#include "bitcoin/pubkey.h" #include "bitcoin/script.h" #include "bitcoin/shadouble.h" #include "bitcoin/tx.h" #include "commit_tx.h" #include "funding.h" #include "overflows.h" #include "permute_tx.h" #include "pkt.h" #include "protobuf_convert.h" static bool add_htlc(struct bitcoin_tx *tx, size_t n, const UpdateAddHtlc *h, const struct pubkey *ourkey, const struct pubkey *theirkey, const struct sha256 *rhash, u32 locktime, u8 *(*scriptpubkeyfn)(const tal_t *, const struct pubkey *, const struct pubkey *, uint32_t, uint32_t, const struct sha256 *, const struct sha256 *)) { uint32_t htlc_abstime; struct sha256 htlc_rhash; assert(!tx->output[n].script); /* This shouldn't happen... */ if (!proto_to_abs_locktime(h->expiry, &htlc_abstime)) return false; proto_to_sha256(h->r_hash, &htlc_rhash); tx->output[n].script = scriptpubkey_p2sh(tx, scriptpubkeyfn(tx, ourkey, theirkey, htlc_abstime, locktime, rhash, &htlc_rhash)); tx->output[n].script_length = tal_count(tx->output[n].script); tx->output[n].amount = h->amount; return true; } struct bitcoin_tx *create_commit_tx(const tal_t *ctx, OpenChannel *ours, OpenChannel *theirs, OpenAnchor *anchor, const struct sha256 *rhash, const struct channel_state *cstate) { struct bitcoin_tx *tx; const u8 *redeemscript; struct pubkey ourkey, theirkey; u32 locktime; size_t i, num; uint64_t total; /* Now create commitment tx: one input, two outputs (plus htlcs) */ tx = bitcoin_tx(ctx, 1, 2 + tal_count(cstate->a.htlcs) + tal_count(cstate->b.htlcs)); /* Our input spends the anchor tx output. */ proto_to_sha256(anchor->txid, &tx->input[0].txid.sha); tx->input[0].index = anchor->output_index; tx->input[0].input_amount = anchor->amount; /* Output goes to our final pubkeys */ if (!proto_to_pubkey(ours->final_key, &ourkey)) return tal_free(tx); if (!proto_to_pubkey(theirs->final_key, &theirkey)) return tal_free(tx); if (!proto_to_rel_locktime(theirs->delay, &locktime)) return tal_free(tx); /* First output is a P2SH to a complex redeem script (usu. for me) */ redeemscript = bitcoin_redeem_secret_or_delay(tx, &ourkey, locktime, &theirkey, rhash); tx->output[0].script = scriptpubkey_p2sh(tx, redeemscript); tx->output[0].script_length = tal_count(tx->output[0].script); tx->output[0].amount = cstate->a.pay; /* Second output is a P2SH payment to them. */ tx->output[1].script = scriptpubkey_p2sh(ctx, bitcoin_redeem_single(ctx, &theirkey)); tx->output[1].script_length = tal_count(tx->output[1].script); tx->output[1].amount = cstate->b.pay; /* First two outputs done, now for the HTLCs. */ total = tx->output[0].amount + tx->output[1].amount; num = 2; /* HTLCs we've sent. */ for (i = 0; i < tal_count(cstate->a.htlcs); i++) { if (!add_htlc(tx, num, cstate->a.htlcs[i], &ourkey, &theirkey, rhash, locktime, scriptpubkey_htlc_send)) return tal_free(tx); total += tx->output[num++].amount; } /* HTLCs we've received. */ for (i = 0; i < tal_count(cstate->b.htlcs); i++) { if (!add_htlc(tx, num, cstate->b.htlcs[i], &ourkey, &theirkey, rhash, locktime, scriptpubkey_htlc_recv)) return tal_free(tx); total += tx->output[num++].amount; } assert(num == tx->output_count); /* Calculate fee; difference of inputs and outputs. */ assert(total <= tx->input[0].input_amount); tx->fee = tx->input[0].input_amount - total; permute_outputs(tx->output, tx->output_count, NULL); return tx; }