#include #include "bitcoin/pubkey.h" #include "bitcoin/signature.h" #include "protobuf_convert.h" Signature *signature_to_proto(const tal_t *ctx, const struct signature *sig) { Signature *pb = tal(ctx, Signature); signature__init(pb); assert(sig_valid(sig)); #ifdef USE_SCHNORR memcpy(&pb->r1, sig->schnorr, 8); memcpy(&pb->r2, sig->schnorr + 8, 8); memcpy(&pb->r3, sig->schnorr + 16, 8); memcpy(&pb->r4, sig->schnorr + 24, 8); memcpy(&pb->s1, sig->schnorr + 32, 8); memcpy(&pb->s2, sig->schnorr + 40, 8); memcpy(&pb->s3, sig->schnorr + 48, 8); memcpy(&pb->s4, sig->schnorr + 56, 8); #else /* FIXME: Need a portable way to encode signatures in libsecp! */ /* Kill me now... */ memcpy(&pb->r1, sig->sig.data, 8); memcpy(&pb->r2, sig->sig.data + 8, 8); memcpy(&pb->r3, sig->sig.data + 16, 8); memcpy(&pb->r4, sig->sig.data + 24, 8); memcpy(&pb->s1, sig->sig.data + 32, 8); memcpy(&pb->s2, sig->sig.data + 40, 8); memcpy(&pb->s3, sig->sig.data + 48, 8); memcpy(&pb->s4, sig->sig.data + 56, 8); #endif return pb; } bool proto_to_signature(const Signature *pb, struct signature *sig) { /* Kill me again. */ #ifdef USE_SCHNORR memcpy(sig->schnorr, &pb->r1, 8); memcpy(sig->schnorr + 8, &pb->r2, 8); memcpy(sig->schnorr + 16, &pb->r3, 8); memcpy(sig->schnorr + 24, &pb->r4, 8); memcpy(sig->schnorr + 32, &pb->s1, 8); memcpy(sig->schnorr + 40, &pb->s2, 8); memcpy(sig->schnorr + 48, &pb->s3, 8); memcpy(sig->schnorr + 56, &pb->s4, 8); #else /* FIXME: Need a portable way to encode signatures in libsecp! */ memcpy(sig->sig.data, &pb->r1, 8); memcpy(sig->sig.data + 8, &pb->r2, 8); memcpy(sig->sig.data + 16, &pb->r3, 8); memcpy(sig->sig.data + 24, &pb->r4, 8); memcpy(sig->sig.data + 32, &pb->s1, 8); memcpy(sig->sig.data + 40, &pb->s2, 8); memcpy(sig->sig.data + 48, &pb->s3, 8); memcpy(sig->sig.data + 56, &pb->s4, 8); #endif return sig_valid(sig); } BitcoinPubkey *pubkey_to_proto(const tal_t *ctx, const struct pubkey *key) { BitcoinPubkey *p = tal(ctx, BitcoinPubkey); struct pubkey check; bitcoin_pubkey__init(p); p->key.len = pubkey_derlen(key); p->key.data = tal_dup_arr(p, u8, key->der, p->key.len, 0); assert(pubkey_from_der(p->key.data, p->key.len, &check)); assert(pubkey_eq(&check, key)); return p; } bool proto_to_pubkey(const BitcoinPubkey *pb, struct pubkey *key) { return pubkey_from_der(pb->key.data, pb->key.len, key); } Sha256Hash *sha256_to_proto(const tal_t *ctx, const struct sha256 *hash) { Sha256Hash *h = tal(ctx, Sha256Hash); sha256_hash__init(h); /* Kill me now... */ memcpy(&h->a, hash->u.u8, 8); memcpy(&h->b, hash->u.u8 + 8, 8); memcpy(&h->c, hash->u.u8 + 16, 8); memcpy(&h->d, hash->u.u8 + 24, 8); return h; } void proto_to_sha256(const Sha256Hash *pb, struct sha256 *hash) { /* Kill me again. */ memcpy(hash->u.u8, &pb->a, 8); memcpy(hash->u.u8 + 8, &pb->b, 8); memcpy(hash->u.u8 + 16, &pb->c, 8); memcpy(hash->u.u8 + 24, &pb->d, 8); } static bool proto_to_locktime(const Locktime *l, uint32_t off, uint32_t *locktime) { switch (l->locktime_case) { case LOCKTIME__LOCKTIME_SECONDS: *locktime = off + l->seconds; /* Check for wrap, or too low value */ if (*locktime < 500000000) return false; break; case LOCKTIME__LOCKTIME_BLOCKS: if (l->blocks >= 500000000) return false; *locktime = l->blocks; break; default: return false; } return true; } bool proto_to_rel_locktime(const Locktime *l, uint32_t *locktime) { /* Original proposal from Elements Alpha was simply locktime. */ #ifdef HAS_BIP68 switch (l->locktime_case) { case LOCKTIME__LOCKTIME_SECONDS: *locktime = (1 << 22) | (l->seconds / 512); if (l->seconds / 512 > 0xFFFF) return false; break; case LOCKTIME__LOCKTIME_BLOCKS: *locktime = l->blocks; if (l->blocks > 0xFFFF) return false; break; default: return false; } /* No other bits should be set. */ assert((*locktime & ~((1 << 22) | 0xFFFF)) == 0); return true; #else return proto_to_locktime(l, 500000000, locktime); #endif } bool proto_to_abs_locktime(const Locktime *l, uint32_t *locktime) { return proto_to_locktime(l, 0, locktime); }