#include "privkey.h"
#include "pubkey.h"
#include "script.h"
#include "shadouble.h"
#include "signature.h"
#include "tx.h"
#include "type_to_string.h"
#include "utils.h"
#include <assert.h>
#include <ccan/cast/cast.h>

#undef DEBUG
#ifdef DEBUG
# include <ccan/err/err.h>
# include <stdio.h>
#define SHA_FMT					   \
	"%02x%02x%02x%02x%02x%02x%02x%02x"	   \
	"%02x%02x%02x%02x%02x%02x%02x%02x"	   \
	"%02x%02x%02x%02x%02x%02x%02x%02x"	   \
	"%02x%02x%02x%02x%02x%02x%02x%02x"

#define SHA_VALS(e)							\
	e[0], e[1], e[2], e[3], e[4], e[5], e[6], e[7],			\
		e[8], e[9], e[10], e[11], e[12], e[13], e[14], e[15],	\
		e[16], e[17], e[18], e[19], e[20], e[21], e[22], e[23], \
		e[24], e[25], e[25], e[26], e[28], e[29], e[30], e[31]

static void dump_tx(const char *msg,
		    const struct bitcoin_tx *tx, size_t inputnum,
		    const u8 *script,
		    const struct pubkey *key,
		    const struct sha256_double *h)
{
	size_t i, j;
	warnx("%s tx version %u locktime %#x:",
	      msg, tx->version, tx->lock_time);
	for (i = 0; i < tal_count(tx->input); i++) {
		warnx("input[%zu].txid = "SHA_FMT, i,
		      SHA_VALS(tx->input[i].txid.sha.u.u8));
		warnx("input[%zu].index = %u", i, tx->input[i].index);
	}
	for (i = 0; i < tal_count(tx->output); i++) {
		warnx("output[%zu].amount = %llu",
		      i, (long long)tx->output[i].amount);
		warnx("output[%zu].script = %zu",
		      i, tal_len(tx->output[i].script));
		for (j = 0; j < tal_len(tx->output[i].script); j++)
			fprintf(stderr, "%02x", tx->output[i].script[j]);
		fprintf(stderr, "\n");
	}
	warnx("input[%zu].script = %zu", inputnum, tal_len(script));
	for (i = 0; i < tal_len(script); i++)
		fprintf(stderr, "%02x", script[i]);
	if (key) {
		fprintf(stderr, "\nPubkey: ");
		for (i = 0; i < sizeof(key->pubkey); i++)
			fprintf(stderr, "%02x", ((u8 *)&key->pubkey)[i]);
		fprintf(stderr, "\n");
	}
	if (h) {
		fprintf(stderr, "\nHash: ");
		for (i = 0; i < sizeof(h->sha.u.u8); i++)
			fprintf(stderr, "%02x", h->sha.u.u8[i]);
		fprintf(stderr, "\n");
	}
}
#else
static void dump_tx(const char *msg,
		    const struct bitcoin_tx *tx, size_t inputnum,
		    const u8 *script,
		    const struct pubkey *key,
		    const struct sha256_double *h)
{
}
#endif

void sign_hash(const struct privkey *privkey,
	       const struct sha256_double *h,
	       secp256k1_ecdsa_signature *s)
{
	bool ok;

	ok = secp256k1_ecdsa_sign(secp256k1_ctx,
				  s,
				  h->sha.u.u8,
				  privkey->secret, NULL, NULL);
	assert(ok);
}

/* Only does SIGHASH_ALL */
static void sha256_tx_one_input(struct bitcoin_tx *tx,
				size_t input_num,
				const u8 *script,
				const u8 *witness_script,
				struct sha256_double *hash)
{
	size_t i;

	assert(input_num < tal_count(tx->input));

	/* You must have all inputs zeroed to start. */
	for (i = 0; i < tal_count(tx->input); i++)
		assert(!tx->input[i].script);

	tx->input[input_num].script = cast_const(u8 *, script);

	sha256_tx_for_sig(hash, tx, input_num, witness_script);

	/* Reset it for next time. */
	tx->input[input_num].script = NULL;
}

/* Only does SIGHASH_ALL */
void sign_tx_input(struct bitcoin_tx *tx,
		   unsigned int in,
		   const u8 *subscript,
		   const u8 *witness_script,
		   const struct privkey *privkey, const struct pubkey *key,
		   secp256k1_ecdsa_signature *sig)
{
	struct sha256_double hash;

	sha256_tx_one_input(tx, in, subscript, witness_script, &hash);
	dump_tx("Signing", tx, in, subscript, key, &hash);
	sign_hash(privkey, &hash, sig);
}

bool check_signed_hash(const struct sha256_double *hash,
		       const secp256k1_ecdsa_signature *signature,
		       const struct pubkey *key)
{
	int ret;

	ret = secp256k1_ecdsa_verify(secp256k1_ctx,
				     signature,
				     hash->sha.u.u8, &key->pubkey);
	return ret == 1;
}

bool check_tx_sig(struct bitcoin_tx *tx, size_t input_num,
		  const u8 *redeemscript,
		  const u8 *witness_script,
		  const struct pubkey *key,
		  const secp256k1_ecdsa_signature *sig)
{
	struct sha256_double hash;
	bool ret;

	assert(input_num < tal_count(tx->input));

	sha256_tx_one_input(tx, input_num, redeemscript, witness_script, &hash);

	ret = check_signed_hash(&hash, sig, key);
	if (!ret)
		dump_tx("Sig failed", tx, input_num, redeemscript, key, &hash);
	return ret;
}

/* Stolen direct from bitcoin/src/script/sign.cpp:
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
*/
static bool IsValidSignatureEncoding(const unsigned char sig[], size_t len)
{
    // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
    // * total-length: 1-byte length descriptor of everything that follows,
    //   excluding the sighash byte.
    // * R-length: 1-byte length descriptor of the R value that follows.
    // * R: arbitrary-length big-endian encoded R value. It must use the shortest
    //   possible encoding for a positive integers (which means no null bytes at
    //   the start, except a single one when the next byte has its highest bit set).
    // * S-length: 1-byte length descriptor of the S value that follows.
    // * S: arbitrary-length big-endian encoded S value. The same rules apply.
    // * sighash: 1-byte value indicating what data is hashed (not part of the DER
    //   signature)

    // Minimum and maximum size constraints.
    if (len < 9) return false;
    if (len > 73) return false;

    // A signature is of type 0x30 (compound).
    if (sig[0] != 0x30) return false;

    // Make sure the length covers the entire signature.
    if (sig[1] != len - 3) return false;

    // Extract the length of the R element.
    unsigned int lenR = sig[3];

    // Make sure the length of the S element is still inside the signature.
    if (5 + lenR >= len) return false;

    // Extract the length of the S element.
    unsigned int lenS = sig[5 + lenR];

    // Verify that the length of the signature matches the sum of the length
    // of the elements.
    if ((size_t)(lenR + lenS + 7) != len) return false;

    // Check whether the R element is an integer.
    if (sig[2] != 0x02) return false;

    // Zero-length integers are not allowed for R.
    if (lenR == 0) return false;

    // Negative numbers are not allowed for R.
    if (sig[4] & 0x80) return false;

    // Null bytes at the start of R are not allowed, unless R would
    // otherwise be interpreted as a negative number.
    if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;

    // Check whether the S element is an integer.
    if (sig[lenR + 4] != 0x02) return false;

    // Zero-length integers are not allowed for S.
    if (lenS == 0) return false;

    // Negative numbers are not allowed for S.
    if (sig[lenR + 6] & 0x80) return false;

    // Null bytes at the start of S are not allowed, unless S would otherwise be
    // interpreted as a negative number.
    if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;

    return true;
}

size_t signature_to_der(u8 der[72], const secp256k1_ecdsa_signature *sig)
{
	size_t len = 72;

	secp256k1_ecdsa_signature_serialize_der(secp256k1_ctx,
						der, &len, sig);

	/* IsValidSignatureEncoding() expect extra byte for sighash */
	assert(IsValidSignatureEncoding(der, len + 1));
	return len;
}

bool signature_from_der(const u8 *der, size_t len, secp256k1_ecdsa_signature *sig)
{
	return secp256k1_ecdsa_signature_parse_der(secp256k1_ctx,
						   sig, der, len);
}

/* Signature must have low S value. */
bool sig_valid(const secp256k1_ecdsa_signature *sig)
{
	secp256k1_ecdsa_signature tmp;

	if (secp256k1_ecdsa_signature_normalize(secp256k1_ctx, &tmp, sig) == 0)
		return true;
	return false;
}

static char *signature_to_hexstr(const tal_t *ctx,
				 const secp256k1_ecdsa_signature *sig)
{
	u8 der[72];
	size_t len = signature_to_der(der, sig);

	return tal_hexstr(ctx, der, len);
}
REGISTER_TYPE_TO_STRING(secp256k1_ecdsa_signature, signature_to_hexstr);