#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "gen_onchain_types_names.h" /* stdin == requests */ #define REQ_FD STDIN_FILENO /* If we broadcast a tx, or need a delay to resolve the output. */ struct proposed_resolution { /* This can be NULL if our proposal is to simply ignore it after depth */ const struct bitcoin_tx *tx; /* Non-zero if this is CSV-delayed. */ u32 depth_required; enum tx_type tx_type; }; /* How it actually got resolved. */ struct resolution { struct sha256_double txid; unsigned int depth; enum tx_type tx_type; }; struct tracked_output { enum tx_type tx_type; struct sha256_double txid; u32 tx_blockheight; u32 outnum; u64 satoshi; enum output_type output_type; /* Our proposed solution (if any) */ struct proposed_resolution *proposal; /* If it is resolved. */ struct resolution *resolved; }; /* We use the same feerate for htlcs and commit transactions; we don't * record what it was, so we brute-force it. */ struct feerate_range { u32 min, max; }; static void init_feerate_range(struct feerate_range *feerate_range, u64 funding_satoshi, const struct bitcoin_tx *commit_tx) { size_t i, max_untrimmed_htlcs; u64 fee = funding_satoshi; for (i = 0; i < tal_count(commit_tx->output); i++) fee -= commit_tx->output[i].amount; /* We don't know how many trimmed HTLCs there are, so they could * be making fee entirely. */ feerate_range->min = 0; /* But we can estimate the maximum fee rate: * * fee = feerate_per_kw * (724 + 172 * num_untrimmed) / 1000; */ if (tal_count(commit_tx->output) < 2) max_untrimmed_htlcs = 0; else max_untrimmed_htlcs = tal_count(commit_tx->output) - 2; feerate_range->max = (fee + 999) * 1000 / (724 + 172 * max_untrimmed_htlcs); status_trace("Initial feerate %u to %u", feerate_range->min, feerate_range->max); } static void narrow_feerate_range(struct feerate_range *feerate_range, u64 fee, u32 multiplier) { u32 min, max; /* fee = feerate_per_kw * multiplier / 1000; */ max = (fee + 999) * 1000 / multiplier; if (fee < 999) min = 0; else min = (fee - 999) * 1000 / multiplier; status_trace("Fee %"PRIu64" gives feerate min/max %u/%u", fee, min, max); if (max < feerate_range->max) feerate_range->max = max; if (min > feerate_range->min) feerate_range->min = min; status_trace("Feerate now %u to %u", feerate_range->min, feerate_range->max); } static const char *tx_type_name(enum tx_type tx_type) { size_t i; for (i = 0; enum_tx_type_names[i].name; i++) if (enum_tx_type_names[i].v == tx_type) return enum_tx_type_names[i].name; return "unknown"; } static const char *output_type_name(enum output_type output_type) { size_t i; for (i = 0; enum_output_type_names[i].name; i++) if (enum_output_type_names[i].v == output_type) return enum_output_type_names[i].name; return "unknown"; } static struct tracked_output * new_tracked_output(struct tracked_output ***outs, const struct sha256_double *txid, u32 tx_blockheight, enum tx_type tx_type, u32 outnum, u64 satoshi, enum output_type output_type) { size_t n = tal_count(*outs); struct tracked_output *out = tal(*outs, struct tracked_output); status_trace("Tracking output %u of %s: %s/%s", outnum, type_to_string(trc, struct sha256_double, txid), tx_type_name(tx_type), output_type_name(output_type)); out->tx_type = tx_type; out->txid = *txid; out->tx_blockheight = tx_blockheight; out->outnum = outnum; out->satoshi = satoshi; out->output_type = output_type; out->proposal = NULL; out->resolved = NULL; tal_resize(outs, n+1); (*outs)[n] = out; return out; } static void ignore_output(struct tracked_output *out) { status_trace("Ignoring output %u of %s: %s/%s", out->outnum, type_to_string(trc, struct sha256_double, &out->txid), tx_type_name(out->tx_type), output_type_name(out->output_type)); out->resolved = tal(out, struct resolution); out->resolved->txid = out->txid; out->resolved->depth = 0; out->resolved->tx_type = SELF; } static void propose_resolution(struct tracked_output *out, const struct bitcoin_tx *tx, unsigned int depth_required, enum tx_type tx_type) { status_trace("Propose handling %s/%s by %s (%s) in %u blocks", tx_type_name(out->tx_type), output_type_name(out->output_type), tx_type_name(tx_type), tx ? type_to_string(trc, struct bitcoin_tx, tx):"IGNORING", depth_required); out->proposal = tal(out, struct proposed_resolution); out->proposal->tx = tal_steal(out->proposal, tx); out->proposal->depth_required = depth_required; out->proposal->tx_type = tx_type; } static void propose_resolution_at_block(struct tracked_output *out, const struct bitcoin_tx *tx, unsigned int block_required, enum tx_type tx_type) { u32 depth; /* Expiry could be in the past! */ if (block_required < out->tx_blockheight) depth = 0; else depth = block_required - out->tx_blockheight; propose_resolution(out, tx, depth, tx_type); } /* This simple case: true if this was resolved by our proposal. */ static bool resolved_by_proposal(struct tracked_output *out, const struct sha256_double *txid) { /* If there's no TX associated, it's not us. */ if (!out->proposal->tx) return false; out->resolved = tal(out, struct resolution); bitcoin_txid(out->proposal->tx, &out->resolved->txid); /* Not the same as what we proposed? */ if (!structeq(&out->resolved->txid, txid)) { out->resolved = tal_free(out->resolved); return false; } status_trace("Resolved %s/%s by our proposal %s (%s)", tx_type_name(out->tx_type), output_type_name(out->output_type), tx_type_name(out->proposal->tx_type), type_to_string(trc, struct bitcoin_tx, out->proposal->tx)); out->resolved->depth = 0; out->resolved->tx_type = out->proposal->tx_type; return true; } /* Otherwise, we figure out what happened and then call this. */ static void resolved_by_other(struct tracked_output *out, const struct sha256_double *txid, enum tx_type tx_type) { out->resolved = tal(out, struct resolution); out->resolved->txid = *txid; out->resolved->depth = 0; out->resolved->tx_type = tx_type; status_trace("Resolved %s/%s by %s (%s)", tx_type_name(out->tx_type), output_type_name(out->output_type), tx_type_name(tx_type), type_to_string(trc, struct sha256_double, txid)); } static void unknown_spend(struct tracked_output *out, const struct bitcoin_tx *tx) { out->resolved = tal(out, struct resolution); bitcoin_txid(tx, &out->resolved->txid); out->resolved->depth = 0; out->resolved->tx_type = UNKNOWN_TXTYPE; /* FIXME: we need a louder warning! */ status_trace("Unknown spend of %s/%s by %s", tx_type_name(out->tx_type), output_type_name(out->output_type), type_to_string(trc, struct bitcoin_tx, tx)); } static u64 unmask_commit_number(const struct bitcoin_tx *tx, enum side funder, const struct pubkey *local_payment_basepoint, const struct pubkey *remote_payment_basepoint) { u64 obscurer; const struct pubkey *keys[NUM_SIDES]; keys[LOCAL] = local_payment_basepoint; keys[REMOTE] = remote_payment_basepoint; /* BOLT #3: * * The 48-bit commitment transaction number is obscured by * `XOR` with the lower 48 bits of... */ obscurer = commit_number_obscurer(keys[funder], keys[!funder]); /* BOLT #3: * * * locktime: upper 8 bits are 0x20, lower 24 bits are the * lower 24 bits of the obscured commitment transaction * number. *... * * `txin[0]` sequence: upper 8 bits are 0x80, lower 24 bits * are upper 24 bits of the obscured commitment * transaction number. */ return ((tx->lock_time & 0x00FFFFFF) | (tx->input[0].sequence_number & (u64)0x00FFFFFF) << 24) ^ obscurer; } static bool is_mutual_close(const struct bitcoin_tx *tx, const u8 *local_scriptpubkey, const u8 *remote_scriptpubkey) { size_t i; bool local_matched = false, remote_matched = false; for (i = 0; i < tal_count(tx->output); i++) { /* To be paranoid, we only let each one match once. */ if (scripteq(tx->output[i].script, local_scriptpubkey) && !local_matched) local_matched = true; else if (scripteq(tx->output[i].script, remote_scriptpubkey) && !remote_matched) remote_matched = true; else return false; } return true; } /* We only ever send out one, so matching it is easy. */ static bool is_local_commitment(const struct sha256_double *txid, const struct sha256_double *our_broadcast_txid) { return structeq(txid, our_broadcast_txid); } /* BOLT #5: * * Outputs which are *resolved* are considered *irrevocably resolved* * once their *resolving* transaction is included in a block at least 100 * deep on the most-work blockchain. */ static bool all_irrevocably_resolved(struct tracked_output **outs) { size_t i; for (i = 0; i < tal_count(outs); i++) { if (outs[i]->resolved && outs[i]->resolved->depth < 100) return false; } return true; } static void proposal_meets_depth(struct tracked_output *out) { /* If we simply wanted to ignore it after some depth */ if (!out->proposal->tx) { ignore_output(out); return; } status_trace("Broadcasting %s (%s) to resolve %s/%s", tx_type_name(out->proposal->tx_type), type_to_string(trc, struct bitcoin_tx, out->proposal->tx), tx_type_name(out->tx_type), output_type_name(out->output_type)); wire_sync_write(REQ_FD, take(towire_onchain_broadcast_tx(NULL, out->proposal->tx))); /* We will get a callback when it's in a block. */ } static void unwatch_tx(const struct bitcoin_tx *tx) { u8 *msg; struct sha256_double txid; bitcoin_txid(tx, &txid); msg = towire_onchain_unwatch_tx(tx, &txid, tal_count(tx->output)); wire_sync_write(REQ_FD, take(msg)); } static void handle_their_htlc_fulfill(struct tracked_output *out, const struct bitcoin_tx *tx) { status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "FIXME: %s", __func__); } /* An output has been spent: see if it resolves something we care about. */ static void output_spent(struct tracked_output **outs, const struct bitcoin_tx *tx, u32 input_num, u32 tx_blockheight) { struct sha256_double txid; bitcoin_txid(tx, &txid); for (size_t i = 0; i < tal_count(outs); i++) { if (outs[i]->resolved) continue; if (tx->input[input_num].index != outs[i]->outnum) continue; if (!structeq(&tx->input[input_num].txid, &outs[i]->txid)) continue; /* Was this our resolution? */ if (resolved_by_proposal(outs[i], &txid)) return; switch (outs[i]->output_type) { case OUTPUT_TO_US: case DELAYED_OUTPUT_TO_US: unknown_spend(outs[i], tx); break; case THEIR_HTLC: /* We ignore this timeout tx, since we should * resolve by ignoring once we reach depth. */ break; case OUR_HTLC: /* The only way they can spend this: fulfill */ handle_their_htlc_fulfill(outs[i], tx); break; case FUNDING_OUTPUT: /* Master should be restarting us, as this implies * that our old tx was unspent. */ status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "Funding output spent again!"); /* Um, we don't track these! */ case OUTPUT_TO_THEM: case DELAYED_OUTPUT_TO_THEM: status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "Tracked spend of %s/%s?", tx_type_name(outs[i]->tx_type), output_type_name(outs[i]->output_type)); } return; } /* Not interesting to us, so unwatch the tx and all its outputs */ status_trace("Notified about tx %s output %u spend, but we don't care", type_to_string(trc, struct sha256_double, &tx->input[input_num].txid), tx->input[input_num].index); unwatch_tx(tx); } static void tx_new_depth(struct tracked_output **outs, const struct sha256_double *txid, u32 depth) { size_t i; for (i = 0; i < tal_count(outs); i++) { /* Is this tx resolving an output? */ if (outs[i]->resolved) { if (structeq(&outs[i]->resolved->txid, txid)) { status_trace("%s depth %u", tx_type_name(outs[i]->resolved->tx_type), depth); outs[i]->resolved->depth = depth; } continue; } /* Otherwise, is this something we have a pending * resolution for? */ if (outs[i]->proposal && structeq(&outs[i]->txid, txid) && depth >= outs[i]->proposal->depth_required) { proposal_meets_depth(outs[i]); } } } static void handle_preimage(struct tracked_output **outs, const struct preimage *preimage) { status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "FIXME: %s", __func__); } /* BOLT #5: * * Once a node has broadcast a funding transaction or sent a commitment * signature for a commitment transaction which contains an HTLC output, * it MUST monitor the blockchain for transactions which spend any output * which is not *irrevocably resolved* until all outputs are *irrevocably * resolved*. */ static void wait_for_resolved(struct tracked_output **outs) { while (!all_irrevocably_resolved(outs)) { u8 *msg = wire_sync_read(outs, REQ_FD); struct sha256_double txid; struct bitcoin_tx *tx = tal(msg, struct bitcoin_tx); u32 input_num, depth, tx_blockheight; struct preimage preimage; status_trace("Got new message %s", onchain_wire_type_name(fromwire_peektype(msg))); if (fromwire_onchain_depth(msg, NULL, &txid, &depth)) tx_new_depth(outs, &txid, depth); else if (fromwire_onchain_spent(msg, NULL, tx, &input_num, &tx_blockheight)) output_spent(outs, tx, input_num, tx_blockheight); else if (fromwire_onchain_known_preimage(msg, NULL, &preimage)) handle_preimage(outs, &preimage); else status_failed(WIRE_ONCHAIN_BAD_COMMAND, "Bad message %s", tal_hex(msg, msg)); tal_free(msg); } } static void set_state(enum peer_state state) { wire_sync_write(REQ_FD, take(towire_onchain_init_reply(NULL, state))); } static void handle_mutual_close(const struct bitcoin_tx *tx, const struct sha256_double *txid, struct tracked_output **outs) { set_state(ONCHAIND_MUTUAL); /* BOLT #5: * * A mutual close transaction *resolves* the funding transaction output. * * A node doesn't need to do anything else as it has already agreed to * the output, which is sent to its specified `scriptpubkey` */ resolved_by_other(outs[0], txid, MUTUAL_CLOSE); wait_for_resolved(outs); } static u8 **derive_htlc_scripts(const struct htlc_stub *htlcs, enum side side, const struct keyset *keyset) { size_t i; u8 **htlc_scripts = tal_arr(htlcs, u8 *, tal_count(htlcs)); for (i = 0; i < tal_count(htlcs); i++) { if (htlcs[i].owner == side) htlc_scripts[i] = htlc_offered_wscript(htlc_scripts, &htlcs[i].ripemd, keyset); else { /* FIXME: remove abs_locktime */ struct abs_locktime ltime; if (!blocks_to_abs_locktime(htlcs[i].cltv_expiry, <ime)) status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "Could not convert cltv_expiry %u to locktime", htlcs[i].cltv_expiry); htlc_scripts[i] = htlc_received_wscript(htlc_scripts, &htlcs[i].ripemd, <ime, keyset); } } return htlc_scripts; } /* * This covers both the to-us output spend (` 0`) * and the their-commitment, our HTLC timeout case (` 0`). */ static struct bitcoin_tx *tx_to_us(const tal_t *ctx, struct tracked_output *out, u32 to_self_delay, u32 locktime, u64 feerate, u64 dust_limit, const u8 *wscript, const struct pubkey *our_wallet_pubkey, const struct privkey *privkey, const struct pubkey *pubkey) { struct bitcoin_tx *tx; u64 fee; secp256k1_ecdsa_signature sig; tx = bitcoin_tx(ctx, 1, 1); tx->lock_time = locktime; tx->input[0].sequence_number = to_self_delay; tx->input[0].txid = out->txid; tx->input[0].index = out->outnum; tx->input[0].amount = tal_dup(tx->input, u64, &out->satoshi); tx->output[0].amount = out->satoshi; tx->output[0].script = scriptpubkey_p2wpkh(tx->output, our_wallet_pubkey); /* Worst-case sig is 73 bytes */ fee = feerate * (measure_tx_cost(tx) + 1 + 3 + 73 + 0 + tal_len(wscript)) / 1000; /* Result is trivial? Just eliminate output. */ if (tx->output[0].amount < dust_limit + fee) tal_resize(&tx->output, 0); else tx->output[0].amount -= fee; sign_tx_input(tx, 0, NULL, wscript, privkey, pubkey, &sig); tx->input[0].witness = bitcoin_witness_sig_and_empty(tx->input, &sig, wscript); return tx; } static void resolve_our_htlc_ourcommit(struct tracked_output *out, const u8 *wscript, const struct htlc_stub *htlc, u32 to_self_delay, struct feerate_range *feerate_range, const struct privkey *local_payment_privkey, const secp256k1_ecdsa_signature *remotesig, const struct keyset *keyset) { struct bitcoin_tx *tx; u64 prev_fee = UINT64_MAX; /* BOLT #5: * * # On-chain HTLC Output Handling: Our Offers * ... * * If the HTLC output has *timed out* and not been *resolved*, the * node MUST *resolve* the output. If the transaction is the node's * own commitment transaction, it MUST *resolve* the output by * spending it using the HTLC-timeout transaction, and the * HTLC-timeout transaction output MUST be *resolved* as described in * "On-chain HTLC Transaction Handling". */ tx = htlc_timeout_tx(out, &out->txid, out->outnum, out->satoshi * 1000, htlc->cltv_expiry, to_self_delay, 0, keyset); wscript = bitcoin_wscript_htlc_offer_ripemd160(tx, &keyset->self_payment_key, &keyset->other_payment_key, &htlc->ripemd, &keyset->self_revocation_key); /* We vary feerate until signature they offered matches: we're * more likely to be near max. */ for (s64 i = feerate_range->max; i >= feerate_range->min; i--) { u64 fee = htlc_timeout_fee(i); secp256k1_ecdsa_signature localsig; if (fee > out->satoshi) continue; /* Minor optimization: don't check same fee twice */ if (fee == prev_fee) continue; prev_fee = fee; tx->output[0].amount = out->satoshi - fee; if (!check_tx_sig(tx, 0, NULL, wscript, &keyset->other_payment_key, remotesig)) continue; /* OK, we found correct fee! Narrow range for next time. */ /* BOLT #3: * * The fee for an HTLC-timeout transaction MUST BE calculated * to match: * * 1. Multiply `feerate_per_kw` by 663 and divide by 1000 * (rounding down). */ narrow_feerate_range(feerate_range, fee, 663); sign_tx_input(tx, 0, NULL, wscript, local_payment_privkey, &keyset->self_payment_key, &localsig); tx->input[0].witness = bitcoin_htlc_offer_spend_timeout(tx->input, &localsig, remotesig, wscript); propose_resolution_at_block(out, tx, htlc->cltv_expiry, OUR_HTLC_TIMEOUT_TO_US); tal_free(wscript); return; } status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "Could not find feerate for signature on HTLC timeout" " between %u and %u", feerate_range->min, feerate_range->max); } static void resolve_our_htlc_theircommit(struct tracked_output *out, const u8 *wscript, const struct htlc_stub *htlc, const struct pubkey *our_wallet_pubkey, const struct privkey *local_payment_privkey, const struct keyset *keyset, u64 feerate_per_kw, u64 local_dust_limit_satoshi) { struct bitcoin_tx *tx; /* BOLT #5: * * # On-chain HTLC Output Handling: Our Offers * ... * * If the HTLC output has *timed out* and not been *resolved*, the * node MUST *resolve* the output. If the transaction is the node's * own commitment transaction, .... Otherwise it MUST resolve the * output by spending it to a convenient address. */ tx = tx_to_us(out, out, 0, htlc->cltv_expiry, feerate_per_kw, local_dust_limit_satoshi, wscript, our_wallet_pubkey, local_payment_privkey, &keyset->other_payment_key); propose_resolution_at_block(out, tx, htlc->cltv_expiry, OUR_HTLC_TIMEOUT_TO_US); } static void resolve_their_htlc(struct tracked_output *out, const struct htlc_stub *htlc) { /* BOLT #5: * * # On-chain HTLC Output Handling: Their Offers * *... * ## Requirements * * * If the node receives (or already knows) a payment preimage for an * unresolved HTLC output it was offered, it MUST *resolve* the output * by spending it. If the transaction is the nodes' own commitment * transaction, then the it MUST use the HTLC-success transaction, and * the HTLC-success transaction output MUST be *resolved* as described * in "On-chain HTLC Transaction Handling". Otherwise, it MUST * *resolve* the output by spending it to a convenient address. * * Otherwise, if the HTLC output has expired, it is considered * *irrevocably resolved*. */ /* If we hit timeout depth, resolve by ignoring. */ propose_resolution_at_block(out, NULL, htlc->cltv_expiry, THEIR_HTLC_TIMEOUT_TO_THEM); } static int match_htlc_output(const struct bitcoin_tx *tx, unsigned int outnum, u8 **htlc_scripts) { /* Must be a p2wsh output */ if (!is_p2wsh(tx->output[outnum].script)) return -1; for (size_t i = 0; i < tal_count(htlc_scripts); i++) { struct sha256 sha; if (!htlc_scripts[i]) continue; sha256(&sha, htlc_scripts[i], tal_len(htlc_scripts[i])); if (memeq(tx->output[outnum].script + 2, tal_len(tx->output[outnum].script) - 2, &sha, sizeof(sha))) return i; } return -1; } static void handle_our_unilateral(const struct bitcoin_tx *tx, u32 tx_blockheight, const struct sha256_double *txid, const struct secrets *secrets, const struct sha256 *shaseed, const struct pubkey *remote_revocation_basepoint, const struct pubkey *remote_payment_basepoint, const struct pubkey *local_payment_basepoint, const struct pubkey *local_delayed_payment_basepoint, const struct pubkey *our_wallet_pubkey, u32 to_self_delay, u64 commit_num, u64 feerate_per_kw, u64 local_dust_limit_satoshi, const struct htlc_stub *htlcs, const secp256k1_ecdsa_signature *htlc_sigs, struct tracked_output **outs) { const tal_t *tmpctx = tal_tmpctx(NULL); u8 **htlc_scripts; u8 *local_wscript, *script[NUM_SIDES]; struct privkey local_delayedprivkey, local_payment_privkey; struct pubkey local_per_commitment_point; struct keyset keyset; struct feerate_range feerate_range; size_t i; set_state(ONCHAIND_OUR_UNILATERAL); init_feerate_range(&feerate_range, outs[0]->satoshi, tx); /* BOLT #5: * * There are two cases to consider here: in the first case, node A * sees its own *commitment transaction*, in the second, it sees the * node B's unrevoked *commitment transaction*. * * Either transaction *resolves* the funding transaction output. */ resolved_by_other(outs[0], txid, OUR_UNILATERAL); /* Figure out what delayed to-us output looks like */ if (!per_commit_point(shaseed, &local_per_commitment_point, commit_num)) status_failed(WIRE_ONCHAIN_CRYPTO_FAILED, "Deriving local_per_commit_point for %"PRIu64, commit_num); if (!derive_keyset(&local_per_commitment_point, local_payment_basepoint, remote_payment_basepoint, local_delayed_payment_basepoint, remote_revocation_basepoint, &keyset)) status_failed(WIRE_ONCHAIN_CRYPTO_FAILED, "Deriving keyset for %"PRIu64, commit_num); status_trace("Deconstructing unilateral tx: %"PRIu64 " using keyset: " " self_revocation_key: %s" " self_delayed_payment_key: %s" " self_payment_key: %s" " other_payment_key: %s", commit_num, type_to_string(trc, struct pubkey, &keyset.self_revocation_key), type_to_string(trc, struct pubkey, &keyset.self_delayed_payment_key), type_to_string(trc, struct pubkey, &keyset.self_payment_key), type_to_string(trc, struct pubkey, &keyset.other_payment_key)); if (!derive_simple_privkey(&secrets->delayed_payment_basepoint_secret, local_delayed_payment_basepoint, &local_per_commitment_point, &local_delayedprivkey)) status_failed(WIRE_ONCHAIN_CRYPTO_FAILED, "Deriving local_delayeprivkey for %"PRIu64, commit_num); if (!derive_simple_privkey(&secrets->payment_basepoint_secret, local_payment_basepoint, &local_per_commitment_point, &local_payment_privkey)) status_failed(WIRE_ONCHAIN_CRYPTO_FAILED, "Deriving local_delayeprivkey for %"PRIu64, commit_num); local_wscript = to_self_wscript(tmpctx, to_self_delay, &keyset); /* Figure out what to-us output looks like. */ script[LOCAL] = scriptpubkey_p2wsh(tmpctx, local_wscript); /* Figure out what direct to-them output looks like. */ script[REMOTE] = scriptpubkey_p2wpkh(tmpctx, &keyset.other_payment_key); /* Calculate all the HTLC scripts so we can match them */ htlc_scripts = derive_htlc_scripts(htlcs, LOCAL, &keyset); status_trace("Script to-me: %u: %s (%s)", to_self_delay, tal_hex(trc, script[LOCAL]), tal_hex(trc, local_wscript)); status_trace("Script to-them: %s", tal_hex(trc, script[REMOTE])); for (i = 0; i < tal_count(tx->output); i++) { status_trace("Output %zu: %s", i, tal_hex(trc, tx->output[i].script)); } /* BOLT #5: * * When node A sees its own *commitment transaction*: * * 1. _A's main output_:... * 2. _B's main output_:... * 3. _A's offered HTLCs_:... * 4. _B's offered HTLCs_:... */ for (i = 0; i < tal_count(tx->output); i++) { struct tracked_output *out; int j; if (script[LOCAL] && scripteq(tx->output[i].script, script[LOCAL])) { struct bitcoin_tx *to_us; /* BOLT #5: * * 1. _A's main output_: A node SHOULD spend this * output to a convenient address. */ out = new_tracked_output(&outs, txid, tx_blockheight, OUR_UNILATERAL, i, tx->output[i].amount, DELAYED_OUTPUT_TO_US); /* BOLT #3: * * It is spent by a transaction with `nSequence` field * set to `to_self_delay` (which can only be valid * after that duration has passed), and witness: * * 0 */ to_us = tx_to_us(out, out, to_self_delay, 0, feerate_per_kw, local_dust_limit_satoshi, local_wscript, our_wallet_pubkey, &local_delayedprivkey, &keyset.self_delayed_payment_key); /* BOLT #5: * * If the output is spent (as recommended), the output * is *resolved* by the spending transaction */ propose_resolution(out, to_us, to_self_delay, OUR_UNILATERAL_TO_US_RETURN_TO_WALLET); script[LOCAL] = NULL; continue; } if (script[REMOTE] && scripteq(tx->output[i].script, script[REMOTE])) { /* BOLT #5: * * 2. _B's main output_: No action required, this * output is considered *resolved* by the * *commitment transaction* itself. */ out = new_tracked_output(&outs, txid, tx_blockheight, OUR_UNILATERAL, i, tx->output[i].amount, OUTPUT_TO_THEM); ignore_output(out); script[REMOTE] = NULL; continue; } j = match_htlc_output(tx, i, htlc_scripts); if (j == -1) status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "Could not find resolution for output %zu", i); if (htlcs[j].owner == LOCAL) { /* BOLT #5: * * 3. _A's offered HTLCs_: See "On-chain HTLC * Output Handling: Our Offers" below. */ out = new_tracked_output(&outs, txid, tx_blockheight, OUR_UNILATERAL, i, tx->output[i].amount, OUR_HTLC); resolve_our_htlc_ourcommit(out, htlc_scripts[j], &htlcs[j], to_self_delay, &feerate_range, &local_payment_privkey, htlc_sigs, &keyset); /* Each of these consumes one HTLC signature */ htlc_sigs++; } else { out = new_tracked_output(&outs, txid, tx_blockheight, OUR_UNILATERAL, i, tx->output[i].amount, THEIR_HTLC); /* BOLT #5: * * 4. _B's offered HTLCs_: See "On-chain HTLC * Output Handling: Their Offers" below. */ resolve_their_htlc(out, &htlcs[j]); } htlc_scripts[j] = NULL; } wait_for_resolved(outs); tal_free(tmpctx); } static void handle_their_cheat(const struct bitcoin_tx *tx, u64 commit_index, const struct sha256 *revocation_preimage, const struct htlc_stub *htlcs, struct tracked_output **outs) { status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "FIXME: Implement penalty transaction"); } static void handle_their_unilateral(const struct bitcoin_tx *tx, u32 tx_blockheight, const struct sha256_double *txid, const struct secrets *secrets, const struct sha256 *shaseed, const struct pubkey *remote_per_commitment_point, const struct pubkey *local_revocation_basepoint, const struct pubkey *local_payment_basepoint, const struct pubkey *remote_payment_basepoint, const struct pubkey *remote_delayed_payment_basepoint, const struct pubkey *our_wallet_pubkey, u32 to_self_delay, u64 commit_num, u64 feerate_per_kw, u64 local_dust_limit_satoshi, const struct htlc_stub *htlcs, struct tracked_output **outs) { const tal_t *tmpctx = tal_tmpctx(NULL); u8 **htlc_scripts; u8 *remote_wscript, *script[NUM_SIDES]; struct keyset keyset; struct feerate_range feerate_range; struct privkey local_payment_privkey; size_t i; set_state(ONCHAIND_THEIR_UNILATERAL); init_feerate_range(&feerate_range, outs[0]->satoshi, tx); /* BOLT #5: * * There are two cases to consider here: in the first case, node A * sees its own *commitment transaction*, in the second, it sees the * node B's unrevoked *commitment transaction*. * * Either transaction *resolves* the funding transaction output. */ resolved_by_other(outs[0], txid, THEIR_UNILATERAL); status_trace("Deriving keyset %"PRIu64 ": per_commit_point=%s" " self_payment_basepoint=%s" " other_payment_basepoint=%s" " self_delayed_basepoint=%s" " other_revocation_basepoint=%s", commit_num, type_to_string(trc, struct pubkey, remote_per_commitment_point), type_to_string(trc, struct pubkey, remote_payment_basepoint), type_to_string(trc, struct pubkey, local_payment_basepoint), type_to_string(trc, struct pubkey, remote_delayed_payment_basepoint), type_to_string(trc, struct pubkey, local_revocation_basepoint)); if (!derive_keyset(remote_per_commitment_point, remote_payment_basepoint, local_payment_basepoint, remote_delayed_payment_basepoint, local_revocation_basepoint, &keyset)) status_failed(WIRE_ONCHAIN_CRYPTO_FAILED, "Deriving keyset for %"PRIu64, commit_num); status_trace("Deconstructing unilateral tx: %"PRIu64 " using keyset: " " self_revocation_key: %s" " self_delayed_payment_key: %s" " self_payment_key: %s" " other_payment_key: %s", commit_num, type_to_string(trc, struct pubkey, &keyset.self_revocation_key), type_to_string(trc, struct pubkey, &keyset.self_delayed_payment_key), type_to_string(trc, struct pubkey, &keyset.self_payment_key), type_to_string(trc, struct pubkey, &keyset.other_payment_key)); if (!derive_simple_privkey(&secrets->payment_basepoint_secret, local_payment_basepoint, remote_per_commitment_point, &local_payment_privkey)) status_failed(WIRE_ONCHAIN_CRYPTO_FAILED, "Deriving local_delayeprivkey for %"PRIu64, commit_num); remote_wscript = to_self_wscript(tmpctx, to_self_delay, &keyset); /* Figure out what to-them output looks like. */ script[REMOTE] = scriptpubkey_p2wsh(tmpctx, remote_wscript); /* Figure out what direct to-us output looks like. */ script[LOCAL] = scriptpubkey_p2wpkh(tmpctx, &keyset.other_payment_key); /* Calculate all the HTLC scripts so we can match them */ htlc_scripts = derive_htlc_scripts(htlcs, REMOTE, &keyset); status_trace("Script to-them: %u: %s (%s)", to_self_delay, tal_hex(trc, script[REMOTE]), tal_hex(trc, remote_wscript)); status_trace("Script to-me: %s", tal_hex(trc, script[LOCAL])); for (i = 0; i < tal_count(tx->output); i++) { status_trace("Output %zu: %s", i, tal_hex(trc, tx->output[i].script)); } /* BOLT #5: * * Similarly, when node A sees a *commitment transaction* from B: * * 1. _A's main output_:... * 2. _B's main output_:... * 3. _A's offered HTLCs_:... * 4. _B's offered HTLCs_:... */ for (i = 0; i < tal_count(tx->output); i++) { struct tracked_output *out; int j; if (script[LOCAL] && scripteq(tx->output[i].script, script[LOCAL])) { /* BOLT #5: * * 1. _A's main output_: No action is required; this * is a simple P2WPKH output. This output is * considered *resolved* by the *commitment * transaction* itself. */ out = new_tracked_output(&outs, txid, tx_blockheight, THEIR_UNILATERAL, i, tx->output[i].amount, OUTPUT_TO_US); ignore_output(out); script[LOCAL] = NULL; continue; } if (script[REMOTE] && scripteq(tx->output[i].script, script[REMOTE])) { /* BOLT #5: * * 2. _B's main output_: No action required, this * output is considered *resolved* by the * *commitment transaction* itself. */ out = new_tracked_output(&outs, txid, tx_blockheight, THEIR_UNILATERAL, i, tx->output[i].amount, DELAYED_OUTPUT_TO_THEM); ignore_output(out); continue; } j = match_htlc_output(tx, i, htlc_scripts); if (j == -1) status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "Could not find resolution for output %zu", i); if (htlcs[j].owner == LOCAL) { /* BOLT #5: * * 3. _A's offered HTLCs_: See "On-chain HTLC Output * Handling: Our Offers" below. */ out = new_tracked_output(&outs, txid, tx_blockheight, THEIR_UNILATERAL, i, tx->output[i].amount, OUR_HTLC); resolve_our_htlc_theircommit(out, htlc_scripts[j], &htlcs[i], our_wallet_pubkey, &local_payment_privkey, &keyset, feerate_per_kw, local_dust_limit_satoshi); } else { out = new_tracked_output(&outs, txid, tx_blockheight, THEIR_UNILATERAL, i, tx->output[i].amount, THEIR_HTLC); /* BOLT #5: * * 4. _B's offered HTLCs_: See "On-chain HTLC Output * Handling: Their Offers" below. */ resolve_their_htlc(out, &htlcs[j]); } htlc_scripts[j] = NULL; } wait_for_resolved(outs); tal_free(tmpctx); } int main(int argc, char *argv[]) { const tal_t *ctx = tal_tmpctx(NULL); u8 *msg; struct privkey seed; struct pubkey remote_payment_basepoint, remote_per_commit_point, old_remote_per_commit_point, remote_revocation_basepoint, remote_delayed_payment_basepoint; enum side funder; u32 to_self_delay[NUM_SIDES]; u64 feerate_per_kw, local_dust_limit_satoshi; struct basepoints basepoints; struct shachain shachain; struct bitcoin_tx *tx; struct secrets secrets; struct sha256 shaseed; struct tracked_output **outs; struct sha256_double our_broadcast_txid, txid; struct pubkey ourwallet_pubkey; secp256k1_ecdsa_signature *remote_htlc_sigs; u64 funding_amount_satoshi, num_htlcs; u8 *scriptpubkey[NUM_SIDES]; struct htlc_stub *htlcs; u32 tx_blockheight; if (argc == 2 && streq(argv[1], "--version")) { printf("%s\n", version()); exit(0); } subdaemon_debug(argc, argv); /* We handle write returning errors! */ signal(SIGCHLD, SIG_IGN); secp256k1_ctx = secp256k1_context_create(SECP256K1_CONTEXT_VERIFY | SECP256K1_CONTEXT_SIGN); status_setup_sync(REQ_FD); msg = wire_sync_read(ctx, REQ_FD); tx = tal(ctx, struct bitcoin_tx); if (!fromwire_onchain_init(ctx, msg, NULL, &seed, &shachain, &funding_amount_satoshi, &old_remote_per_commit_point, &remote_per_commit_point, &to_self_delay[LOCAL], &to_self_delay[REMOTE], &feerate_per_kw, &local_dust_limit_satoshi, &remote_revocation_basepoint, &our_broadcast_txid, &scriptpubkey[LOCAL], &scriptpubkey[REMOTE], &ourwallet_pubkey, &funder, &remote_payment_basepoint, &remote_delayed_payment_basepoint, tx, &tx_blockheight, &remote_htlc_sigs, &num_htlcs)) { status_failed(WIRE_ONCHAIN_BAD_COMMAND, "Bad init message %s", tal_hex(ctx, msg)); } derive_basepoints(&seed, NULL, &basepoints, &secrets, &shaseed); bitcoin_txid(tx, &txid); /* FIXME: Filter as we go, don't load them all into mem! */ htlcs = tal_arr(ctx, struct htlc_stub, num_htlcs); if (!htlcs) status_failed(WIRE_ONCHAIN_BAD_COMMAND, "Can't allocate %"PRIu64" htlcs", num_htlcs); for (size_t i = 0; i < num_htlcs; i++) { msg = wire_sync_read(ctx, REQ_FD); if (!msg || !fromwire_onchain_htlc(msg, NULL, &htlcs[i])) status_failed(WIRE_ONCHAIN_BAD_COMMAND, "Can't read %"PRIu64"/%"PRIu64" htlc", i, num_htlcs); } outs = tal_arr(ctx, struct tracked_output *, 0); new_tracked_output(&outs, &tx->input[0].txid, 0, /* We don't care about funding blockheight */ FUNDING_TRANSACTION, tx->input[0].index, funding_amount_satoshi, FUNDING_OUTPUT); status_trace("Remote per-commit point: %s", type_to_string(trc, struct pubkey, &remote_per_commit_point)); status_trace("Old remote per-commit point: %s", type_to_string(trc, struct pubkey, &old_remote_per_commit_point)); /* BOLT #5: * * There are three ways a channel can end: * * 1. The good way (*mutual close*): at some point A and B agree on * closing the channel, they generate a *closing transaction* * (which is similar to a *commitment transaction* without any * pending payments), and publish it on the blockchain (see [BOLT * #2: Channel Close](02-peer-protocol.md#channel-close)). */ if (is_mutual_close(tx, scriptpubkey[LOCAL], scriptpubkey[REMOTE])) handle_mutual_close(tx, &txid, outs); else { /* BOLT #5: * * 2. The bad way (*unilateral close*): something goes wrong, * without necessarily any evil intent on either side * (maybe one party crashed, for instance). Anyway, one * side publishes its latest *commitment transaction*. */ struct sha256 revocation_preimage; u64 commit_num = unmask_commit_number(tx, funder, &basepoints.payment, &remote_payment_basepoint); status_trace("commitnum = %"PRIu64 ", revocations_recived = %"PRIu64, commit_num, revocations_received(&shachain)); if (is_local_commitment(&txid, &our_broadcast_txid)) handle_our_unilateral(tx, tx_blockheight, &txid, &secrets, &shaseed, &remote_revocation_basepoint, &remote_payment_basepoint, &basepoints.payment, &basepoints.delayed_payment, &ourwallet_pubkey, to_self_delay[LOCAL], commit_num, feerate_per_kw, local_dust_limit_satoshi, htlcs, remote_htlc_sigs, outs); /* BOLT #5: * * 3. The ugly way (*revoked transaction close*): one of the * parties deliberately tries to cheat by publishing an * outdated version of its *commitment transaction* * (presumably one that was more in her favor). */ else if (shachain_get_hash(&shachain, shachain_index(commit_num), &revocation_preimage)) { handle_their_cheat(tx, commit_num, &revocation_preimage, htlcs, outs); /* BOLT #5: * * Note that there can be more than one valid, * unrevoked *commitment transaction* after a * signature has been received via `commitment_signed` * and before the corresponding `revoke_and_ack`. * Either commitment can serve as B's *commitment * transaction*, hence the requirement to handle both. */ } else if (commit_num == revocations_received(&shachain)) { status_trace("Their unilateral tx, old commit point"); handle_their_unilateral(tx, tx_blockheight, &txid, &secrets, &shaseed, &old_remote_per_commit_point, &basepoints.revocation, &basepoints.payment, &remote_payment_basepoint, &remote_delayed_payment_basepoint, &ourwallet_pubkey, to_self_delay[REMOTE], commit_num, feerate_per_kw, local_dust_limit_satoshi, htlcs, outs); } else if (commit_num == revocations_received(&shachain) + 1) { status_trace("Their unilateral tx, new commit point"); handle_their_unilateral(tx, tx_blockheight, &txid, &secrets, &shaseed, &remote_per_commit_point, &basepoints.revocation, &basepoints.payment, &remote_payment_basepoint, &remote_delayed_payment_basepoint, &ourwallet_pubkey, to_self_delay[REMOTE], commit_num, feerate_per_kw, local_dust_limit_satoshi, htlcs, outs); } else status_failed(WIRE_ONCHAIN_INTERNAL_ERROR, "Unknown commitment index %"PRIu64 " for tx %s", commit_num, type_to_string(ctx, struct bitcoin_tx, tx)); } /* We're done! */ tal_free(ctx); return 0; }