#include #include /*~ Welcome to the gossip daemon: keeper of maps! * * This is the last "global" daemon; it has three purposes. * * 1. To determine routes for payments when lightningd asks. * 2. The second purpose is to receive gossip from peers (via their * per-peer daemons) and send it out to them. * 3. Talk to `connectd` to to answer address queries for nodes. * * The gossip protocol itself is fairly simple, but has some twists which * add complexity to this daemon. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* We talk to `hsmd` to sign our gossip messages with the node key */ #define HSM_FD 3 /* connectd asks us for help finding nodes, and gossip fds for new peers */ #define CONNECTD_FD 4 /* In developer mode we provide hooks for whitebox testing */ #if DEVELOPER static u32 max_scids_encode_bytes = -1U; static bool suppress_gossip = false; #endif /*~ The core daemon structure: */ struct daemon { /* Who am I? Helps us find ourself in the routing map. */ struct node_id id; /* Peers we are gossiping to: id is unique */ struct list_head peers; /* Connection to lightningd. */ struct daemon_conn *master; /* Connection to connect daemon. */ struct daemon_conn *connectd; /* Routing information */ struct routing_state *rstate; /* chainhash for checking/making gossip msgs */ struct bitcoin_blkid chain_hash; /* Timers: we batch gossip, and also refresh announcements */ struct timers timers; /* How often we flush gossip (60 seconds unless DEVELOPER override) */ u32 broadcast_interval_msec; /* Global features to list in node_announcement. */ u8 *globalfeatures; /* Alias (not NUL terminated) and favorite color for node_announcement */ u8 alias[32]; u8 rgb[3]; /* What addresses we can actually announce. */ struct wireaddr *announcable; }; /* This represents each peer we're gossiping with */ struct peer { /* daemon->peers */ struct list_node list; /* parent pointer. */ struct daemon *daemon; /* The ID of the peer (always unique) */ struct node_id id; /* The two features gossip cares about (so far) */ bool gossip_queries_feature, initial_routing_sync_feature; /* High water mark for the staggered broadcast */ u64 broadcast_index; /* Timestamp range the peer asked us to filter gossip by */ u32 gossip_timestamp_min, gossip_timestamp_max; /* Are there outstanding queries on short_channel_ids? */ const struct short_channel_id *scid_queries; size_t scid_query_idx; /* Are there outstanding node_announcements from scid_queries? */ struct node_id *scid_query_nodes; size_t scid_query_nodes_idx; /* If this is NULL, we're syncing gossip now. */ struct oneshot *gossip_timer; /* How many query responses are we expecting? */ size_t num_scid_queries_outstanding; /* How many pongs are we expecting? */ size_t num_pings_outstanding; /* Map of outstanding channel_range requests. */ bitmap *query_channel_blocks; /* What we're querying: [range_first_blocknum, range_end_blocknum) */ u32 range_first_blocknum, range_end_blocknum; u32 range_blocks_remaining; struct short_channel_id *query_channel_scids; /* The daemon_conn used to queue messages to/from the peer. */ struct daemon_conn *dc; }; /*~ A channel consists of a `struct half_chan` for each direction, each of * which has a `flags` word from the `channel_update`; bit 1 is * ROUTING_FLAGS_DISABLED in the `channel_update`. But we also keep a local * whole-channel flag which indicates it's not available; we use this when a * peer disconnects, and generate a `channel_update` to tell the world lazily * when someone asks. */ static void peer_disable_channels(struct daemon *daemon, struct node *node) { /* If this peer had a channel with us, mark it disabled. */ struct chan_map_iter i; struct chan *c; for (c = first_chan(node, &i); c; c = next_chan(node, &i)) { if (node_id_eq(&other_node(node, c)->id, &daemon->id)) c->local_disabled = true; } } /*~ Destroy a peer, usually because the per-peer daemon has exited. * * Were you wondering why we call this "destroy_peer" and not "peer_destroy"? * I thought not! But while CCAN modules are required to keep to their own * prefix namespace, leading to unnatural word order, we couldn't stomach that * for our own internal use. We use 'find_foo', 'destroy_foo' and 'new_foo'. */ static void destroy_peer(struct peer *peer) { struct node *node; /* Remove it from the peers list */ list_del_from(&peer->daemon->peers, &peer->list); /* If we have a channel with this peer, disable it. */ node = get_node(peer->daemon->rstate, &peer->id); if (node) peer_disable_channels(peer->daemon, node); /* This is tricky: our lifetime is tied to the daemon_conn; it's our * parent, so we are freed if it is, but we need to free it if we're * freed manually. tal_free() treats this as a noop if it's already * being freed */ tal_free(peer->dc); } /* Search for a peer. */ static struct peer *find_peer(struct daemon *daemon, const struct node_id *id) { struct peer *peer; list_for_each(&daemon->peers, peer, list) if (node_id_eq(&peer->id, id)) return peer; return NULL; } /* Queue a gossip message for the peer: we wrap every gossip message; the * subdaemon simply unwraps and sends. Note that we don't wrap messages * coming from the subdaemon to gossipd, because gossipd has to process the * messages anyway (and it doesn't trust the subdaemon); the subdaemon * trusts gossipd and will forward whatever it's told to. */ static void queue_peer_msg(struct peer *peer, const u8 *msg TAKES) { const u8 *send = towire_gossipd_send_gossip(NULL, msg); /* Autogenerated functions don't take(), so we do here */ if (taken(msg)) tal_free(msg); daemon_conn_send(peer->dc, take(send)); } /* This pokes daemon_conn, which calls dump_gossip: the NULL gossip_timer * tells it that the gossip timer has expired and it should send any queued * gossip messages. */ static void wake_gossip_out(struct peer *peer) { /* If we were waiting, we're not any more */ peer->gossip_timer = tal_free(peer->gossip_timer); /* Notify the daemon_conn-write loop */ daemon_conn_wake(peer->dc); } /* BOLT #7: * * There are several messages which contain a long array of * `short_channel_id`s (called `encoded_short_ids`) so we utilize a * simple compression scheme: the first byte indicates the encoding, the * rest contains the data. */ static u8 *encode_short_channel_ids_start(const tal_t *ctx) { u8 *encoded = tal_arr(ctx, u8, 0); towire_u8(&encoded, SHORTIDS_ZLIB); return encoded; } /* Marshal a single short_channel_id */ static void encode_add_short_channel_id(u8 **encoded, const struct short_channel_id *scid) { towire_short_channel_id(encoded, scid); } /* Greg Maxwell asked me privately about using zlib for communicating a set, * and suggested that we'd be better off using Golomb-Rice coding a-la BIP * 158. However, naively using Rice encoding isn't a win: we have to get * more complex and use separate streams. The upside is that it's between * 2 and 5 times smaller (assuming optimal Rice encoding + gzip). We can add * that later. */ static u8 *zencode_scids(const tal_t *ctx, const u8 *scids, size_t len) { u8 *z; int err; unsigned long compressed_len = len; /* Prefer to fail if zlib makes it larger */ z = tal_arr(ctx, u8, len); err = compress2(z, &compressed_len, scids, len, Z_BEST_COMPRESSION); if (err == Z_OK) { status_trace("short_ids compressed %zu into %lu", len, compressed_len); tal_resize(&z, compressed_len); return z; } status_trace("short_ids compress %zu returned %i:" " not compresssing", len, err); return NULL; } /* Once we've assembled */ static bool encode_short_channel_ids_end(u8 **encoded, size_t max_bytes) { u8 *z; /* First byte says what encoding we want. */ switch ((enum scid_encode_types)(*encoded)[0]) { case SHORTIDS_ZLIB: /* compress */ z = zencode_scids(tmpctx, *encoded + 1, tal_count(*encoded) - 1); if (z) { /* If successful, copy over and trimp */ tal_resize(encoded, 1 + tal_count(z)); memcpy((*encoded) + 1, z, tal_count(z)); goto check_length; } /* Otherwise, change first byte to 'uncompressed' */ (*encoded)[0] = SHORTIDS_UNCOMPRESSED; /* Fall thru */ case SHORTIDS_UNCOMPRESSED: goto check_length; } status_failed(STATUS_FAIL_INTERNAL_ERROR, "Unknown short_ids encoding %u", (*encoded)[0]); check_length: #if DEVELOPER if (tal_count(*encoded) > max_scids_encode_bytes) return false; #endif return tal_count(*encoded) <= max_bytes; } /* BOLT #7: * * A node: * - if the `gossip_queries` feature is negotiated: * - MUST NOT relay any gossip messages unless explicitly requested. */ static void setup_gossip_range(struct peer *peer) { u8 *msg; /*~ Without the `gossip_queries` feature, gossip flows automatically. */ if (!peer->gossip_queries_feature) return; /*~ We need to ask for something to start the gossip flowing: we ask * for everything from 1970 to 2106; this is horribly naive. We * should be much smarter about requesting only what we don't already * have. */ msg = towire_gossip_timestamp_filter(peer, &peer->daemon->chain_hash, 0, UINT32_MAX); queue_peer_msg(peer, take(msg)); } /* Create a node_announcement with the given signature. It may be NULL in the * case we need to create a provisional announcement for the HSM to sign. * This is called twice: once with the dummy signature to get it signed and a * second time to build the full packet with the signature. The timestamp is * handed in rather than using time_now() internally, since that could change * between the dummy creation and the call with a signature. */ static u8 *create_node_announcement(const tal_t *ctx, struct daemon *daemon, secp256k1_ecdsa_signature *sig, u32 timestamp) { u8 *addresses = tal_arr(tmpctx, u8, 0); u8 *announcement; size_t i; if (!sig) { sig = tal(tmpctx, secp256k1_ecdsa_signature); memset(sig, 0, sizeof(*sig)); } for (i = 0; i < tal_count(daemon->announcable); i++) towire_wireaddr(&addresses, &daemon->announcable[i]); announcement = towire_node_announcement(ctx, sig, daemon->globalfeatures, timestamp, &daemon->id, daemon->rgb, daemon->alias, addresses); return announcement; } /*~ This routine created a `node_announcement` for our node, and hands it to * the routing.c code like any other `node_announcement`. Such announcements * are only accepted if there is an announced channel associated with that node * (to prevent spam), so we only call this once we've announced a channel. */ static void send_node_announcement(struct daemon *daemon) { u32 timestamp = time_now().ts.tv_sec; secp256k1_ecdsa_signature sig; u8 *msg, *nannounce, *err; s64 last_timestamp; struct node *self = get_node(daemon->rstate, &daemon->id); /* BOLT #7: * * The origin node: * - MUST set `timestamp` to be greater than that of any previous * `node_announcement` it has previously created. */ if (self) last_timestamp = self->last_timestamp; else /* last_timestamp is carefully a s64, so this works */ last_timestamp = -1; if (timestamp <= last_timestamp) timestamp = last_timestamp + 1; /* Get an unsigned one. */ nannounce = create_node_announcement(tmpctx, daemon, NULL, timestamp); /* Ask hsmd to sign it (synchronous) */ if (!wire_sync_write(HSM_FD, take(towire_hsm_node_announcement_sig_req(NULL, nannounce)))) status_failed(STATUS_FAIL_MASTER_IO, "Could not write to HSM: %s", strerror(errno)); msg = wire_sync_read(tmpctx, HSM_FD); if (!fromwire_hsm_node_announcement_sig_reply(msg, &sig)) status_failed(STATUS_FAIL_MASTER_IO, "HSM returned an invalid node_announcement sig"); /* We got the signature for out provisional node_announcement back * from the HSM, create the real announcement and forward it to * gossipd so it can take care of forwarding it. */ nannounce = create_node_announcement(NULL, daemon, &sig, timestamp); /* This injects it into the routing code in routing.c; it should not * reject it! */ err = handle_node_announcement(daemon->rstate, take(nannounce)); if (err) status_failed(STATUS_FAIL_INTERNAL_ERROR, "rejected own node announcement: %s", tal_hex(tmpctx, err)); } /* Return true if the only change would be the timestamp. */ static bool node_announcement_redundant(struct daemon *daemon) { struct node *n = get_node(daemon->rstate, &daemon->id); if (!n) return false; if (n->last_timestamp == -1) return false; if (tal_count(n->addresses) != tal_count(daemon->announcable)) return false; for (size_t i = 0; i < tal_count(n->addresses); i++) if (!wireaddr_eq(&n->addresses[i], &daemon->announcable[i])) return false; BUILD_ASSERT(ARRAY_SIZE(daemon->alias) == ARRAY_SIZE(n->alias)); if (!memeq(daemon->alias, ARRAY_SIZE(daemon->alias), n->alias, ARRAY_SIZE(n->alias))) return false; BUILD_ASSERT(ARRAY_SIZE(daemon->rgb) == ARRAY_SIZE(n->rgb_color)); if (!memeq(daemon->rgb, ARRAY_SIZE(daemon->rgb), n->rgb_color, ARRAY_SIZE(n->rgb_color))) return false; if (!memeq(daemon->globalfeatures, tal_count(daemon->globalfeatures), n->globalfeatures, tal_count(n->globalfeatures))) return false; return true; } /* Should we announce our own node? Called at strategic places. */ static void maybe_send_own_node_announce(struct daemon *daemon) { /* We keep an internal flag in the routing code to say we've announced * a local channel. The alternative would be to have it make a * callback, but when we start up we don't want to make multiple * announcments, so we use this approach for now. */ if (!daemon->rstate->local_channel_announced) return; if (node_announcement_redundant(daemon)) return; send_node_announcement(daemon); daemon->rstate->local_channel_announced = false; } /*~Routines to handle gossip messages from peer, forwarded by subdaemons. *----------------------------------------------------------------------- * * It's not the subdaemon's fault if they're malformed or invalid; so these * all return an error packet which gets sent back to the subdaemon in that * case. */ /* The routing code checks that it's basically valid, returning an * error message for the peer or NULL. NULL means it's OK, but the * message might be redundant, in which case scid is also NULL. * Otherwise `scid` gives us the short_channel_id claimed by the * message, and puts the announcemnt on an internal 'pending' * queue. We'll send a request to lightningd to look it up, and continue * processing in `handle_txout_reply`. */ static const u8 *handle_channel_announcement_msg(struct peer *peer, const u8 *msg) { const struct short_channel_id *scid; const u8 *err; /* If it's OK, tells us the short_channel_id to lookup */ err = handle_channel_announcement(peer->daemon->rstate, msg, &scid); if (err) return err; else if (scid) daemon_conn_send(peer->daemon->master, take(towire_gossip_get_txout(NULL, scid))); return NULL; } static u8 *handle_channel_update_msg(struct peer *peer, const u8 *msg) { /* Hand the channel_update to the routing code */ u8 *err = handle_channel_update(peer->daemon->rstate, msg, "subdaemon"); if (err) return err; /*~ As a nasty compromise in the spec, we only forward channel_announce * once we have a channel_update; the channel isn't *usable* for * routing until you have both anyway. For this reason, we might have * just sent out our own channel_announce, so we check if it's time to * send a node_announcement too. */ maybe_send_own_node_announce(peer->daemon); return NULL; } /*~ The peer can ask about an array of short channel ids: we don't assemble the * reply immediately but process them one at a time in dump_gossip which is * called when there's nothing more important to send. */ static const u8 *handle_query_short_channel_ids(struct peer *peer, const u8 *msg) { struct bitcoin_blkid chain; u8 *encoded; struct short_channel_id *scids; if (!fromwire_query_short_channel_ids(tmpctx, msg, &chain, &encoded)) { return towire_errorfmt(peer, NULL, "Bad query_short_channel_ids %s", tal_hex(tmpctx, msg)); } if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain)) { status_trace("%s sent query_short_channel_ids chainhash %s", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct bitcoin_blkid, &chain)); return NULL; } /* BOLT #7: * * - if it has not sent `reply_short_channel_ids_end` to a * previously received `query_short_channel_ids` from this * sender: * - MAY fail the connection. */ if (peer->scid_queries || peer->scid_query_nodes) { return towire_errorfmt(peer, NULL, "Bad concurrent query_short_channel_ids"); } scids = decode_short_ids(tmpctx, encoded); if (!scids) { return towire_errorfmt(peer, NULL, "Bad query_short_channel_ids encoding %s", tal_hex(tmpctx, encoded)); } /* BOLT #7: * * - MUST respond to each known `short_channel_id` with a `channel_announcement` * and the latest `channel_update` for each end * - SHOULD NOT wait for the next outgoing gossip flush to send * these. */ peer->scid_queries = tal_steal(peer, scids); peer->scid_query_idx = 0; peer->scid_query_nodes = tal_arr(peer, struct node_id, 0); /* Notify the daemon_conn-write loop to invoke create_next_scid_reply */ daemon_conn_wake(peer->dc); return NULL; } /*~ The peer can specify a timestamp range; gossip outside this range won't be * sent any more, and we'll start streaming gossip in this range. This is * only supposed to be used if we negotiate the `gossip_queries` in which case * the first send triggers the first gossip to be sent. */ static u8 *handle_gossip_timestamp_filter(struct peer *peer, const u8 *msg) { struct bitcoin_blkid chain_hash; u32 first_timestamp, timestamp_range; if (!fromwire_gossip_timestamp_filter(msg, &chain_hash, &first_timestamp, ×tamp_range)) { return towire_errorfmt(peer, NULL, "Bad gossip_timestamp_filter %s", tal_hex(tmpctx, msg)); } if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain_hash)) { status_trace("%s sent gossip_timestamp_filter chainhash %s", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct bitcoin_blkid, &chain_hash)); return NULL; } /* We initialize the timestamps to "impossible" values so we can * detect that this is the first filter: in this case, we gossip sync * immediately. */ if (peer->gossip_timestamp_min > peer->gossip_timestamp_max) wake_gossip_out(peer); /* FIXME: We don't index by timestamp, so this forces a brute * search! But keeping in correct order is v. hard. */ peer->gossip_timestamp_min = first_timestamp; peer->gossip_timestamp_max = first_timestamp + timestamp_range - 1; /* In case they overflow. */ if (peer->gossip_timestamp_max < peer->gossip_timestamp_min) peer->gossip_timestamp_max = UINT32_MAX; peer->broadcast_index = 0; return NULL; } /*~ We can send multiple replies when the peer queries for all channels in * a given range of blocks; each one indicates the range of blocks it covers. */ static void reply_channel_range(struct peer *peer, u32 first_blocknum, u32 number_of_blocks, const u8 *encoded) { /* BOLT #7: * * - For each `reply_channel_range`: * - MUST set with `chain_hash` equal to that of `query_channel_range`, * - MUST encode a `short_channel_id` for every open channel it * knows in blocks `first_blocknum` to `first_blocknum` plus * `number_of_blocks` minus one. * - MUST limit `number_of_blocks` to the maximum number of blocks * whose results could fit in `encoded_short_ids` * - if does not maintain up-to-date channel information for * `chain_hash`: * - MUST set `complete` to 0. * - otherwise: * - SHOULD set `complete` to 1. */ u8 *msg = towire_reply_channel_range(NULL, &peer->daemon->chain_hash, first_blocknum, number_of_blocks, 1, encoded); queue_peer_msg(peer, take(msg)); } /*~ When we need to send an array of channels, it might go over our 64k packet * size. If it doesn't, we recurse, splitting in two, etc. Each message * indicates what blocks it contains, so the recipient knows when we're * finished. * * tail_blocks is the empty blocks at the end, in case they asked for all * blocks to 4 billion. */ static bool queue_channel_ranges(struct peer *peer, u32 first_blocknum, u32 number_of_blocks, u32 tail_blocks) { struct routing_state *rstate = peer->daemon->rstate; u8 *encoded = encode_short_channel_ids_start(tmpctx); struct short_channel_id scid; bool scid_ok; /* BOLT #7: * * 1. type: 264 (`reply_channel_range`) (`gossip_queries`) * 2. data: * * [`32`:`chain_hash`] * * [`4`:`first_blocknum`] * * [`4`:`number_of_blocks`] * * [`1`:`complete`] * * [`2`:`len`] * * [`len`:`encoded_short_ids`] */ const size_t reply_overhead = 32 + 4 + 4 + 1 + 2; const size_t max_encoded_bytes = 65535 - 2 - reply_overhead; /* Avoid underflow: we don't use block 0 anyway */ if (first_blocknum == 0) scid_ok = mk_short_channel_id(&scid, 1, 0, 0); else scid_ok = mk_short_channel_id(&scid, first_blocknum, 0, 0); scid.u64--; if (!scid_ok) return false; /* We keep a `uintmap` of `short_channel_id` to `struct chan *`. * Unlike a htable, it's efficient to iterate through, but it only * works because each short_channel_id is basically a 64-bit unsigned * integer. * * First we iteraate and gather all the short channel ids. */ while (uintmap_after(&rstate->chanmap, &scid.u64)) { u32 blocknum = short_channel_id_blocknum(&scid); if (blocknum >= first_blocknum + number_of_blocks) break; encode_add_short_channel_id(&encoded, &scid); } /* If we can encode that, fine: send it */ if (encode_short_channel_ids_end(&encoded, max_encoded_bytes)) { reply_channel_range(peer, first_blocknum, number_of_blocks + tail_blocks, encoded); return true; } /* It wouldn't all fit: divide in half */ /* We assume we can always send one block! */ if (number_of_blocks <= 1) { /* We always assume we can send 1 blocks worth */ status_broken("Could not fit scids for single block %u", first_blocknum); return false; } status_debug("queue_channel_ranges full: splitting %u+%u and %u+%u(+%u)", first_blocknum, number_of_blocks / 2, first_blocknum + number_of_blocks / 2, number_of_blocks - number_of_blocks / 2, tail_blocks); return queue_channel_ranges(peer, first_blocknum, number_of_blocks / 2, 0) && queue_channel_ranges(peer, first_blocknum + number_of_blocks / 2, number_of_blocks - number_of_blocks / 2, tail_blocks); } /*~ The peer can ask for all channels is a series of blocks. We reply with one * or more messages containing the short_channel_ids. */ static u8 *handle_query_channel_range(struct peer *peer, const u8 *msg) { struct routing_state *rstate = peer->daemon->rstate; struct bitcoin_blkid chain_hash; u32 first_blocknum, number_of_blocks, tail_blocks; struct short_channel_id last_scid; if (!fromwire_query_channel_range(msg, &chain_hash, &first_blocknum, &number_of_blocks)) { return towire_errorfmt(peer, NULL, "Bad query_channel_range %s", tal_hex(tmpctx, msg)); } /* FIXME: if they ask for the wrong chain, we should not ignore it, * but give an empty response with the `complete` flag unset? */ if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain_hash)) { status_trace("%s sent query_channel_range chainhash %s", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct bitcoin_blkid, &chain_hash)); return NULL; } /* If they ask for number_of_blocks UINTMAX, and we have to divide * and conquer, we'll do a lot of unnecessary work. Cap it at the * last value we have, then send an empty reply. */ if (uintmap_last(&rstate->chanmap, &last_scid.u64)) { u32 last_block = short_channel_id_blocknum(&last_scid); /* u64 here avoids overflow on number_of_blocks UINTMAX for example */ if ((u64)first_blocknum + number_of_blocks > last_block) { tail_blocks = first_blocknum + number_of_blocks - last_block - 1; number_of_blocks -= tail_blocks; } else tail_blocks = 0; } else tail_blocks = 0; if (!queue_channel_ranges(peer, first_blocknum, number_of_blocks, tail_blocks)) return towire_errorfmt(peer, NULL, "Invalid query_channel_range %u+%u", first_blocknum, number_of_blocks + tail_blocks); return NULL; } /*~ This is the reply we get when we send query_channel_range; we keep * expecting them until the entire range we asked for is covered. */ static const u8 *handle_reply_channel_range(struct peer *peer, const u8 *msg) { struct bitcoin_blkid chain; u8 complete; u32 first_blocknum, number_of_blocks, start, end; u8 *encoded; struct short_channel_id *scids; size_t n; unsigned long b; if (!fromwire_reply_channel_range(tmpctx, msg, &chain, &first_blocknum, &number_of_blocks, &complete, &encoded)) { return towire_errorfmt(peer, NULL, "Bad reply_channel_range %s", tal_hex(tmpctx, msg)); } if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain)) { return towire_errorfmt(peer, NULL, "reply_channel_range for bad chain: %s", tal_hex(tmpctx, msg)); } if (!peer->query_channel_blocks) { return towire_errorfmt(peer, NULL, "reply_channel_range without query: %s", tal_hex(tmpctx, msg)); } /* Beware overflow! */ if (first_blocknum + number_of_blocks < first_blocknum) { return towire_errorfmt(peer, NULL, "reply_channel_range invalid %u+%u", first_blocknum, number_of_blocks); } scids = decode_short_ids(tmpctx, encoded); if (!scids) { return towire_errorfmt(peer, NULL, "Bad reply_channel_range encoding %s", tal_hex(tmpctx, encoded)); } status_debug("peer %s reply_channel_range %u+%u (of %u+%u) %zu scids", type_to_string(tmpctx, struct node_id, &peer->id), first_blocknum, number_of_blocks, peer->range_first_blocknum, peer->range_end_blocknum - peer->range_first_blocknum, tal_count(scids)); /* BOLT #7: * * The receiver of `query_channel_range`: *... * - MUST respond with one or more `reply_channel_range` whose * combined range cover the requested `first_blocknum` to * `first_blocknum` plus `number_of_blocks` minus one. */ /* ie. They can be outside range we asked, but they must overlap! */ if (first_blocknum + number_of_blocks <= peer->range_first_blocknum || first_blocknum >= peer->range_end_blocknum) { return towire_errorfmt(peer, NULL, "reply_channel_range invalid %u+%u for query %u+%u", first_blocknum, number_of_blocks, peer->range_first_blocknum, peer->range_end_blocknum - peer->range_first_blocknum); } start = first_blocknum; end = first_blocknum + number_of_blocks; /* Trim to make it a subset of what we want. */ if (start < peer->range_first_blocknum) start = peer->range_first_blocknum; if (end > peer->range_end_blocknum) end = peer->range_end_blocknum; /* We keep a bitmap of what blocks have been covered by replies: bit 0 * represents block peer->range_first_blocknum */ b = bitmap_ffs(peer->query_channel_blocks, start - peer->range_first_blocknum, end - peer->range_first_blocknum); if (b != end - peer->range_first_blocknum) { return towire_errorfmt(peer, NULL, "reply_channel_range %u+%u already have block %lu", first_blocknum, number_of_blocks, peer->range_first_blocknum + b); } /* Mark that short_channel_ids for this block have been received */ bitmap_fill_range(peer->query_channel_blocks, start - peer->range_first_blocknum, end - peer->range_first_blocknum); peer->range_blocks_remaining -= end - start; /* Add scids */ n = tal_count(peer->query_channel_scids); tal_resize(&peer->query_channel_scids, n + tal_count(scids)); memcpy(peer->query_channel_scids + n, scids, tal_bytelen(scids)); /* Still more to go? */ if (peer->range_blocks_remaining) return NULL; /* All done, send reply to lightningd: that's currently the only thing * which triggers this (for testing). Eventually we might start probing * for gossip information on our own. */ msg = towire_gossip_query_channel_range_reply(NULL, first_blocknum, number_of_blocks, complete, peer->query_channel_scids); daemon_conn_send(peer->daemon->master, take(msg)); peer->query_channel_scids = tal_free(peer->query_channel_scids); peer->query_channel_blocks = tal_free(peer->query_channel_blocks); return NULL; } /*~ For simplicity, all pings and pongs are forwarded to us here in gossipd. */ static u8 *handle_ping(struct peer *peer, const u8 *ping) { u8 *pong; /* This checks the ping packet and makes a pong reply if needed; peer * can specify it doesn't want a response, to simulate traffic. */ if (!check_ping_make_pong(NULL, ping, &pong)) return towire_errorfmt(peer, NULL, "Bad ping"); if (pong) queue_peer_msg(peer, take(pong)); return NULL; } /*~ When we get a pong, we tell lightningd about it (it's probably a response * to the `ping` JSON RPC command). */ static const u8 *handle_pong(struct peer *peer, const u8 *pong) { const char *err = got_pong(pong, &peer->num_pings_outstanding); if (err) return towire_errorfmt(peer, NULL, "%s", err); daemon_conn_send(peer->daemon->master, take(towire_gossip_ping_reply(NULL, &peer->id, true, tal_count(pong)))); return NULL; } /*~ When we ask about an array of short_channel_ids, we get all channel & * node announcements and channel updates which the peer knows. There's an * explicit end packet; this is needed to differentiate between 'I'm slow' * and 'I don't know those channels'. */ static u8 *handle_reply_short_channel_ids_end(struct peer *peer, const u8 *msg) { struct bitcoin_blkid chain; u8 complete; if (!fromwire_reply_short_channel_ids_end(msg, &chain, &complete)) { return towire_errorfmt(peer, NULL, "Bad reply_short_channel_ids_end %s", tal_hex(tmpctx, msg)); } if (!bitcoin_blkid_eq(&peer->daemon->chain_hash, &chain)) { return towire_errorfmt(peer, NULL, "reply_short_channel_ids_end for bad chain: %s", tal_hex(tmpctx, msg)); } if (peer->num_scid_queries_outstanding == 0) { return towire_errorfmt(peer, NULL, "unexpected reply_short_channel_ids_end: %s", tal_hex(tmpctx, msg)); } peer->num_scid_queries_outstanding--; /* We tell lightningd: this is because we currently only ask for * query_short_channel_ids when lightningd asks. */ msg = towire_gossip_scids_reply(msg, true, complete); daemon_conn_send(peer->daemon->master, take(msg)); return NULL; } /*~ Arbitrary ordering function of pubkeys. * * Note that we could use memcmp() here: even if they had somehow different * bitwise representations for the same key, we copied them all from struct * node which should make them unique. Even if not (say, a node vanished * and reappeared) we'd just end up sending two node_announcement for the * same node. */ static int pubkey_order(const struct node_id *k1, const struct node_id *k2, void *unused UNUSED) { return node_id_cmp(k1, k2); } static void uniquify_node_ids(struct node_id **ids) { size_t dst, src; /* BOLT #7: * * - MUST follow with any `node_announcement`s for each * `channel_announcement` * * - SHOULD avoid sending duplicate `node_announcements` in * response to a single `query_short_channel_ids`. */ /* ccan/asort is a typesafe qsort wrapper: like most ccan modules * it eschews exposing 'void *' pointers and ensures that the * callback function and its arguments match types correctly. */ asort(*ids, tal_count(*ids), pubkey_order, NULL); /* Compact the array */ for (dst = 0, src = 0; src < tal_count(*ids); src++) { if (dst && node_id_eq(&(*ids)[dst-1], &(*ids)[src])) continue; (*ids)[dst++] = (*ids)[src]; } /* And trim to length, so tal_count() gives correct answer. */ tal_resize(ids, dst); } /*~ We are fairly careful to avoid the peer DoSing us with channel queries: * this routine sends information about a single short_channel_id, unless * it's finished all of them. */ static void maybe_create_next_scid_reply(struct peer *peer) { struct routing_state *rstate = peer->daemon->rstate; size_t i, num; bool sent = false; /* BOLT #7: * * - MUST respond to each known `short_channel_id` with a * `channel_announcement` and the latest `channel_update` for each end * - SHOULD NOT wait for the next outgoing gossip flush * to send these. */ /* Search for next short_channel_id we know about. */ num = tal_count(peer->scid_queries); for (i = peer->scid_query_idx; !sent && i < num; i++) { struct chan *chan; chan = get_channel(rstate, &peer->scid_queries[i]); if (!chan || !is_chan_announced(chan)) continue; queue_peer_msg(peer, chan->channel_announce); if (chan->half[0].channel_update) queue_peer_msg(peer, chan->half[0].channel_update); if (chan->half[1].channel_update) queue_peer_msg(peer, chan->half[1].channel_update); /* Record node ids for later transmission of node_announcement */ tal_arr_expand(&peer->scid_query_nodes, chan->nodes[0]->id); tal_arr_expand(&peer->scid_query_nodes, chan->nodes[1]->id); sent = true; } /* Just finished channels? Remove duplicate nodes. */ if (peer->scid_query_idx != num && i == num) uniquify_node_ids(&peer->scid_query_nodes); /* Update index for next time we're called. */ peer->scid_query_idx = i; /* BOLT #7: * * - MUST follow with any `node_announcement`s for each * `channel_announcement` * - SHOULD avoid sending duplicate `node_announcements` in response * to a single `query_short_channel_ids`. */ /* If we haven't sent anything above, we look for the next * node_announcement to send. */ num = tal_count(peer->scid_query_nodes); for (i = peer->scid_query_nodes_idx; !sent && i < num; i++) { const struct node *n; /* Not every node announces itself (we know it exists because * of a channel_announcement, however) */ n = get_node(rstate, &peer->scid_query_nodes[i]); if (!n || !n->node_announcement_index) continue; queue_peer_msg(peer, n->node_announcement); sent = true; } peer->scid_query_nodes_idx = i; /* All finished? */ if (peer->scid_queries && peer->scid_query_nodes_idx == num) { /* BOLT #7: * * - MUST follow these responses with * `reply_short_channel_ids_end`. * - if does not maintain up-to-date channel information for * `chain_hash`: * - MUST set `complete` to 0. * - otherwise: * - SHOULD set `complete` to 1. */ /* FIXME: We consider ourselves to have complete knowledge. */ u8 *end = towire_reply_short_channel_ids_end(peer, &peer->daemon->chain_hash, true); queue_peer_msg(peer, take(end)); /* We're done! Clean up so we simply pass-through next time. */ peer->scid_queries = tal_free(peer->scid_queries); peer->scid_query_idx = 0; peer->scid_query_nodes = tal_free(peer->scid_query_nodes); peer->scid_query_nodes_idx = 0; } } /*~ If we're supposed to be sending gossip, do so now. */ static void maybe_queue_gossip(struct peer *peer) { const u8 *next; /* If the gossip timer is still running, don't send. */ if (peer->gossip_timer) return; #if DEVELOPER /* The dev_suppress_gossip RPC is used for testing. */ if (suppress_gossip) return; #endif /*~ We maintain an ordered map of gossip to broadcast, so each peer * only needs to keep an index; this returns the next gossip message * which is past the previous index and within the timestamp: it * also updates `broadcast_index`. */ next = next_broadcast(peer->daemon->rstate->broadcasts, peer->gossip_timestamp_min, peer->gossip_timestamp_max, &peer->broadcast_index); if (next) { queue_peer_msg(peer, next); return; } /* BOLT #7: * * A node: *... * - SHOULD flush outgoing gossip messages once every 60 seconds, * independently of the arrival times of the messages. * - Note: this results in staggered announcements that are unique * (not duplicated). */ /* Gossip is drained; we set up timer now, which is strictly-speaking * more than 60 seconds if sending gossip took a long time. But * that's their fault for being slow! */ peer->gossip_timer = new_reltimer(&peer->daemon->timers, peer, /* The time is adjustable for testing */ time_from_msec(peer->daemon->broadcast_interval_msec), wake_gossip_out, peer); } /*~ This is called when the outgoing queue is empty; gossip has lower priority * than just about anything else. */ static void dump_gossip(struct peer *peer) { /* Do we have scid query replies to send? */ maybe_create_next_scid_reply(peer); /* Queue any gossip we want to send */ maybe_queue_gossip(peer); } /*~ This generates a `channel_update` message for one of our channels. We do * this here, rather than in `channeld` because we (may) need to do it * ourselves anyway if channeld dies, or when we refresh it once a week. */ static void update_local_channel(struct daemon *daemon, const struct chan *chan, int direction, bool disable, u16 cltv_expiry_delta, struct amount_msat htlc_minimum, u32 fee_base_msat, u32 fee_proportional_millionths, struct amount_msat htlc_maximum, const char *caller) { secp256k1_ecdsa_signature dummy_sig; u8 *update, *msg; u32 timestamp = time_now().ts.tv_sec; u8 message_flags, channel_flags; /* So valgrind doesn't complain */ memset(&dummy_sig, 0, sizeof(dummy_sig)); /* BOLT #7: * * The origin node: *... * - MUST set `timestamp` to greater than 0, AND to greater than any * previously-sent `channel_update` for this `short_channel_id`. * - SHOULD base `timestamp` on a UNIX timestamp. */ if (is_halfchan_defined(&chan->half[direction]) && timestamp == chan->half[direction].last_timestamp) timestamp++; /* BOLT #7: * * The `channel_flags` bitfield is used to indicate the direction of * the channel: it identifies the node that this update originated * from and signals various options concerning the channel. The * following table specifies the meaning of its individual bits: * * | Bit Position | Name | Meaning | * | ------------- | ----------- | -------------------------------- | * | 0 | `direction` | Direction this update refers to. | * | 1 | `disable` | Disable the channel. | */ channel_flags = direction; if (disable) channel_flags |= ROUTING_FLAGS_DISABLED; /* BOLT #7: * * The `message_flags` bitfield is used to indicate the presence of * optional fields in the `channel_update` message: * *| Bit Position | Name | Field | *... *| 0 | `option_channel_htlc_max` | `htlc_maximum_msat` | */ message_flags = 0 | ROUTING_OPT_HTLC_MAX_MSAT; /* We create an update with a dummy signature, and hand to hsmd to get * it signed. */ update = towire_channel_update_option_channel_htlc_max(tmpctx, &dummy_sig, &daemon->chain_hash, &chan->scid, timestamp, message_flags, channel_flags, cltv_expiry_delta, htlc_minimum, fee_base_msat, fee_proportional_millionths, htlc_maximum); /* Note that we treat the hsmd as synchronous. This is simple (no * callback hell)!, but may need to change to async if we ever want * remote HSMs */ if (!wire_sync_write(HSM_FD, towire_hsm_cupdate_sig_req(tmpctx, update))) { status_failed(STATUS_FAIL_HSM_IO, "Writing cupdate_sig_req: %s", strerror(errno)); } msg = wire_sync_read(tmpctx, HSM_FD); if (!msg || !fromwire_hsm_cupdate_sig_reply(NULL, msg, &update)) { status_failed(STATUS_FAIL_HSM_IO, "Reading cupdate_sig_req: %s", strerror(errno)); } /* BOLT #7: * * The origin node: * - MAY create a `channel_update` to communicate the channel parameters to the * channel peer, even though the channel has not yet been announced (i.e. the * `announce_channel` bit was not set). */ if (!is_chan_public(chan)) { /* handle_channel_update will not put private updates in the * broadcast list, but we send it direct to the peer (if we * have one connected) now */ struct peer *peer = find_peer(daemon, &chan->nodes[!direction]->id); if (peer) queue_peer_msg(peer, update); } /* We feed it into routing.c like any other channel_update; it may * discard it (eg. non-public channel), but it should not complain * about it being invalid! */ msg = handle_channel_update(daemon->rstate, take(update), caller); if (msg) status_failed(STATUS_FAIL_INTERNAL_ERROR, "%s: rejected local channel update %s: %s", caller, /* Normally we must not touch something taken() * but we're in deep trouble anyway, and * handle_channel_update only tal_steals onto * tmpctx, so it's actually OK. */ tal_hex(tmpctx, update), tal_hex(tmpctx, msg)); } /*~ We generate local channel updates lazily; most of the time we simply * toggle the `local_disabled` flag so we don't use it to route. We never * change anything else after startup (yet!) */ static void maybe_update_local_channel(struct daemon *daemon, struct chan *chan, int direction) { const struct half_chan *hc = &chan->half[direction]; /* Don't generate a channel_update for an uninitialized channel. */ if (!hc->channel_update) return; /* Nothing to update? */ /*~ Note the inversions here on both sides, which is cheap conversion to * boolean for the RHS! */ if (!chan->local_disabled == !(hc->channel_flags & ROUTING_FLAGS_DISABLED)) return; update_local_channel(daemon, chan, direction, chan->local_disabled, hc->delay, hc->htlc_minimum, hc->base_fee, hc->proportional_fee, hc->htlc_maximum, /* Note this magic C macro which expands to the * function name, for debug messages */ __func__); } /*~ This helper figures out which direction of the channel is from-us; if * neither, it returns false. This meets Linus' rule "Always return the error", * without doing some horrible 0/1/-1 return. */ static bool local_direction(struct daemon *daemon, const struct chan *chan, int *direction) { for (*direction = 0; *direction < 2; (*direction)++) { if (node_id_eq(&chan->nodes[*direction]->id, &daemon->id)) return true; } return false; } /*~ This is when channeld asks us for a channel_update for a local channel. * It does that to fill in the error field when lightningd fails an HTLC and * sets the UPDATE bit in the error type. lightningd is too important to * fetch this itself, so channeld does it (channeld has to talk to us for * other things anyway, so why not?). */ static bool handle_get_update(struct peer *peer, const u8 *msg) { struct short_channel_id scid; struct chan *chan; const u8 *update; struct routing_state *rstate = peer->daemon->rstate; int direction; if (!fromwire_gossipd_get_update(msg, &scid)) { status_broken("peer %s sent bad gossip_get_update %s", type_to_string(tmpctx, struct node_id, &peer->id), tal_hex(tmpctx, msg)); return false; } /* It's possible that the channel has just closed (though v. unlikely) */ chan = get_channel(rstate, &scid); if (!chan) { status_unusual("peer %s scid %s: unknown channel", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct short_channel_id, &scid)); update = NULL; goto out; } /* We want the update that comes from our end. */ if (!local_direction(peer->daemon, chan, &direction)) { status_unusual("peer %s scid %s: not our channel?", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct short_channel_id, &scid)); update = NULL; goto out; } /* Since we're going to send it out, make sure it's up-to-date. */ maybe_update_local_channel(peer->daemon, chan, direction); /* It's possible this is NULL, if we've never sent a channel_update * for that channel. */ update = chan->half[direction].channel_update; out: status_trace("peer %s schanid %s: %s update", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct short_channel_id, &scid), update ? "got" : "no"); msg = towire_gossipd_get_update_reply(NULL, update); daemon_conn_send(peer->dc, take(msg)); return true; } /*~ Return true if the channel information has changed. This can only * currently happen if the user restarts with different fee options, but we * don't assume that. */ static bool halfchan_new_info(const struct half_chan *hc, u16 cltv_delta, struct amount_msat htlc_minimum, u32 fee_base_msat, u32 fee_proportional_millionths, struct amount_msat htlc_maximum) { if (!is_halfchan_defined(hc)) return true; return hc->delay != cltv_delta || !amount_msat_eq(hc->htlc_minimum, htlc_minimum) || hc->base_fee != fee_base_msat || hc->proportional_fee != fee_proportional_millionths || !amount_msat_eq(hc->htlc_maximum, htlc_maximum); } /*~ channeld asks us to update the local channel. */ static bool handle_local_channel_update(struct peer *peer, const u8 *msg) { struct chan *chan; struct short_channel_id scid; bool disable; u16 cltv_expiry_delta; struct amount_msat htlc_minimum, htlc_maximum; u32 fee_base_msat; u32 fee_proportional_millionths; int direction; /* FIXME: We should get scid from lightningd when setting up the * connection, so no per-peer daemon can mess with channels other than * its own! */ if (!fromwire_gossipd_local_channel_update(msg, &scid, &disable, &cltv_expiry_delta, &htlc_minimum, &fee_base_msat, &fee_proportional_millionths, &htlc_maximum)) { status_broken("peer %s bad local_channel_update %s", type_to_string(tmpctx, struct node_id, &peer->id), tal_hex(tmpctx, msg)); return false; } /* Can theoretically happen if channel just closed. */ chan = get_channel(peer->daemon->rstate, &scid); if (!chan) { status_trace("peer %s local_channel_update for unknown %s", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct short_channel_id, &scid)); return true; } /* You shouldn't be asking for a non-local channel though. */ if (!local_direction(peer->daemon, chan, &direction)) { status_broken("peer %s bad local_channel_update for non-local %s", type_to_string(tmpctx, struct node_id, &peer->id), type_to_string(tmpctx, struct short_channel_id, &scid)); return false; } /* We could change configuration on restart; update immediately. * Or, if we're *enabling* an announced-disabled channel. * Or, if it's an unannounced channel (only sending to peer). */ if (halfchan_new_info(&chan->half[direction], cltv_expiry_delta, htlc_minimum, fee_base_msat, fee_proportional_millionths, htlc_maximum) || ((chan->half[direction].channel_flags & ROUTING_FLAGS_DISABLED) && !disable) || !is_chan_public(chan)) { update_local_channel(peer->daemon, chan, direction, disable, cltv_expiry_delta, htlc_minimum, fee_base_msat, fee_proportional_millionths, htlc_maximum, __func__); } /* Normal case: just toggle local_disabled, and generate broadcast in * maybe_update_local_channel when/if someone asks about it. */ chan->local_disabled = disable; return true; } /*~ This is where the per-peer daemons send us messages. It's either forwarded * gossip, or a request for information. We deliberately use non-overlapping * message types so we can distinguish them. */ static struct io_plan *peer_msg_in(struct io_conn *conn, const u8 *msg, struct peer *peer) { const u8 *err; bool ok; /* These are messages relayed from peer */ switch ((enum wire_type)fromwire_peektype(msg)) { case WIRE_CHANNEL_ANNOUNCEMENT: err = handle_channel_announcement_msg(peer, msg); goto handled_relay; case WIRE_CHANNEL_UPDATE: err = handle_channel_update_msg(peer, msg); goto handled_relay; case WIRE_NODE_ANNOUNCEMENT: err = handle_node_announcement(peer->daemon->rstate, msg); goto handled_relay; case WIRE_QUERY_CHANNEL_RANGE: err = handle_query_channel_range(peer, msg); goto handled_relay; case WIRE_REPLY_CHANNEL_RANGE: err = handle_reply_channel_range(peer, msg); goto handled_relay; case WIRE_QUERY_SHORT_CHANNEL_IDS: err = handle_query_short_channel_ids(peer, msg); goto handled_relay; case WIRE_REPLY_SHORT_CHANNEL_IDS_END: err = handle_reply_short_channel_ids_end(peer, msg); goto handled_relay; case WIRE_GOSSIP_TIMESTAMP_FILTER: err = handle_gossip_timestamp_filter(peer, msg); goto handled_relay; case WIRE_PING: err = handle_ping(peer, msg); goto handled_relay; case WIRE_PONG: err = handle_pong(peer, msg); goto handled_relay; /* These are non-gossip messages (!is_msg_for_gossipd()) */ case WIRE_INIT: case WIRE_ERROR: case WIRE_OPEN_CHANNEL: case WIRE_ACCEPT_CHANNEL: case WIRE_FUNDING_CREATED: case WIRE_FUNDING_SIGNED: case WIRE_FUNDING_LOCKED: case WIRE_SHUTDOWN: case WIRE_CLOSING_SIGNED: case WIRE_UPDATE_ADD_HTLC: case WIRE_UPDATE_FULFILL_HTLC: case WIRE_UPDATE_FAIL_HTLC: case WIRE_UPDATE_FAIL_MALFORMED_HTLC: case WIRE_COMMITMENT_SIGNED: case WIRE_REVOKE_AND_ACK: case WIRE_UPDATE_FEE: case WIRE_CHANNEL_REESTABLISH: case WIRE_ANNOUNCEMENT_SIGNATURES: status_broken("peer %s: relayed unexpected msg of type %s", type_to_string(tmpctx, struct node_id, &peer->id), wire_type_name(fromwire_peektype(msg))); return io_close(conn); } /* Must be a gossip_peerd_wire_type asking us to do something. */ switch ((enum gossip_peerd_wire_type)fromwire_peektype(msg)) { case WIRE_GOSSIPD_GET_UPDATE: ok = handle_get_update(peer, msg); goto handled_cmd; case WIRE_GOSSIPD_LOCAL_ADD_CHANNEL: ok = handle_local_add_channel(peer->daemon->rstate, msg); if (ok) gossip_store_add(peer->daemon->rstate->store, msg); goto handled_cmd; case WIRE_GOSSIPD_LOCAL_CHANNEL_UPDATE: ok = handle_local_channel_update(peer, msg); goto handled_cmd; /* These are the ones we send, not them */ case WIRE_GOSSIPD_GET_UPDATE_REPLY: case WIRE_GOSSIPD_SEND_GOSSIP: break; } /* Anything else should not have been sent to us: close on it */ status_broken("peer %s: unexpected cmd of type %i %s", type_to_string(tmpctx, struct node_id, &peer->id), fromwire_peektype(msg), gossip_peerd_wire_type_name(fromwire_peektype(msg))); return io_close(conn); /* Commands should always be OK. */ handled_cmd: if (!ok) return io_close(conn); goto done; /* Forwarded messages may be bad, so we have error which the per-peer * daemon will forward to the peer. */ handled_relay: if (err) queue_peer_msg(peer, take(err)); done: return daemon_conn_read_next(conn, peer->dc); } /*~ This is where connectd tells us about a new peer, and we hand back an fd for * it to send us messages via peer_msg_in above */ static struct io_plan *connectd_new_peer(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct peer *peer = tal(conn, struct peer); int fds[2]; if (!fromwire_gossip_new_peer(msg, &peer->id, &peer->gossip_queries_feature, &peer->initial_routing_sync_feature)) { status_broken("Bad new_peer msg from connectd: %s", tal_hex(tmpctx, msg)); return io_close(conn); } /* This can happen: we handle it gracefully, returning a `failed` msg. */ if (socketpair(AF_LOCAL, SOCK_STREAM, 0, fds) != 0) { status_broken("Failed to create socketpair: %s", strerror(errno)); daemon_conn_send(daemon->connectd, take(towire_gossip_new_peer_reply(NULL, false))); goto done; } /* We might not have noticed old peer is dead; kill it now. */ tal_free(find_peer(daemon, &peer->id)); /* Populate the rest of the peer info. */ peer->daemon = daemon; peer->scid_queries = NULL; peer->scid_query_idx = 0; peer->scid_query_nodes = NULL; peer->scid_query_nodes_idx = 0; peer->num_scid_queries_outstanding = 0; peer->query_channel_blocks = NULL; peer->num_pings_outstanding = 0; peer->gossip_timer = NULL; /* We keep a list so we can find peer by id */ list_add_tail(&peer->daemon->peers, &peer->list); tal_add_destructor(peer, destroy_peer); /* BOLT #7: * * - if the `gossip_queries` feature is negotiated: * - MUST NOT relay any gossip messages unless explicitly requested. */ if (peer->gossip_queries_feature) { peer->broadcast_index = UINT64_MAX; /* Nothing in this "impossible" range */ peer->gossip_timestamp_min = UINT32_MAX; peer->gossip_timestamp_max = 0; } else { /* BOLT #7: * * - upon receiving an `init` message with the * `initial_routing_sync` flag set to 1: * - SHOULD send gossip messages for all known channels and * nodes, as if they were just received. * - if the `initial_routing_sync` flag is set to 0, OR if the * initial sync was completed: * - SHOULD resume normal operation, as specified in the * following [Rebroadcasting](#rebroadcasting) section. */ peer->gossip_timestamp_min = 0; peer->gossip_timestamp_max = UINT32_MAX; if (peer->initial_routing_sync_feature) peer->broadcast_index = 0; else peer->broadcast_index = peer->daemon->rstate->broadcasts->next_index; } /* This is the new connection: calls dump_gossip when nothing else to * send. */ peer->dc = daemon_conn_new(daemon, fds[0], peer_msg_in, dump_gossip, peer); /* Free peer if conn closed (destroy_peer closes conn if peer freed) */ tal_steal(peer->dc, peer); /* This sends the initial timestamp filter. */ setup_gossip_range(peer); /* Start the gossip flowing. */ wake_gossip_out(peer); /* Reply with success, and the new fd */ daemon_conn_send(daemon->connectd, take(towire_gossip_new_peer_reply(NULL, true))); daemon_conn_send_fd(daemon->connectd, fds[1]); done: return daemon_conn_read_next(conn, daemon->connectd); } /*~ connectd can also ask us if we know any addresses for a given id. */ static struct io_plan *connectd_get_address(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id id; struct node *node; const struct wireaddr *addrs; if (!fromwire_gossip_get_addrs(msg, &id)) { status_broken("Bad gossip_get_addrs msg from connectd: %s", tal_hex(tmpctx, msg)); return io_close(conn); } node = get_node(daemon->rstate, &id); if (node) addrs = node->addresses; else addrs = NULL; daemon_conn_send(daemon->connectd, take(towire_gossip_get_addrs_reply(NULL, addrs))); return daemon_conn_read_next(conn, daemon->connectd); } /*~ connectd's input handler is very simple. */ static struct io_plan *connectd_req(struct io_conn *conn, const u8 *msg, struct daemon *daemon) { enum connect_gossip_wire_type t = fromwire_peektype(msg); switch (t) { case WIRE_GOSSIP_NEW_PEER: return connectd_new_peer(conn, daemon, msg); case WIRE_GOSSIP_GET_ADDRS: return connectd_get_address(conn, daemon, msg); /* We send these, don't receive them. */ case WIRE_GOSSIP_NEW_PEER_REPLY: case WIRE_GOSSIP_GET_ADDRS_REPLY: break; } status_broken("Bad msg from connectd: %s", tal_hex(tmpctx, msg)); return io_close(conn); } /*~ This is our twice-weekly timer callback for refreshing our channels. This * was added to the spec because people abandoned their channels without * closing them. */ static void gossip_send_keepalive_update(struct daemon *daemon, const struct chan *chan, const struct half_chan *hc) { status_trace("Sending keepalive channel_update for %s", type_to_string(tmpctx, struct short_channel_id, &chan->scid)); /* As a side-effect, this will create an update which matches the * local_disabled state */ update_local_channel(daemon, chan, hc->channel_flags & ROUTING_FLAGS_DIRECTION, chan->local_disabled, hc->delay, hc->htlc_minimum, hc->base_fee, hc->proportional_fee, hc->htlc_maximum, __func__); } /* BOLT #7: * * A node: * - if a channel's latest `channel_update`s `timestamp` is older than two weeks * (1209600 seconds): * - MAY prune the channel. * - MAY ignore the channel. */ static void gossip_refresh_network(struct daemon *daemon) { u64 now = time_now().ts.tv_sec; /* Anything below this highwater mark could be pruned if not refreshed */ s64 highwater = now - daemon->rstate->prune_timeout / 2; struct node *n; /* Schedule next run now (prune_timeout is 2 weeks) */ notleak(new_reltimer(&daemon->timers, daemon, time_from_sec(daemon->rstate->prune_timeout/4), gossip_refresh_network, daemon)); /* Find myself in the network */ n = get_node(daemon->rstate, &daemon->id); if (n) { /* Iterate through all outgoing connection and check whether * it's time to re-announce */ struct chan_map_iter i; struct chan *c; for (c = first_chan(n, &i); c; c = next_chan(n, &i)) { struct half_chan *hc = half_chan_from(n, c); if (!is_halfchan_defined(hc)) { /* Connection is not announced yet, so don't even * try to re-announce it */ continue; } if (hc->last_timestamp > highwater) { /* No need to send a keepalive update message */ continue; } if (!is_halfchan_enabled(hc)) { /* Only send keepalives for active connections */ continue; } gossip_send_keepalive_update(daemon, c, hc); } } /* Now we've refreshed our channels, we can prune without clobbering * them */ route_prune(daemon->rstate); } /* Disables all channels connected to our node. */ static void gossip_disable_local_channels(struct daemon *daemon) { struct node *local_node = get_node(daemon->rstate, &daemon->id); struct chan_map_iter i; struct chan *c; /* We don't have a local_node, so we don't have any channels yet * either */ if (!local_node) return; for (c = first_chan(local_node, &i); c; c = next_chan(local_node, &i)) c->local_disabled = true; } /*~ Parse init message from lightningd: starts the daemon properly. */ static struct io_plan *gossip_init(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { u32 update_channel_interval; u32 *dev_gossip_time; struct amount_sat *dev_unknown_channel_satoshis; if (!fromwire_gossipctl_init(daemon, msg, /* 60,000 ms * (unless --dev-broadcast-interval) */ &daemon->broadcast_interval_msec, &daemon->chain_hash, &daemon->id, &daemon->globalfeatures, daemon->rgb, daemon->alias, /* 1 week in seconds * (unless --dev-channel-update-interval) */ &update_channel_interval, &daemon->announcable, &dev_gossip_time, &dev_unknown_channel_satoshis)) { master_badmsg(WIRE_GOSSIPCTL_INIT, msg); } /* Prune time (usually 2 weeks) is twice update time */ daemon->rstate = new_routing_state(daemon, chainparams_by_chainhash(&daemon->chain_hash), &daemon->id, update_channel_interval * 2, dev_gossip_time, dev_unknown_channel_satoshis); /* Load stored gossip messages */ gossip_store_load(daemon->rstate, daemon->rstate->store); /* Now disable all local channels, they can't be connected yet. */ gossip_disable_local_channels(daemon); /* If that announced channels, we can announce ourselves (options * or addresses might have changed!) */ maybe_send_own_node_announce(daemon); /* Start the weekly refresh timer. */ notleak(new_reltimer(&daemon->timers, daemon, time_from_sec(daemon->rstate->prune_timeout/4), gossip_refresh_network, daemon)); return daemon_conn_read_next(conn, daemon->master); } /*~ lightningd can ask for a route between nodes. */ static struct io_plan *getroute_req(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id source, destination; struct amount_msat msat; u32 final_cltv; u64 riskfactor_by_million; u32 max_hops; u8 *out; struct route_hop *hops; double fuzz; struct short_channel_id_dir *excluded; /* To choose between variations, we need to know how much we're * sending (eliminates too-small channels, and also effects the fees * we'll pay), how to trade off more locktime vs. more fees, and how * much cltv we need a the final node to give exact values for each * intermediate hop, as well as how much random fuzz to inject to * avoid being too predictable. */ if (!fromwire_gossip_getroute_request(msg, msg, &source, &destination, &msat, &riskfactor_by_million, &final_cltv, &fuzz, &excluded, &max_hops)) master_badmsg(WIRE_GOSSIP_GETROUTE_REQUEST, msg); status_trace("Trying to find a route from %s to %s for %s", type_to_string(tmpctx, struct node_id, &source), type_to_string(tmpctx, struct node_id, &destination), type_to_string(tmpctx, struct amount_msat, &msat)); /* routing.c does all the hard work; can return NULL. */ hops = get_route(tmpctx, daemon->rstate, &source, &destination, msat, riskfactor_by_million / 1000000.0, final_cltv, fuzz, pseudorand_u64(), excluded, max_hops); out = towire_gossip_getroute_reply(NULL, hops); daemon_conn_send(daemon->master, take(out)); return daemon_conn_read_next(conn, daemon->master); } /*~ When someone asks lightningd to `listchannels`, gossipd does the work: * marshalling the channel information for all channels into an array of * gossip_getchannels_entry, which lightningd converts to JSON. Each channel * is represented by two half_chan; one in each direction. */ static struct gossip_halfchannel_entry *hc_entry(const tal_t *ctx, const struct chan *chan, int idx) { /* Our 'struct chan' contains two nodes: they are in pubkey_cmp order * (ie. chan->nodes[0] is the lesser pubkey) and this is the same as * the direction bit in `channel_update`s `channel_flags`. * * The halfchans are arranged so that half[0] src == nodes[0], and we * use that here. */ const struct half_chan *c = &chan->half[idx]; struct gossip_halfchannel_entry *e; /* If we've never seen a channel_update for this direction... */ if (!is_halfchan_defined(c)) return NULL; e = tal(ctx, struct gossip_halfchannel_entry); e->channel_flags = c->channel_flags; e->message_flags = c->message_flags; e->last_update_timestamp = c->last_timestamp; e->base_fee_msat = c->base_fee; e->fee_per_millionth = c->proportional_fee; e->delay = c->delay; return e; } /*~ Marshal (possibly) both channel directions into entries. */ static void append_channel(const struct gossip_getchannels_entry ***entries, const struct chan *chan, const struct node_id *srcfilter) { struct gossip_getchannels_entry *e = tal(*entries, struct gossip_getchannels_entry); e->node[0] = chan->nodes[0]->id; e->node[1] = chan->nodes[1]->id; e->sat = chan->sat; e->local_disabled = chan->local_disabled; e->public = is_chan_public(chan); e->short_channel_id = chan->scid; if (!srcfilter || node_id_eq(&e->node[0], srcfilter)) e->e[0] = hc_entry(*entries, chan, 0); else e->e[0] = NULL; if (!srcfilter || node_id_eq(&e->node[1], srcfilter)) e->e[1] = hc_entry(*entries, chan, 1); else e->e[1] = NULL; /* We choose not to tell lightningd about channels with no updates, * as they're unusable and can't be represented in the listchannels * JSON output we use anyway. */ if (e->e[0] || e->e[1]) tal_arr_expand(entries, e); } /*~ This is where lightningd asks for all channels we know about. */ static struct io_plan *getchannels_req(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { u8 *out; const struct gossip_getchannels_entry **entries; struct chan *chan; struct short_channel_id *scid; struct node_id *source; /* Note: scid is marked optional in gossip_wire.csv */ if (!fromwire_gossip_getchannels_request(msg, msg, &scid, &source)) master_badmsg(WIRE_GOSSIP_GETCHANNELS_REQUEST, msg); entries = tal_arr(tmpctx, const struct gossip_getchannels_entry *, 0); /* They can ask about a particular channel by short_channel_id */ if (scid) { chan = get_channel(daemon->rstate, scid); if (chan) append_channel(&entries, chan, NULL); } else if (source) { struct node *s = get_node(daemon->rstate, source); if (s) { struct chan_map_iter i; struct chan *c; for (c = first_chan(s, &i); c; c = next_chan(s, &i)) { append_channel(&entries, c, source); } } } else { u64 idx; /* For the more general case, we just iterate through every * short channel id. */ for (chan = uintmap_first(&daemon->rstate->chanmap, &idx); chan; chan = uintmap_after(&daemon->rstate->chanmap, &idx)) { append_channel(&entries, chan, NULL); } } out = towire_gossip_getchannels_reply(NULL, entries); daemon_conn_send(daemon->master, take(out)); return daemon_conn_read_next(conn, daemon->master); } /*~ Similarly, lightningd asks us for all nodes when it gets `listnodes` */ /* We keep pointers into n, assuming it won't change. */ static void append_node(const struct gossip_getnodes_entry ***entries, const struct node *n) { struct gossip_getnodes_entry *e; e = tal(*entries, struct gossip_getnodes_entry); e->nodeid = n->id; e->last_timestamp = n->last_timestamp; /* Timestamp on wire is an unsigned 32 bit: we use a 64-bit signed, so * -1 means "we never received a channel_update". */ if (e->last_timestamp >= 0) { e->globalfeatures = n->globalfeatures; e->addresses = n->addresses; BUILD_ASSERT(ARRAY_SIZE(e->alias) == ARRAY_SIZE(n->alias)); BUILD_ASSERT(ARRAY_SIZE(e->color) == ARRAY_SIZE(n->rgb_color)); memcpy(e->alias, n->alias, ARRAY_SIZE(e->alias)); memcpy(e->color, n->rgb_color, ARRAY_SIZE(e->color)); } tal_arr_expand(entries, e); } /* Simply routine when they ask for `listnodes` */ static struct io_plan *getnodes(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { u8 *out; struct node *n; const struct gossip_getnodes_entry **nodes; struct node_id *id; if (!fromwire_gossip_getnodes_request(tmpctx, msg, &id)) master_badmsg(WIRE_GOSSIP_GETNODES_REQUEST, msg); /* Format of reply is the same whether they ask for a specific node * (0 or one responses) or all nodes (0 or more) */ nodes = tal_arr(tmpctx, const struct gossip_getnodes_entry *, 0); if (id) { n = get_node(daemon->rstate, id); if (n) append_node(&nodes, n); } else { struct node_map_iter i; n = node_map_first(daemon->rstate->nodes, &i); while (n != NULL) { append_node(&nodes, n); n = node_map_next(daemon->rstate->nodes, &i); } } out = towire_gossip_getnodes_reply(NULL, nodes); daemon_conn_send(daemon->master, take(out)); return daemon_conn_read_next(conn, daemon->master); } /*~ We currently have a JSON command to ping a peer: it ends up here, where * gossipd generates the actual ping and sends it like any other gossip. */ static struct io_plan *ping_req(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id id; u16 num_pong_bytes, len; struct peer *peer; u8 *ping; if (!fromwire_gossip_ping(msg, &id, &num_pong_bytes, &len)) master_badmsg(WIRE_GOSSIP_PING, msg); /* Even if lightningd were to check for valid ids, there's a race * where it might vanish before we read this command; cleaner to * handle it here with 'sent' = false. */ peer = find_peer(daemon, &id); if (!peer) { daemon_conn_send(daemon->master, take(towire_gossip_ping_reply(NULL, &id, false, 0))); goto out; } /* It should never ask for an oversize ping. */ ping = make_ping(peer, num_pong_bytes, len); if (tal_count(ping) > 65535) status_failed(STATUS_FAIL_MASTER_IO, "Oversize ping"); queue_peer_msg(peer, take(ping)); status_trace("sending ping expecting %sresponse", num_pong_bytes >= 65532 ? "no " : ""); /* BOLT #1: * * A node receiving a `ping` message: *... * - if `num_pong_bytes` is less than 65532: * - MUST respond by sending a `pong` message, with `byteslen` equal * to `num_pong_bytes`. * - otherwise (`num_pong_bytes` is **not** less than 65532): * - MUST ignore the `ping`. */ if (num_pong_bytes >= 65532) daemon_conn_send(daemon->master, take(towire_gossip_ping_reply(NULL, &id, true, 0))); else /* We'll respond to lightningd once the pong comes in */ peer->num_pings_outstanding++; out: return daemon_conn_read_next(conn, daemon->master); } /*~ If a node has no public channels (other than the one to us), it's not * a very useful route to tell anyone about. */ static bool node_has_public_channels(const struct node *peer, const struct chan *exclude) { struct chan_map_iter i; struct chan *c; for (c = first_chan(peer, &i); c; c = next_chan(peer, &i)) { if (c == exclude) continue; if (is_chan_public(c)) return true; } return false; } /*~ The `exposeprivate` flag is a trinary: NULL == dynamic, otherwise * value decides. Thus, we provide two wrappers for clarity: */ static bool never_expose(bool *exposeprivate) { return exposeprivate && !*exposeprivate; } static bool always_expose(bool *exposeprivate) { return exposeprivate && *exposeprivate; } /*~ For routeboost, we offer payers a hint of what incoming channels might * have capacity for their payment. To do this, lightningd asks for the * information about all channels to this node; but gossipd doesn't know about * current capacities, so lightningd selects which to use. */ static struct io_plan *get_incoming_channels(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node *node; struct route_info *public = tal_arr(tmpctx, struct route_info, 0); struct route_info *private = tal_arr(tmpctx, struct route_info, 0); bool has_public; bool *exposeprivate; if (!fromwire_gossip_get_incoming_channels(tmpctx, msg, &exposeprivate)) master_badmsg(WIRE_GOSSIP_GET_INCOMING_CHANNELS, msg); status_trace("exposeprivate = %s", exposeprivate ? (*exposeprivate ? "TRUE" : "FALSE") : "NULL"); status_trace("msg = %s", tal_hex(tmpctx, msg)); status_trace("always_expose = %u, never_expose = %u", always_expose(exposeprivate), never_expose(exposeprivate)); has_public = always_expose(exposeprivate); node = get_node(daemon->rstate, &daemon->rstate->local_id); if (node) { struct chan_map_iter i; struct chan *c; for (c = first_chan(node, &i); c; c = next_chan(node, &i)) { const struct half_chan *hc; struct route_info ri; hc = &c->half[half_chan_to(node, c)]; if (!is_halfchan_enabled(hc)) continue; ri.pubkey = other_node(node, c)->id; ri.short_channel_id = c->scid; ri.fee_base_msat = hc->base_fee; ri.fee_proportional_millionths = hc->proportional_fee; ri.cltv_expiry_delta = hc->delay; has_public |= is_chan_public(c); /* If peer doesn't have other public channels, * no point giving route */ if (!node_has_public_channels(other_node(node, c), c)) continue; if (always_expose(exposeprivate) || is_chan_public(c)) tal_arr_expand(&public, ri); else tal_arr_expand(&private, ri); } } /* If no public channels (even deadend ones!), share private ones. */ if (!has_public && !never_expose(exposeprivate)) msg = towire_gossip_get_incoming_channels_reply(NULL, private); else msg = towire_gossip_get_incoming_channels_reply(NULL, public); daemon_conn_send(daemon->master, take(msg)); return daemon_conn_read_next(conn, daemon->master); } #if DEVELOPER /* FIXME: One day this will be called internally; for now it's just for * testing with dev_query_scids. */ static struct io_plan *query_scids_req(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id id; struct short_channel_id *scids; struct peer *peer; u8 *encoded; /* BOLT #7: * * 1. type: 261 (`query_short_channel_ids`) (`gossip_queries`) * 2. data: * * [`32`:`chain_hash`] * * [`2`:`len`] * * [`len`:`encoded_short_ids`] */ const size_t reply_overhead = 32 + 2; const size_t max_encoded_bytes = 65535 - 2 - reply_overhead; if (!fromwire_gossip_query_scids(msg, msg, &id, &scids)) master_badmsg(WIRE_GOSSIP_QUERY_SCIDS, msg); peer = find_peer(daemon, &id); if (!peer) { status_broken("query_scids: unknown peer %s", type_to_string(tmpctx, struct node_id, &id)); goto fail; } if (!peer->gossip_queries_feature) { status_broken("query_scids: no gossip_query support in peer %s", type_to_string(tmpctx, struct node_id, &id)); goto fail; } encoded = encode_short_channel_ids_start(tmpctx); for (size_t i = 0; i < tal_count(scids); i++) encode_add_short_channel_id(&encoded, &scids[i]); /* Because this is a dev command, we simply say this case is * "too hard". */ if (!encode_short_channel_ids_end(&encoded, max_encoded_bytes)) { status_broken("query_short_channel_ids: %zu is too many", tal_count(scids)); goto fail; } msg = towire_query_short_channel_ids(NULL, &daemon->chain_hash, encoded); queue_peer_msg(peer, take(msg)); peer->num_scid_queries_outstanding++; status_trace("sending query for %zu scids", tal_count(scids)); out: return daemon_conn_read_next(conn, daemon->master); fail: daemon_conn_send(daemon->master, take(towire_gossip_scids_reply(NULL, false, false))); goto out; } /* BOLT #7: * * ### The `gossip_timestamp_filter` Message *... * This message allows a node to constrain future gossip messages to * a specific range. A node which wants any gossip messages would have * to send this, otherwise `gossip_queries` negotiation means no gossip * messages would be received. * * Note that this filter replaces any previous one, so it can be used * multiple times to change the gossip from a peer. */ /* This is the entry point for dev_send_timestamp_filter testing. */ static struct io_plan *send_timestamp_filter(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id id; u32 first, range; struct peer *peer; if (!fromwire_gossip_send_timestamp_filter(msg, &id, &first, &range)) master_badmsg(WIRE_GOSSIP_SEND_TIMESTAMP_FILTER, msg); peer = find_peer(daemon, &id); if (!peer) { status_broken("send_timestamp_filter: unknown peer %s", type_to_string(tmpctx, struct node_id, &id)); goto out; } if (!peer->gossip_queries_feature) { status_broken("send_timestamp_filter: no gossip_query support in peer %s", type_to_string(tmpctx, struct node_id, &id)); goto out; } msg = towire_gossip_timestamp_filter(NULL, &daemon->chain_hash, first, range); queue_peer_msg(peer, take(msg)); out: return daemon_conn_read_next(conn, daemon->master); } /* FIXME: One day this will be called internally; for now it's just for * testing with dev_query_channel_range. */ static struct io_plan *query_channel_range(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id id; u32 first_blocknum, number_of_blocks; struct peer *peer; if (!fromwire_gossip_query_channel_range(msg, &id, &first_blocknum, &number_of_blocks)) master_badmsg(WIRE_GOSSIP_QUERY_SCIDS, msg); peer = find_peer(daemon, &id); if (!peer) { status_broken("query_channel_range: unknown peer %s", type_to_string(tmpctx, struct node_id, &id)); goto fail; } if (!peer->gossip_queries_feature) { status_broken("query_channel_range: no gossip_query support in peer %s", type_to_string(tmpctx, struct node_id, &id)); goto fail; } if (peer->query_channel_blocks) { status_broken("query_channel_range: previous query active"); goto fail; } /* Check for overflow on 32-bit machines! */ if (BITMAP_NWORDS(number_of_blocks) < number_of_blocks / BITMAP_WORD_BITS) { status_broken("query_channel_range: huge number_of_blocks (%u) not supported", number_of_blocks); goto fail; } status_debug("sending query_channel_range for blocks %u+%u", first_blocknum, number_of_blocks); msg = towire_query_channel_range(NULL, &daemon->chain_hash, first_blocknum, number_of_blocks); queue_peer_msg(peer, take(msg)); peer->range_first_blocknum = first_blocknum; peer->range_end_blocknum = first_blocknum + number_of_blocks; peer->range_blocks_remaining = number_of_blocks; peer->query_channel_blocks = tal_arrz(peer, bitmap, BITMAP_NWORDS(number_of_blocks)); peer->query_channel_scids = tal_arr(peer, struct short_channel_id, 0); out: return daemon_conn_read_next(conn, daemon->master); fail: daemon_conn_send(daemon->master, take(towire_gossip_query_channel_range_reply(NULL, 0, 0, false, NULL))); goto out; } /* This is a testing hack to allow us to artificially lower the maximum bytes * of short_channel_ids we'll encode, using dev_set_max_scids_encode_size. */ static struct io_plan *dev_set_max_scids_encode_size(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { if (!fromwire_gossip_dev_set_max_scids_encode_size(msg, &max_scids_encode_bytes)) master_badmsg(WIRE_GOSSIP_DEV_SET_MAX_SCIDS_ENCODE_SIZE, msg); status_trace("Set max_scids_encode_bytes to %u", max_scids_encode_bytes); return daemon_conn_read_next(conn, daemon->master); } /* Another testing hack */ static struct io_plan *dev_gossip_suppress(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { if (!fromwire_gossip_dev_suppress(msg)) master_badmsg(WIRE_GOSSIP_DEV_SUPPRESS, msg); status_unusual("Suppressing all gossip"); suppress_gossip = true; return daemon_conn_read_next(conn, daemon->master); } static struct io_plan *dev_gossip_memleak(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct htable *memtable; bool found_leak; memtable = memleak_enter_allocations(tmpctx, msg, msg); /* Now delete daemon and those which it has pointers to. */ memleak_remove_referenced(memtable, daemon); memleak_remove_routing_tables(memtable, daemon->rstate); found_leak = dump_memleak(memtable); daemon_conn_send(daemon->master, take(towire_gossip_dev_memleak_reply(NULL, found_leak))); return daemon_conn_read_next(conn, daemon->master); } static struct io_plan *dev_compact_store(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { bool done = gossip_store_compact(daemon->rstate->store); daemon_conn_send(daemon->master, take(towire_gossip_dev_compact_store_reply(NULL, done))); return daemon_conn_read_next(conn, daemon->master); } #endif /* DEVELOPER */ /*~ lightningd: so, tell me about this channel, so we can forward to it. */ static struct io_plan *get_channel_peer(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct short_channel_id scid; struct chan *chan; const struct node_id *key; int direction; if (!fromwire_gossip_get_channel_peer(msg, &scid)) master_badmsg(WIRE_GOSSIP_GET_CHANNEL_PEER, msg); chan = get_channel(daemon->rstate, &scid); if (!chan) { status_trace("Failed to resolve channel %s", type_to_string(tmpctx, struct short_channel_id, &scid)); key = NULL; } else if (local_direction(daemon, chan, &direction)) { key = &chan->nodes[!direction]->id; } else { status_trace("Resolved channel %s was not local", type_to_string(tmpctx, struct short_channel_id, &scid)); key = NULL; } daemon_conn_send(daemon->master, take(towire_gossip_get_channel_peer_reply(NULL, key))); return daemon_conn_read_next(conn, daemon->master); } /*~ We queue incoming channel_announcement pending confirmation from lightningd * that it really is an unspent output. Here's its reply. */ static struct io_plan *handle_txout_reply(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct short_channel_id scid; u8 *outscript; struct amount_sat sat; if (!fromwire_gossip_get_txout_reply(msg, msg, &scid, &sat, &outscript)) master_badmsg(WIRE_GOSSIP_GET_TXOUT_REPLY, msg); /* Outscript is NULL if it's not an unspent output */ handle_pending_cannouncement(daemon->rstate, &scid, sat, outscript); /* Anywhere we might have announced a channel, we check if it's time to * announce ourselves (ie. if we just announced our own first channel) */ maybe_send_own_node_announce(daemon); return daemon_conn_read_next(conn, daemon->master); } /* Fix up the channel_update to include the type if it doesn't currently have * one. See ElementsProject/lightning#1730 and lightningnetwork/lnd#1599 for the * in-depth discussion on why we break message parsing here... */ static u8 *patch_channel_update(const tal_t *ctx, u8 *channel_update TAKES) { u8 *fixed; if (channel_update != NULL && fromwire_peektype(channel_update) != WIRE_CHANNEL_UPDATE) { /* This should be a channel_update, prefix with the * WIRE_CHANNEL_UPDATE type, but isn't. Let's prefix it. */ fixed = tal_arr(ctx, u8, 0); towire_u16(&fixed, WIRE_CHANNEL_UPDATE); towire(&fixed, channel_update, tal_bytelen(channel_update)); if (taken(channel_update)) tal_free(channel_update); return fixed; } else { return tal_dup_arr(ctx, u8, channel_update, tal_count(channel_update), 0); } } /* Return NULL if the wrapped onion error message has no channel_update field, * or return the embedded channel_update message otherwise. */ static u8 *channel_update_from_onion_error(const tal_t *ctx, const u8 *onion_message) { u8 *channel_update = NULL; struct amount_msat unused_msat; u32 unused32; /* Identify failcodes that have some channel_update. * * TODO > BOLT 1.0: Add new failcodes when updating to a * new BOLT version. */ if (!fromwire_temporary_channel_failure(ctx, onion_message, &channel_update) && !fromwire_amount_below_minimum(ctx, onion_message, &unused_msat, &channel_update) && !fromwire_fee_insufficient(ctx, onion_message, &unused_msat, &channel_update) && !fromwire_incorrect_cltv_expiry(ctx, onion_message, &unused32, &channel_update) && !fromwire_expiry_too_soon(ctx, onion_message, &channel_update)) /* No channel update. */ return NULL; return patch_channel_update(ctx, take(channel_update)); } /*~ lightningd tells us when a payment has failed; we mark the channel (or * node) unusable here if it's a permanent failure, and unpack any * channel_update contained in the error. */ static struct io_plan *handle_payment_failure(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct node_id erring_node; struct short_channel_id erring_channel; u8 erring_channel_direction; u8 *error; enum onion_type failcode; u8 *channel_update; if (!fromwire_gossip_payment_failure(msg, msg, &erring_node, &erring_channel, &erring_channel_direction, &error)) master_badmsg(WIRE_GOSSIP_PAYMENT_FAILURE, msg); failcode = fromwire_peektype(error); channel_update = channel_update_from_onion_error(tmpctx, error); if (channel_update) status_debug("Extracted channel_update %s from onionreply %s", tal_hex(tmpctx, channel_update), tal_hex(tmpctx, error)); routing_failure(daemon->rstate, &erring_node, &erring_channel, erring_channel_direction, failcode, channel_update); return daemon_conn_read_next(conn, daemon->master); } /*~ This is where lightningd tells us that a channel's funding transaction has * been spent. */ static struct io_plan *handle_outpoint_spent(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct short_channel_id scid; struct chan *chan; struct routing_state *rstate = daemon->rstate; if (!fromwire_gossip_outpoint_spent(msg, &scid)) master_badmsg(WIRE_GOSSIP_OUTPOINT_SPENT, msg); chan = get_channel(rstate, &scid); if (chan) { status_trace( "Deleting channel %s due to the funding outpoint being " "spent", type_to_string(msg, struct short_channel_id, &scid)); /* Freeing is sufficient since everything else is allocated off * of the channel and the destructor takes care of unregistering * the channel */ tal_free(chan); /* We put a tombstone marker in the channel store, so we don't * have to replay blockchain spends on restart. */ gossip_store_add_channel_delete(rstate->store, &scid); } return daemon_conn_read_next(conn, daemon->master); } /*~ This is sent by lightningd when it kicks off 'closingd': we disable it * in both directions. * * We'll leave it to handle_outpoint_spent to delete the channel from our view * once the close gets confirmed. This avoids having strange states in which the * channel is list in our peer list but won't be returned when listing public * channels. This does not send out updates since that's triggered by the peer * connection closing. */ static struct io_plan *handle_local_channel_close(struct io_conn *conn, struct daemon *daemon, const u8 *msg) { struct short_channel_id scid; struct chan *chan; struct routing_state *rstate = daemon->rstate; if (!fromwire_gossip_local_channel_close(msg, &scid)) master_badmsg(WIRE_GOSSIP_LOCAL_CHANNEL_CLOSE, msg); chan = get_channel(rstate, &scid); if (chan) chan->local_disabled = true; return daemon_conn_read_next(conn, daemon->master); } /*~ This routine handles all the commands from lightningd. */ static struct io_plan *recv_req(struct io_conn *conn, const u8 *msg, struct daemon *daemon) { enum gossip_wire_type t = fromwire_peektype(msg); switch (t) { case WIRE_GOSSIPCTL_INIT: return gossip_init(conn, daemon, msg); case WIRE_GOSSIP_GETNODES_REQUEST: return getnodes(conn, daemon, msg); case WIRE_GOSSIP_GETROUTE_REQUEST: return getroute_req(conn, daemon, msg); case WIRE_GOSSIP_GETCHANNELS_REQUEST: return getchannels_req(conn, daemon, msg); case WIRE_GOSSIP_GET_CHANNEL_PEER: return get_channel_peer(conn, daemon, msg); case WIRE_GOSSIP_GET_TXOUT_REPLY: return handle_txout_reply(conn, daemon, msg); case WIRE_GOSSIP_PAYMENT_FAILURE: return handle_payment_failure(conn, daemon, msg); case WIRE_GOSSIP_OUTPOINT_SPENT: return handle_outpoint_spent(conn, daemon, msg); case WIRE_GOSSIP_LOCAL_CHANNEL_CLOSE: return handle_local_channel_close(conn, daemon, msg); case WIRE_GOSSIP_PING: return ping_req(conn, daemon, msg); case WIRE_GOSSIP_GET_INCOMING_CHANNELS: return get_incoming_channels(conn, daemon, msg); #if DEVELOPER case WIRE_GOSSIP_QUERY_SCIDS: return query_scids_req(conn, daemon, msg); case WIRE_GOSSIP_SEND_TIMESTAMP_FILTER: return send_timestamp_filter(conn, daemon, msg); case WIRE_GOSSIP_QUERY_CHANNEL_RANGE: return query_channel_range(conn, daemon, msg); case WIRE_GOSSIP_DEV_SET_MAX_SCIDS_ENCODE_SIZE: return dev_set_max_scids_encode_size(conn, daemon, msg); case WIRE_GOSSIP_DEV_SUPPRESS: return dev_gossip_suppress(conn, daemon, msg); case WIRE_GOSSIP_DEV_MEMLEAK: return dev_gossip_memleak(conn, daemon, msg); case WIRE_GOSSIP_DEV_COMPACT_STORE: return dev_compact_store(conn, daemon, msg); #else case WIRE_GOSSIP_QUERY_SCIDS: case WIRE_GOSSIP_SEND_TIMESTAMP_FILTER: case WIRE_GOSSIP_QUERY_CHANNEL_RANGE: case WIRE_GOSSIP_DEV_SET_MAX_SCIDS_ENCODE_SIZE: case WIRE_GOSSIP_DEV_SUPPRESS: case WIRE_GOSSIP_DEV_MEMLEAK: case WIRE_GOSSIP_DEV_COMPACT_STORE: break; #endif /* !DEVELOPER */ /* We send these, we don't receive them */ case WIRE_GOSSIP_GETNODES_REPLY: case WIRE_GOSSIP_GETROUTE_REPLY: case WIRE_GOSSIP_GETCHANNELS_REPLY: case WIRE_GOSSIP_PING_REPLY: case WIRE_GOSSIP_SCIDS_REPLY: case WIRE_GOSSIP_QUERY_CHANNEL_RANGE_REPLY: case WIRE_GOSSIP_GET_CHANNEL_PEER_REPLY: case WIRE_GOSSIP_GET_INCOMING_CHANNELS_REPLY: case WIRE_GOSSIP_GET_TXOUT: case WIRE_GOSSIP_DEV_MEMLEAK_REPLY: case WIRE_GOSSIP_DEV_COMPACT_STORE_REPLY: break; } /* Master shouldn't give bad requests. */ status_failed(STATUS_FAIL_MASTER_IO, "%i: %s", t, tal_hex(tmpctx, msg)); } /* This is called when lightningd closes its connection to us. We simply * exit. */ static void master_gone(struct daemon_conn *master UNUSED) { daemon_shutdown(); /* Can't tell master, it's gone. */ exit(2); } int main(int argc, char *argv[]) { setup_locale(); struct daemon *daemon; subdaemon_setup(argc, argv); daemon = tal(NULL, struct daemon); list_head_init(&daemon->peers); /* Note the use of time_mono() here. That's a monotonic clock, which * is really useful: it can only be used to measure relative events * (there's no correspondence to time-since-Ken-grew-a-beard or * anything), but unlike time_now(), this will never jump backwards by * half a second and leave me wondering how my tests failed CI! */ timers_init(&daemon->timers, time_mono()); /* Our daemons always use STDIN for commands from lightningd. */ daemon->master = daemon_conn_new(daemon, STDIN_FILENO, recv_req, NULL, daemon); tal_add_destructor(daemon->master, master_gone); status_setup_async(daemon->master); /* connectd is already started, and uses this fd to ask us things. */ daemon->connectd = daemon_conn_new(daemon, CONNECTD_FD, connectd_req, NULL, daemon); /* This loop never exits. io_loop() only returns if a timer has * expired, or io_break() is called, or all fds are closed. We don't * use io_break and closing the lightningd fd calls master_gone() * which exits. */ for (;;) { struct timer *expired = NULL; io_loop(&daemon->timers, &expired); timer_expired(daemon, expired); } } /*~ Note that the actual routing stuff is in routing.c; you might want to * check that out later. * * But that's the last of the global daemons. We now move on to the first of * the per-peer daemons: openingd/openingd.c. */