitment transation ontains two outputs, one for A

and one for B; but A's ommitment transation output to itself is enumbered

by an additional restrition (as is B's output to itself). Instead of paying A

diretly, needs both A and B's signature. B provides suh a signature, but on

a �ommitment refund� transation whih an only be spent after a delay (40

days in the paper). Thus if A loses the hannel by signing and broadasting

its ommitment transation, B an ollet its output immediately, but A must

wait 40 days.

3

This delay enumbering the output is what makes the ommitment trans-

ation revoable; one an updated ommitment transation is agreed upon, the

previous ommitment transation pair is revoked by sharing the private keys

needed to redeem those enumbered outputs. Thus, A shares its (throwaway)

private key, and B shares its throwaway private key. If A were to sign and broad-

ast a revoked ommitment transation, B ould not only immediately spend

its own output, but it has both A's key and its own to generate a transation

whih an spend the output whih would normally go to A after a delay.

2.3 Hashed Timelok Contrats (HTLCs)

The Lightning Network paper used a set of 4 transations to implement a hashed

timelok ontrat, whih guarantees payment of a given amount on presentation

of a seret value R within a ertain timespan. Any number of these ould be

ative within a generalized hannel, and this is what allows a network to form:

Node A o�ers node B $1 for the seret within 2 days, node B o�ers node C 99

for the seret within 1 day, et.

This arrangement for one side of a single node is shown in �gure 2.

Figure 2: Figure 2 from the Lightning Network Draft 0.5

3 Enhanements To Lightning

This paper proposes various modi�ations.

4

3.1 Poon-Dryja Generalized Payment Channel Modi�a-

tions

This paper proposes three of these.

3.1.1 Plaing Timeout in Output Sript

Rather than using a separate transation to enfore the delay, BIP65[6℄ proposes

an OP_CHECKLOCKTIMEVERIFY whih allows an output to speify the

minimum time at whih it an be spent. With this enhanement, we no longer

need a separate �ommitment refund� transation. The ommitment transation

to-self output sript would be a little more omplex:

• A and B's signature, OR

• A's signature and OP_CHECKLOCKTIMEVERIFY <40 days>

3.1.2 Using Relative Loktime

The Poon-Dryja hannel uses a 40 day loktime, beause transation loktime

is absolute. Before 40 days the hannel must be losed otherwise spending

a revoked transation and immediately following it with the ommit refund

transation is possible.

A proposal to extend output sripts to speify a minimum relative time

before they an be spent[2℄ an redue this timeout (say, to 1 day) and avoid

plaing a lifetime limit on the hannel, like so:

• A and B's signature, OR

• A's signature and OP_CHECKSEQUENCEVERIFY <1 day>

3.1.3 Using Revoation Preimages Instead of Private Keys

There's a slightly more intuitive and more e�ient method than exhanging

private keys, whih is to reuse a tehnique of hash preimages whih is already

needed for HTLCs (as we see later).

Instead of using a private keys, B uses knowledge of a hash preimage as well

as its signature to steal funds from a revoked ommitment transation. Thus,

to reate a ommitment transation eah side provides a hash value; to revoke

a ommitment transation it provides the prehash image.

The resulting ommitment transation to-self output now looks like:

• B's signature and a preimage whih hashes to <revoation-hash>, OR

• A's signature and OP_CHECKSEQUENCEVERIFY <1 day>

This an be expressed fairly easily in bitoin's sript-based sripting language, as

annotated in Commitment Transations For Generalized Channels. The �nal

pair of ommitment transation outputs is shown in Figure 3.

5

Commit

Tx A
Commit

Tx B

SIG A & B SIG A & B

SIG B

REVOCATION-A & SIG B

OR

OP_CSV & SIG A

SIG A

REVOCATION-B & SIG A

OR

OP_CSV & SIG B

Figure 3: Commitment Transation Outputs

3.2 Channel Opening Modi�ations

The method of reating the �rst ommitment transation before signing the

anhor transation (as proposed in the paper) presents two problems in pratie:

1. The anhor transation id required for the ommitment input will only be

known one the anhor is signed, and

2. The anhor transation an be malleated by either party before entering

the blokhain, rendering the ommitment input unusable.

The last of these is partiularly perniious, as BIP62 doesn't solve it: signa-

tories an always re-sign a transation, hene altering its transation ID. The

paper proposes new SIGHASH �ags whih mitigate this problem, but we are

attempting to avoid that.

For ease of understanding, we develop the protool in stages. Please note

that the intermediary proposals are inseure!

3.2.1 Separate Anhor Transations

To avoid the problem of needing all anhor signatures to derive the anhor

transation ID to reate the ommitment transation input, we split the anhor

into two transations; thus A knows its anhor transation ID, and B knows its

anhor transation ID as shown in Figure 4.

6

Anchor A Anchor B

Commit

Tx A

SIGA & SIGB

Commit

Tx B

SIG A & B SIG A & B

SIGA & SIGB

Figure 4: Simplisti Dual Anhor Design

This form allows A and B to reate ommitment transations whih spends

the anhors outputs by exhanging anhor transation IDs. It has the problem

that if the other party does not then broadast its anhor transation, we annot

spend the ommitment transation, and our own anhor funds are stuk.

Thus we introdue an esape transation, whih lets us regain our anhor

funds in that ase, as shown in Figure 5.

7

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

Escape B

Commit

Tx B

SIG A & B SIG A & B

SIGA

SIGA & SIGB SIGA & SIGB

SIGA & SIGB

SIGB

Figure 5: Dual Anhor With Simple Esape Transations

However, this esape transation would let either side remove its funds from

the hannel at any time, whih would make the hannel inseure. Thus, after the

ommitment transations have been established, we want to revoke the esape

transations. We an do the same way we did for the ommitment transation

revoation; by plaing restritions on the �to-me� output. In partiular, adding

a delay if paying bak to the anhor owner, and allowing it to be spent by the

other party immediately if they possess the revoation preimage, as shown in

Figure 6.

8

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

Escape B

Commit

Tx B

SIG A & B SIG A & B

OP_CSV & SIGA

OR

R���G��A & SIGB

SIGA & SIGB SIGA & SIGB

SIGA & SIGB

OP_CSV & SIGB

OR

R���G��B & SIGA

Figure 6: Dual Anhors With Revoable Esape Transations

Unfortunately, this revoation is not a omplete solution; if B uses its esape

transation, A an ollet B's anhor funds, but it has no way of olleting its

own! The ommitment transation annot be used, as one of its inputs has been

spent by B's esape transation. A's own esape transation has been revoked,

so B would simply steal the funds.

Thus we need an additional onstrution, suh that using one esape trans-

ation immediately unloks the other anhor funds for its owner. To do this, we

ensure that the esape transation is fored to reveal a seret, whih is a fairly

well-established tehnique[4℄. The anhor transation is modi�ed to either re-

quire both signatures (for the ommitment transation), or both signatures and

the seret (for the esape transation), as shown in Figure 7. Note that this

requires the other party to provide an alternate key (denoted here using A' and

B'), otherwise there is no way to fore the esape transation to provide the

seret.

9

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

OR

S��� � S��	
 � S����-A

Escape B

Commit

Tx B

SIG A & B SIG A & B

OP_CSV & SIGA

OR

�����-A & SIGB

S��� � S��	
 � S����-A S���
 � S��	 � S����-B

SIGA & SIGB

OR

S���
 � S��	 � S����-B

OP_CSV & SIGB

OR

�����-B & SIGA

Figure 7: Seret Revelation by Esape Transations

That revealed seret an be used with the other alternative: the fast esape

transation. This reveals the seret just like the esape transation, but its

output is immediately usable if one knows the other side's seret. This is shown

in Figure 8. Thus, if the B broadasts its esape transation after it has been

revoked, A an (after ensuring esape B is su�iently deep in the blok hain)

broadast its fast esape transation and use B's seret to immediately spend

the output.

On the other hand, if B broadasts its fast esape transation without know-

ing A's seret, A an simply wait for the timeout and spend the fast esape

output, then use its own fast esape transation and B's seret to reover its

own anhor funds as well.

10

Anchor A Anchor B

Commit

Tx A

Escape A

SIGA & SIGB

OR

���� � ����� � �������A

Escape B

Commit

Tx B

SIG A & B SIG A & B

OP_CSV & SIGA

OR

�������A & SIGB

���� � ����� � �������A ����� � ���� � �������B

SIGA & SIGB

OR

����� � ���� � �������B

OP_CSV & SIGB

OR

�������B & SIGA

Fast Esc A

OP_CSV & SIGB

OR

SECRET-B & SIGA

���� � ����� � �������A

Fast Esc B

OP_CSV & SIGA

OR

SECRET-A & SIGB

����� � ���� � �������B

Figure 8: Final Dual Anhor Design

The �nal sripts are shown in Appendix A: Transation Sripts.

3.2.2 Disadvantages of The Dual Anhor Approah

Unlike the mutual anhor approah, use of esape transations is not outsoura-

ble: you annot have an untrusted third party whih an monitor the network

for the other sides' revoked esape transation and respond with your own es-

ape transation. If you were to provide a third party with your fast esape

transation, you would neessarily provide it with the seret, whih it ould

give to B.

3.3 Hashed Timelok Contrat (HTLC) Modi�ation

Using the same tehniques used above, we an ondense eah HTLC into a single

output sript on the ommitment transation. This output is spendable under

three onditions:

1. Reipient knows the R value (funds go to reipient), or

2. The HTLC has timed out (funds return to sender), or

3. The Commit transation has been revoked (funds to go other side).

Unlike the original paper, we use revoation preimages instead of sharing tem-

porary private keys. If we also use OP_CHECKLOCKTIMEVERIFY and

OP_CHECKSEQUENCEVERIFY it is fairly simple to express these ondi-

tions in a single output sript.

11

For eah diretion the HTLC ould transfer funds, there are two sripts

required; one for A's ommitment transation and one for B's ommitment

transation. It's also a requirement that the onditions whih allow payment to

oneself be delayed, to give the other side an opportunity to take the funds in

ase of revoation. This is shown in �gure 9.

Commit

Tx A

Commit

Tx B

SIG A & B SIG A & B

SIG B

���O !T"O#$A & SIG B

OR

O%& '� ('") !

SIG A

���O !T"O#$B & SIG A

OR

O%& '� ('") *

�$�!AU� ('")$%AY��
OR

HTA $T"+�OUT ('")$%AY��
OR

���O !T"O#$A & SIG B

�$�!AU� ('")$%AY��
OR

HTA $T"+�OUT ('")$%AY��
OR

���O !T"O#$B & SIG A

Figure 9: HTLC Using Revoation Preimages, OP_CLV and OP_CSV

The sripts for this an be found in 4.

4 Conlusions

Seret preimages an replae exposure of temporary private keys in the Light-

ning Network onstruts with no loss of generality, and a slight gain in simpliity.

The use of sript onditionals to enfore timeouts instead of using separate

pre-signed transations redues an HTLC from a set of four dual-signed trans-

ations to a single (more omplex) output sript, and additionally avoids any

requirement for new CHECKSIG �ags for HTLCs.

By using a dual anhor and esape transations, hannel establishment an

also avoid new CHECKSIG �ags, though it loses the important ability to out-

soure the enforement of hannel ontrat terms.

Aknowlegments

Thanks to mmeijeri on Reddit's r/Bitoin for pointing out a �aw in esape

transations reusing the same A and B keys as the ommitment transation

3

.

3

https://www.reddit.om/r/Bitoin/omments/3dlxw4/reahing_the_ground_with_lightning_lightning/t80xpp

12

Thanks to Joseph Poon for designing the esape/fast-esape dual-anhor

method, as well as �nding a �aw in my original formulation of the dual anhor

onstrut and reviewing an earlier draft of this paper. Also thanks to him and

Thaddeus Dryja for the initial eye-opening Lightning Network paper.

Referenes

[1℄ Rapidly-adjusted (miro)payments to a pre-determined party. https://en.

bitoin.it/wiki/Contrat#Example_7:_Rapidly-adjusted_.28miro.

29payments_to_a_pre-determined_party.

[2℄ Mark Friedenbah. [bitoin-development℄ [BIP draft℄ onsensus-enfored

transation replaement signalled via sequene numbers. http://lists.

linuxfoundation.org/pipermail/bitoin-dev/2015-June/008452.

html.

[3℄ Satoshi Nakamoto. Bitoin: A peer-to-peer eletroni ash system, 2008.

[4℄ Tier Nolan. Alt hains and atomi transfers. https://bitointalk.org/

index.php?topi=193281.msg2224949#msg2224949.

[5℄ Joseph Poon and Thaddeus Dryja. The bitoin lightning net-

work draft version 0.5, 2015. http://lightning.network/

lightning-network-paper-DRAFT-0.5.pdf.

[6℄ Peter Todd. OP_CHECKLOCKTIMEVERIFY. https://github.om/

bitoin/bips/blob/master/bip-0065.mediawiki.

[7℄ Pieter Wuille. Dealing with malleability. https://github.om/bitoin/

bips/blob/master/bip-0062.mediawiki.

Appendix A: Transation Sripts

All outputs are expressed as pay-to-sripthash outputs, where the redeeming

input provides the redeemsript. Where a redeem-hash value is optional, it is

generally supplied: for example, if we want to pay to A if a preimage is supplied

and B if no preimage is supplied, we expet the input sriptsig to provide two

arguments in both ases (generally a zero in the seond ase). This saves an

extra test (of form �OP_DEPTH <N> OP_EQUAL�), at ost of a single byte

in the input sript.

Anhor Transation

The anhor inputs are whatever the node hooses.

13

https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
https://en.bitcoin.it/wiki/Contract#Example_7:_Rapidly-adjusted_.28micro.29payments_to_a_pre-determined_party
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

Anhor Output Redeemsript

The anhor output is a pay to sript hash, with a redeemsript as follows:

OP_HASH <SECRET-A-HASH> OP_EQUAL If the seret is supplied,

OP_IF

<KEY-B'> Should be signed by B's esape key.

OP_ELSE

<KEY-B> Should be signed by B's ommitment key.

OP_ENDIF

2 OP_SWAP Put 2 before B's key on the stak.

<KEY-A> 2 OP_CHECKMULTISIG Make sure A and B have signed.

Esape Transation

The esape transation for A spends A's anhor output and reveals A's seret.

Similarly for B.

Esape Input Sript

The extra 0 at the start is due to the OP_CHECKMULTISIG out-by-one-bug.

0 <SIG-B'> <SIG-A> <SECRET-A> {<ANCHOR-REDEEMSCRIPT>}

Esape Output Redeemsript

This allows two paths: one for the other side to use the revoation image, and

one for this side to get their funds bak after a delay. This show's A's sript,

but B's is the same with A and B exhanged.

OP_HASH160 <RHASH-A> OP_EQUAL Chek if the top of stak is

the revoation image.

OP_IF

<KEY-B> Funds for B.

OP_ELSE It's A getting their funds bak

<DELAYTIME> OP_CHECKSEQUENCEVERIFY OP_DROP

Ensure delay.

<KEY-A> Needs to be signed by A.

OP_ENDIF

OP_CHECKSIG Make sure it's signed orretly.

14

Spending The Esape Output

Either B using a revoation preimage:

<SIG-B> <REVOCATION-IMAGE-A> {<ESCAPE-REDEEMSCRIPT>}

Or A using after a timeout:

<SIG-A> 0 {<ESCAPE-REDEEMSCRIPT>}

Fast-Esape Transation

Fast-Esape Input Sript

This is idential to the normal esape input sript.

0 <SIG-B'> <SIG-A> <SECRET-A> {<ANCHOR-REDEEMSCRIPT>}

Fast-Esape Output Redeemsript

This allows two paths: one for this side to use the other side's seret (revealed

by them using an esape transation), and one for the other side to laim this

side's anhor funds after a delay. This show's A's sript, but B's is the same

with A and B exhanged.

OP_HASH <SECRET-B-HASH> OP_EQUAL If top argument is B's

seret

OP_IF

<KEY-A> For A

OP_ELSE B gets it if A doesn't know the seret.

<DELAYTIME> OP_CHECKSEQUENCEVERIFY OP_DROP

Ensure delay.

<KEY-B> Needs to be signed by B.

OP_ENDIF

OP_CHECKSIG Make sure it's signed orretly.

Spending The Fast-Esape Output

Either A using a B's seret revealed by B using its own esape transation:

<SIG-A> <SECRET-B> {<FAST-ESCAPE-REDEEMSCRIPT>}

Or B using after a timeout:

<SIG-B> 0 {<FAST-ESCAPE-REDEEMSCRIPT>}

15

Commitment Transations For Generalized Channels

These examples are for A's Commitment Transation; swith A and B to get

B's ommitment transation.

Commitment Input Sript

The ommitment transation has two inputs; one whih spends eah anhor

output. The zero after the signature indiates it is not revealing the seret:

0 <SIG-B> <SIG-A> 0 {<ANCHOR-REDEEMSCRIPT>}

Commitment Transation Output Redeemsripts

One output pays B's funds to B as normal (eg. pay to sripthash �<KEY-B>

OP_CHECKSIG�). The other output pays A's funds: either to B if they supply

the revoation preimage, or to A after a delay. This is the redeemsript:

OP_HASH160 <COMMIT-REVOCATION-HASH> OP_EQUAL Did

they supply revoation preimage?

OP_IF

<B-KEY> To B.

OP_ELSE

<LOCKTIME> OP_CHECKSEQUENCEVERIFY OP_DROP

Spending transation must be after timeout

<A-KEY> To A.

OP_ENDIF

OP_CHECKSIG Signature must be orret.

Spending Commitment Output

Either B using a revoation preimage:

<SIG-B> <COMMIT-REVOCATION-IMAGE-A> {<COMMITMENT-REDEEMSCRIPT>}

Or A using after a timeout:

<SIG-A> 0 {<COMMITMENT-REDEEMSCRIPT>}

Hash Loked Transation Commitments

There are two styles of ommitment transation outputs for HTLCs: a �sender�

and �reeiver� ase. The output is a pay-to-sript-hash, so the redeemsripts

are shown below.

These sripts show A as the sender, and B as the reeiver: exhange A and

B for the reverse.

16

HTLC Sender Redeemsript

OP_HASH160 OP_DUP Replae top element with two opies of its hash

<R-HASH> OP_EQUAL Test if they supplied the HTLC R value

OP_SWAP <COMMIT-REVOCATION-HASH> OP_EQUAL OP_ADD

Or the ommitment revoation hash

OP_IF If any hash mathed.

<KEY-B> Pay to B.

OP_ELSE Must be A, after HTLC has timed out.

<HTLC-TIMEOUT> OP_CHECKLOCKTIMEVERIFY OP_DROP

Ensure (absolute) time has passed.

<DELAY> OP_CHECKSEQUENCEVERIFY OP_DROP Delay

gives B enough time to use revoation if it has it.

<KEY-A> Pay to A.

OP_ENDIF

OP_CHECKSIG Verify A or B's signature is orret.

HTLC Reeiver Redeemsript

OP_HASH160 OP_DUP Replae top element with two opies of its hash

<R-HASH> OP_EQUAL B redeeming the ontrat, using R preimage?

OP_IF

OP_DROP Remove extra hash

<KEY-A> Pay to B

OP_ELSE

<COMMIT-REVOCATION-HASH> OP_EQUAL If the ommit

has been revoked.

OP_NOTIF If not, you need to wait for timeout.

<HTLC-TIMEOUT> OP_CHECKLOCKTIMEVERIFY OP_DROP

Ensure (absolute) time has passed.

OP_ENDIF

<KEY-A> Pay to A

OP_ENDIF

OP_CHECKSIG Verify A or B's signature is orret.

17

Redeeming A HTLC Output

To redeem an HTLC, the reipient one provides the preimage R, and their

signature. In our example above, B an redeem the HTLC:

<SIG-B> <HTLC-R-VALUE> {<HTLC-REDEEMSCRIPT>}

Claiming a Timed-out HTLC

To laim a timed-out HTLC, the sender supplies a zero value (whih is nie and

short, but fails to hash to any of the revoation hashes), and their signature. In

our example above, A an laim the timed-out HTLC:

<SIG-A> 0 {<HTLC-REDEEMSCRIPT>}

Claiming A HTLC Output For A Revoked Commitment Transation

If either side publishes a ommitment transation whih has been revoked, we

an use the revoation preimage they supplied to spend all the outputs. This

example shows A laiming the HTLC output if B broadasts a revoked ommit-

ment transation:

<SIG-A> <COMMIT-REVOCATION> {<HTLC-REDEEMSCRIPT>}

18

	1 Introduction
	2 Previous Work
	2.1 Payment Channels
	2.1.1 Limitations Of Simple Payment Channels

	2.2 Generalized Payment Channels Using Revocable Transactions
	2.3 Hashed Timelock Contracts (HTLCs)

	3 Enhancements To Lightning
	3.1 Poon-Dryja Generalized Payment Channel Modifications
	3.1.1 Placing Timeout in Output Script
	3.1.2 Using Relative Locktime
	3.1.3 Using Revocation Preimages Instead of Private Keys

	3.2 Channel Opening Modifications
	3.2.1 Separate Anchor Transactions
	3.2.2 Disadvantages of The Dual Anchor Approach

	3.3 Hashed Timelock Contract (HTLC) Modification

	4 Conclusions

