#include #include #include #include #include #include #include #include #include "tx.h" enum styles { /* Add the CT padding stuff to amount. */ TX_AMOUNT_CT_STYLE = 1, /* Whether to process CT rangeproof and noncecommitment. */ TX_AMOUNT_INCLUDE_CT = 2, /* Process the txfee field. */ TX_FEE = 4, /* Process the input script sig. */ TX_INPUT_SCRIPTSIG = 8, /* Process the amounts for each input. */ TX_INPUT_AMOUNT = 16, /* Process the same amounts for each input. */ TX_INPUT_AMOUNT_BUGGY = 32, /* Process hash of rangeproof and noncecommitment in *output* amount, * instead of rangeproof and noncecommitment themselves. */ TX_OUTPUT_AMOUNT_HASHPROOF = 64 }; #ifdef ALPHA_TXSTYLE /* Linearizing has everything, except input amount (which is implied) */ #define LINEARIZE_STYLE (TX_AMOUNT_CT_STYLE | TX_AMOUNT_INCLUDE_CT | TX_FEE | TX_INPUT_SCRIPTSIG) /* Alpha txids don't include input scripts, or rangeproof/txcommit in output */ #define TXID_STYLE (TX_AMOUNT_CT_STYLE | TX_FEE) /* Alpha signatures sign the input script (assuming others are set to * 0-len), as well as the input fee. * They sign a hash of the rangeproof and noncecommitment for inputs, * rather than the non rangeproof and noncecommitment themselves. * * For some reason they skip the txfee. */ #define SIG_STYLE (TX_AMOUNT_CT_STYLE | TX_AMOUNT_INCLUDE_CT | TX_INPUT_SCRIPTSIG | TX_INPUT_AMOUNT | TX_INPUT_AMOUNT_BUGGY | TX_OUTPUT_AMOUNT_HASHPROOF) #else /* BITCOIN */ /* Process all the bitcoin fields. Works for txid, serialization and signing */ #define LINEARIZE_STYLE (TX_INPUT_SCRIPTSIG) #define TXID_STYLE (TX_INPUT_SCRIPTSIG) #define SIG_STYLE (TX_INPUT_SCRIPTSIG) #endif static void add_varint(varint_t v, void (*add)(const void *, size_t, void *), void *addp, enum styles style) { u8 buf[9], *p = buf; if (v < 0xfd) { *(p++) = v; } else if (v <= 0xffff) { (*p++) = 0xfd; (*p++) = v; (*p++) = v >> 8; } else if (v <= 0xffffffff) { (*p++) = 0xfe; (*p++) = v; (*p++) = v >> 8; (*p++) = v >> 16; (*p++) = v >> 24; } else { (*p++) = 0xff; (*p++) = v; (*p++) = v >> 8; (*p++) = v >> 16; (*p++) = v >> 24; (*p++) = v >> 32; (*p++) = v >> 40; (*p++) = v >> 48; (*p++) = v >> 56; } add(buf, p - buf, addp); } static void add_le32(u32 v, void (*add)(const void *, size_t, void *), void *addp, enum styles style) { le32 l = cpu_to_le32(v); add(&l, sizeof(l), addp); } static void add_le64(u64 v, void (*add)(const void *, size_t, void *), void *addp, enum styles style) { le64 l = cpu_to_le64(v); add(&l, sizeof(l), addp); } static void add_value(u64 amount, void (*add)(const void *, size_t, void *), void *addp, bool output, enum styles style) { if (style & TX_AMOUNT_CT_STYLE) { /* The input is hashed as a 33 byte value (for CT); 25 0, then * the big-endian value. */ static u8 zeroes[25]; be64 b = cpu_to_be64(amount); add(zeroes, sizeof(zeroes), addp); add(&b, sizeof(b), addp); if (style & TX_AMOUNT_INCLUDE_CT) { /* Two more zeroes: Rangeproof and Noncecommitment */ if (output && (style & TX_OUTPUT_AMOUNT_HASHPROOF)) { struct sha256_double h; sha256_double(&h, zeroes, 2); add(&h, sizeof(h), addp); } else { add_varint(0, add, addp, style); add_varint(0, add, addp, style); } } } else { add_le64(amount, add, addp, style); } } static void add_input_value(u64 amount, void (*add)(const void *, size_t, void *), void *addp, enum styles style) { return add_value(amount, add, addp, false, style); } static void add_output_value(u64 amount, void (*add)(const void *, size_t, void *), void *addp, enum styles style) { return add_value(amount, add, addp, true, style); } static void add_tx_input(const struct bitcoin_tx_input *input, void (*add)(const void *, size_t, void *), void *addp, u64 dummy_amount, enum styles style) { add(&input->txid, sizeof(input->txid), addp); add_le32(input->index, add, addp, style); if (style & TX_INPUT_AMOUNT) { if (style & TX_INPUT_AMOUNT_BUGGY) add_input_value(dummy_amount, add, addp, style); else add_input_value(input->input_amount, add, addp, style); } if (style & TX_INPUT_SCRIPTSIG) { add_varint(input->script_length, add, addp, style); add(input->script, input->script_length, addp); } add_le32(input->sequence_number, add, addp, style); } static void add_tx_output(const struct bitcoin_tx_output *output, void (*add)(const void *, size_t, void *), void *addp, enum styles style) { add_output_value(output->amount, add, addp, style); add_varint(output->script_length, add, addp, style); add(output->script, output->script_length, addp); } static void add_tx(const struct bitcoin_tx *tx, void (*add)(const void *, size_t, void *), void *addp, u64 dummy_amount, enum styles style) { varint_t i; add_le32(tx->version, add, addp, style); add_varint(tx->input_count, add, addp, style); for (i = 0; i < tx->input_count; i++) add_tx_input(&tx->input[i], add, addp, dummy_amount, style); if (style & TX_FEE) add_le64(tx->fee, add, addp, style); add_varint(tx->output_count, add, addp, style); for (i = 0; i < tx->output_count; i++) add_tx_output(&tx->output[i], add, addp, style); add_le32(tx->lock_time, add, addp, style); } static void add_sha(const void *data, size_t len, void *shactx_) { struct sha256_ctx *ctx = shactx_; sha256_update(ctx, memcheck(data, len), len); } void sha256_tx_for_sig(struct sha256_ctx *ctx, const struct bitcoin_tx *tx, unsigned int input_num) { size_t i; /* Caller should zero-out other scripts for signing! */ assert(input_num < tx->input_count); for (i = 0; i < tx->input_count; i++) if (i != input_num) assert(tx->input[i].script_length == 0); add_tx(tx, add_sha, ctx, tx->input[input_num].input_amount, SIG_STYLE); } static void add_linearize(const void *data, size_t len, void *pptr_) { u8 **pptr = pptr_; size_t oldsize = tal_count(*pptr); tal_resize(pptr, oldsize + len); memcpy(*pptr + oldsize, memcheck(data, len), len); } u8 *linearize_tx(const tal_t *ctx, const struct bitcoin_tx *tx) { u8 *arr = tal_arr(ctx, u8, 0); add_tx(tx, add_linearize, &arr, 0, LINEARIZE_STYLE); return arr; } void bitcoin_txid(const struct bitcoin_tx *tx, struct sha256_double *txid) { struct sha256_ctx ctx = SHA256_INIT; add_tx(tx, add_sha, &ctx, 0, TXID_STYLE); sha256_double_done(&ctx, txid); } struct bitcoin_tx *bitcoin_tx(const tal_t *ctx, varint_t input_count, varint_t output_count) { struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx); size_t i; tx->output_count = output_count; tx->output = tal_arrz(tx, struct bitcoin_tx_output, output_count); tx->input_count = input_count; tx->input = tal_arrz(tx, struct bitcoin_tx_input, input_count); for (i = 0; i < tx->input_count; i++) { /* We assume NULL is a zero bitmap */ assert(tx->input[i].script == NULL); tx->input[i].sequence_number = 0xFFFFFFFF; } tx->lock_time = 0; #ifdef HAS_BIP68 tx->version = 2; #else tx->version = 1; #endif return tx; } /* Sets *cursor to NULL and returns NULL when a pull fails. */ static const u8 *pull(const u8 **cursor, size_t *max, void *copy, size_t n) { const u8 *p = *cursor; if (*max < n) { *cursor = NULL; *max = 0; /* Just make sure we don't leak uninitialized mem! */ if (copy) memset(copy, 0, n); return NULL; } *cursor += n; *max -= n; if (copy) memcpy(copy, p, n); return memcheck(p, n); } static u64 pull_varint(const u8 **cursor, size_t *max) { u64 ret; const u8 *p; p = pull(cursor, max, NULL, 1); if (!p) return 0; if (*p < 0xfd) { ret = *p; } else if (*p == 0xfd) { p = pull(cursor, max, NULL, 2); if (!p) return 0; ret = ((u64)p[1] << 8) + p[0]; } else if (*p == 0xfe) { p = pull(cursor, max, NULL, 4); if (!p) return 0; ret = ((u64)p[3] << 24) + ((u64)p[2] << 16) + ((u64)p[1] << 8) + p[0]; } else { p = pull(cursor, max, NULL, 8); if (!p) return 0; ret = ((u64)p[7] << 56) + ((u64)p[6] << 48) + ((u64)p[5] << 40) + ((u64)p[4] << 32) + ((u64)p[3] << 24) + ((u64)p[2] << 16) + ((u64)p[1] << 8) + p[0]; } return ret; } static u32 pull_le32(const u8 **cursor, size_t *max) { le32 ret; if (!pull(cursor, max, &ret, sizeof(ret))) return 0; return le32_to_cpu(ret); } static u64 pull_le64(const u8 **cursor, size_t *max) { le64 ret; if (!pull(cursor, max, &ret, sizeof(ret))) return 0; return le64_to_cpu(ret); } static bool pull_sha256_double(const u8 **cursor, size_t *max, struct sha256_double *h) { return pull(cursor, max, h, sizeof(*h)); } static u64 pull_value(const u8 **cursor, size_t *max) { u64 amount; if (LINEARIZE_STYLE & TX_AMOUNT_CT_STYLE) { /* The input is hashed as a 33 byte value (for CT); 25 0, then * the big-endian value. */ u8 zeroes[25]; be64 b; if (!pull(cursor, max, zeroes, sizeof(zeroes))) return 0; /* We don't handle CT amounts. */ if (zeroes[0] != 0) goto fail; if (!pull(cursor, max, &b, sizeof(b))) return 0; amount = be64_to_cpu(b); if (LINEARIZE_STYLE & TX_AMOUNT_INCLUDE_CT) { varint_t rp, nc; rp = pull_varint(cursor, max); nc = pull_varint(cursor, max); if (rp != 0 || nc != 0) goto fail; } } else { amount = pull_le64(cursor, max); } return amount; fail: /* Simulate EOF */ *cursor = NULL; *max = 0; return 0; } static void pull_input(const tal_t *ctx, const u8 **cursor, size_t *max, struct bitcoin_tx_input *input) { pull_sha256_double(cursor, max, &input->txid); input->index = pull_le32(cursor, max); if (LINEARIZE_STYLE & TX_INPUT_AMOUNT) { input->input_amount = pull_value(cursor, max); } if (LINEARIZE_STYLE & TX_INPUT_SCRIPTSIG) { input->script_length = pull_varint(cursor, max); input->script = tal_arr(ctx, u8, input->script_length); pull(cursor, max, input->script, input->script_length); } input->sequence_number = pull_le32(cursor, max); } static void pull_output(const tal_t *ctx, const u8 **cursor, size_t *max, struct bitcoin_tx_output *output) { output->amount = pull_value(cursor, max); output->script_length = pull_varint(cursor, max); output->script = tal_arr(ctx, u8, output->script_length); pull(cursor, max, output->script, output->script_length); } static struct bitcoin_tx *pull_bitcoin_tx(const tal_t *ctx, const u8 **cursor, size_t *max) { struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx); size_t i; tx->version = pull_le32(cursor, max); tx->input_count = pull_varint(cursor, max); tx->input = tal_arr(tx, struct bitcoin_tx_input, tx->input_count); for (i = 0; i < tx->input_count; i++) pull_input(tx, cursor, max, tx->input + i); if (LINEARIZE_STYLE & TX_FEE) tx->fee = pull_le64(cursor, max); tx->output_count = pull_varint(cursor, max); tx->output = tal_arr(ctx, struct bitcoin_tx_output, tx->output_count); for (i = 0; i < tx->output_count; i++) pull_output(tx, cursor, max, tx->output + i); tx->lock_time = pull_le32(cursor, max); /* If we ran short, or have bytes left over, fail. */ if (!*cursor || *max != 0) tx = tal_free(tx); return tx; } struct bitcoin_tx *bitcoin_tx_from_file(const tal_t *ctx, const char *filename) { char *hex, *end; u8 *linear_tx; const u8 *p; struct bitcoin_tx *tx; size_t len; /* Grabs file, add nul at end. */ hex = grab_file(ctx, filename); if (!hex) err(1, "Opening %s", filename); if (strends(hex, "\n")) hex[strlen(hex)-1] = '\0'; end = strchr(hex, ':'); if (!end) end = hex + strlen(hex); len = hex_data_size(end - hex); p = linear_tx = tal_arr(hex, u8, len); if (!hex_decode(hex, end - hex, linear_tx, len)) errx(1, "Bad hex string in %s", filename); tx = pull_bitcoin_tx(ctx, &p, &len); if (!tx) errx(1, "Bad transaction in %s", filename); /* Optional appended [:input-amount]* */ for (len = 0; len < tx->input_count; len++) { if (*end != ':') break; tx->input[len].input_amount = strtoull(end + 1, &end, 10); } if (len == tx->input_count) { if (*end != '\0') errx(1, "Additional input amounts appended to %s", filename); } else { /* Input amounts are compulsory for alpha, to generate sigs */ #ifdef ALPHA_TXSTYLE errx(1, "No input amount #%zu in %s", len, filename); #endif } tal_free(hex); return tx; } /* . Bitcoind represents hashes as little-endian for RPC. This didn't * stick for blockids (everyone else uses big-endian, eg. block explorers), * but it did stick for txids. */ static void reverse_bytes(u8 *arr, size_t len) { unsigned int i; for (i = 0; i < len / 2; i++) { unsigned char tmp = arr[i]; arr[i] = arr[len - 1 - i]; arr[len - 1 - i] = tmp; } } bool bitcoin_txid_from_hex(const char *hexstr, size_t hexstr_len, struct sha256_double *txid) { if (!hex_decode(hexstr, hexstr_len, txid, sizeof(*txid))) return false; reverse_bytes(txid->sha.u.u8, sizeof(txid->sha.u.u8)); return true; } bool bitcoin_txid_to_hex(const struct sha256_double *txid, char *hexstr, size_t hexstr_len) { struct sha256_double rev = *txid; reverse_bytes(rev.sha.u.u8, sizeof(rev.sha.u.u8)); return hex_encode(&rev, sizeof(rev), hexstr, hexstr_len); } static bool write_input_amounts(int fd, const struct bitcoin_tx *tx) { /* Alpha required input amounts, so append them */ #ifdef ALPHA_TXSTYLE size_t i; for (i = 0; i < tx->input_count; i++) { char str[1 + STR_MAX_CHARS(tx->input[i].input_amount)]; sprintf(str, ":%llu", (unsigned long long)tx->input[i].input_amount); if (!write_all(fd, str, strlen(str))) return false; } #endif return true; } bool bitcoin_tx_write(int fd, const struct bitcoin_tx *tx) { u8 *tx_arr; char *tx_hex; bool ok; tx_arr = linearize_tx(NULL, tx); tx_hex = tal_arr(tx_arr, char, hex_str_size(tal_count(tx_arr))); hex_encode(tx_arr, tal_count(tx_arr), tx_hex, tal_count(tx_hex)); ok = write_all(fd, tx_hex, strlen(tx_hex)) && write_input_amounts(fd, tx); tal_free(tx_arr); return ok; } u32 bitcoin_nsequence(u32 locktime) { #ifdef HAS_BIP68 /* BIP66 style sequence numbers */ if (locktime >= 500000000) /* A relative time. Set bit 30, shift by 5. */ return 0x40000000 | ((locktime - 500000000) << 5); else /* A block height. Shift by 14. */ return locktime << 14; #else /* Alpha uses the original proposal: simply invert the bits. */ return ~locktime; #endif }