#include <assert.h> #include <ccan/array_size/array_size.h> #include <ccan/crypto/ripemd160/ripemd160.h> #include <ccan/crypto/sha256/sha256.h> #include <ccan/mem/mem.h> #include <common/node_id.h> #include <common/onion.h> #include <common/onionreply.h> #include <common/sphinx.h> #include <common/utils.h> #include <err.h> #include <secp256k1_ecdh.h> #include <sodium/crypto_stream_chacha20.h> #include <wire/wire.h> #define BLINDING_FACTOR_SIZE 32 #define ONION_REPLY_SIZE 256 #define RHO_KEYTYPE "rho" struct hop_params { struct secret secret; u8 blind[BLINDING_FACTOR_SIZE]; struct pubkey ephemeralkey; }; struct keyset { struct secret pi, mu, rho, gamma; }; /* Encapsulates the information about a given payment path for the the onion * routing algorithm. */ struct sphinx_path { /* The session_key used to generate the shared secrets along the * path. This MUST be generated in a cryptographically secure manner, * and is exposed solely for testing, i.e., it can be set to known * values in unit tests. If unset it'll be generated during the packet * generation. */ struct secret *session_key; /* The associated data is appended to the packet when generating the * HMAC, but is not passed along as part of the packet. It is used to * ensure some external data (HTLC payment_hash) is not modified along * the way. */ u8 *associated_data; /* The individual hops on this route. */ struct sphinx_hop *hops; /* If this is a rendez-vous onion, then the following node_id tells us * which node will be processing this onion and decompressing the * onion. It is used to generate the prefill obfuscation stream to * hide the fact that the onion was compressed from the next * node. NULL if this is not a rendez-vous onion, and shouldn't be * compressible. */ struct pubkey *rendezvous_id; }; struct sphinx_path *sphinx_path_new(const tal_t *ctx, const u8 *associated_data) { struct sphinx_path *sp = tal(ctx, struct sphinx_path); sp->associated_data = tal_dup_talarr(sp, u8, associated_data); sp->session_key = NULL; sp->rendezvous_id = NULL; sp->hops = tal_arr(sp, struct sphinx_hop, 0); return sp; } struct sphinx_path *sphinx_path_new_with_key(const tal_t *ctx, const u8 *associated_data, const struct secret *session_key) { struct sphinx_path *sp = sphinx_path_new(ctx, associated_data); sp->session_key = tal_dup(sp, struct secret, session_key); return sp; } bool sphinx_path_set_rendezvous(struct sphinx_path *sp, const struct node_id *rendezvous_id) { if (rendezvous_id == NULL) { sp->rendezvous_id = tal_free(sp->rendezvous_id); return true; } else { sp->rendezvous_id = tal_free(sp->rendezvous_id); sp->rendezvous_id = tal(sp, struct pubkey); return pubkey_from_node_id(sp->rendezvous_id, rendezvous_id); } } static size_t sphinx_hop_size(const struct sphinx_hop *hop) { return tal_bytelen(hop->raw_payload) + HMAC_SIZE; } size_t sphinx_path_payloads_size(const struct sphinx_path *path) { size_t size = 0; for (size_t i=0; i<tal_count(path->hops); i++) size += sphinx_hop_size(&path->hops[i]); return size; } void sphinx_add_hop(struct sphinx_path *path, const struct pubkey *pubkey, const u8 *payload TAKES) { struct sphinx_hop sp; sp.raw_payload = tal_dup_talarr(path, u8, payload); sp.pubkey = *pubkey; tal_arr_expand(&path->hops, sp); } /* Small helper to append data to a buffer and update the position * into the buffer */ static void write_buffer(u8 *dst, const void *src, const size_t len, int *pos) { memcpy(dst + *pos, src, len); *pos += len; } u8 *serialize_onionpacket( const tal_t *ctx, const struct onionpacket *m) { u8 *dst = tal_arr(ctx, u8, TOTAL_PACKET_SIZE(tal_bytelen(m->routinginfo))); u8 der[PUBKEY_CMPR_LEN]; int p = 0; pubkey_to_der(der, &m->ephemeralkey); write_buffer(dst, &m->version, 1, &p); write_buffer(dst, der, sizeof(der), &p); write_buffer(dst, m->routinginfo, tal_bytelen(m->routinginfo), &p); write_buffer(dst, m->hmac.bytes, sizeof(m->hmac.bytes), &p); return dst; } struct onionpacket *parse_onionpacket(const tal_t *ctx, const u8 *src, const size_t srclen, enum onion_wire *failcode) { struct onionpacket *dest = tal(ctx, struct onionpacket); const u8 *cursor = src; size_t max = srclen; dest->version = fromwire_u8(&cursor, &max); if (dest->version != 0x00) { // FIXME add logging *failcode = WIRE_INVALID_ONION_VERSION; return tal_free(dest); } fromwire_pubkey(&cursor, &max, &dest->ephemeralkey); if (cursor == NULL) { *failcode = WIRE_INVALID_ONION_KEY; return tal_free(dest); } /* If max underflows, this returns NULL and fromwire fails. */ dest->routinginfo = fromwire_tal_arrn(dest, &cursor, &max, max - HMAC_SIZE); fromwire_hmac(&cursor, &max, &dest->hmac); assert(max == 0); if (cursor == NULL) { *failcode = WIRE_INVALID_REALM; return tal_free(dest); } return dest; } /* * Generate a pseudo-random byte stream of length `dstlen` from key `k` and * store it in `dst`. `dst must be at least `dstlen` bytes long. */ static void generate_cipher_stream(void *dst, const struct secret *k, size_t dstlen) { const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; crypto_stream_chacha20(dst, dstlen, nonce, k->data); } /* xor cipher stream into dst */ static void xor_cipher_stream(void *dst, const struct secret *k, size_t dstlen) { const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; crypto_stream_chacha20_xor(dst, dst, dstlen, nonce, k->data); } #define CHACHA20_BLOCK_BYTES 64 static void xor_cipher_stream_off(const struct secret *k, size_t off, void *dst, size_t dstlen) { const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; u8 block[CHACHA20_BLOCK_BYTES]; size_t block_off; size_t ic = off / CHACHA20_BLOCK_BYTES; /* From https://libsodium.gitbook.io/doc/advanced/stream_ciphers/chacha20: * * The crypto_stream_chacha20_xor_ic() function is similar to * crypto_stream_chacha20_xor() but adds the ability to set * the initial value of the block counter to a non-zero value, * ic. * * This permits direct access to any block without having to * compute the previous ones. */ block_off = (off % CHACHA20_BLOCK_BYTES); if (block_off != 0) { size_t rem = CHACHA20_BLOCK_BYTES - block_off; if (rem > dstlen) rem = dstlen; memcpy(block + block_off, dst, rem); crypto_stream_chacha20_xor_ic(block, block, block_off + rem, nonce, ic, k->data); ic++; memcpy(dst, block + block_off, rem); dst = (char *)dst + rem; dstlen -= rem; } crypto_stream_chacha20_xor_ic(dst, dst, dstlen, nonce, ic, k->data); } /* Convenience function: s2/s2len can be NULL/0 if unwanted */ static void compute_hmac(const struct secret *key, const u8 *s1, size_t s1len, const u8 *s2, size_t s2len, struct hmac *hmac) { crypto_auth_hmacsha256_state state; hmac_start(&state, key->data, sizeof(key->data)); hmac_update(&state, s1, s1len); hmac_update(&state, s2, s2len); hmac_done(&state, hmac); } static void compute_packet_hmac(const struct onionpacket *packet, const u8 *assocdata, const size_t assocdatalen, const struct secret *mukey, struct hmac *hmac) { compute_hmac(mukey, packet->routinginfo, tal_bytelen(packet->routinginfo), assocdata, assocdatalen, hmac); } static void generate_header_padding(void *dst, size_t dstlen, size_t fixed_size, const struct sphinx_path *path, struct hop_params *params) { struct secret key; size_t fillerStart, fillerEnd, fillerSize; memset(dst, 0, dstlen); for (int i = 0; i < tal_count(path->hops) - 1; i++) { subkey_from_hmac("rho", ¶ms[i].secret, &key); /* Sum up how many bytes have been used by previous hops, * that gives us the start in the stream */ fillerSize = 0; for (int j = 0; j < i; j++) fillerSize += sphinx_hop_size(&path->hops[j]); fillerStart = fixed_size - fillerSize; /* The filler will dangle off of the end by the current * hop-size, we'll make sure to copy it into the correct * position in the next step. */ fillerEnd = fixed_size + sphinx_hop_size(&path->hops[i]); /* Apply the cipher-stream to the part of the filler that'll * be added by this hop */ xor_cipher_stream_off(&key, fillerStart, dst, fillerEnd - fillerStart); } } static void generate_prefill(void *dst, size_t dstlen, size_t fixed_size, const struct sphinx_path *path, struct hop_params *params) { struct secret key; size_t fillerStart, fillerSize; memset(dst, 0, dstlen); for (int i = 0; i < tal_count(path->hops); i++) { subkey_from_hmac("rho", ¶ms[i].secret, &key); /* Sum up how many bytes have been used by previous hops, * that gives us the start in the stream */ fillerSize = 0; for (int j = 0; j < i; j++) fillerSize += sphinx_hop_size(&path->hops[j]); fillerStart = fixed_size - fillerSize - dstlen; /* Apply the cipher-stream to the part of the filler that'll * be added by this hop */ xor_cipher_stream_off(&key, fillerStart, dst, dstlen); } } static void compute_blinding_factor(const struct pubkey *key, const struct secret *sharedsecret, u8 res[BLINDING_FACTOR_SIZE]) { struct sha256_ctx ctx; u8 der[PUBKEY_CMPR_LEN]; struct sha256 temp; pubkey_to_der(der, key); sha256_init(&ctx); sha256_update(&ctx, der, sizeof(der)); sha256_update(&ctx, sharedsecret->data, sizeof(sharedsecret->data)); sha256_done(&ctx, &temp); memcpy(res, &temp, 32); } static bool blind_group_element(struct pubkey *blindedelement, const struct pubkey *pubkey, const u8 blind[BLINDING_FACTOR_SIZE]) { /* tweak_mul is inplace so copy first. */ if (pubkey != blindedelement) *blindedelement = *pubkey; if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx, &blindedelement->pubkey, blind) != 1) return false; return true; } bool sphinx_create_shared_secret(struct secret *privkey, const struct pubkey *pubkey, const struct secret *secret) { if (secp256k1_ecdh(secp256k1_ctx, privkey->data, &pubkey->pubkey, secret->data, NULL, NULL) != 1) return false; return true; } bool onion_shared_secret( struct secret *secret, const struct onionpacket *packet, const struct privkey *privkey) { return sphinx_create_shared_secret(secret, &packet->ephemeralkey, &privkey->secret); } static void generate_key_set(const struct secret *secret, struct keyset *keys) { subkey_from_hmac("rho", secret, &keys->rho); subkey_from_hmac("pi", secret, &keys->pi); subkey_from_hmac("mu", secret, &keys->mu); subkey_from_hmac("gamma", secret, &keys->gamma); } static struct hop_params *generate_hop_params( const tal_t *ctx, const u8 *sessionkey, struct sphinx_path *path) { int i, j, num_hops = tal_count(path->hops); struct pubkey temp; u8 blind[BLINDING_FACTOR_SIZE]; struct hop_params *params = tal_arr(ctx, struct hop_params, num_hops); /* Initialize the first hop with the raw information */ if (secp256k1_ec_pubkey_create(secp256k1_ctx, ¶ms[0].ephemeralkey.pubkey, path->session_key->data) != 1) return NULL; if (!sphinx_create_shared_secret( ¶ms[0].secret, &path->hops[0].pubkey, path->session_key)) return NULL; compute_blinding_factor( ¶ms[0].ephemeralkey, ¶ms[0].secret, params[0].blind); /* Recursively compute all following ephemeral public keys, * secrets and blinding factors */ for (i = 1; i < num_hops; i++) { if (!blind_group_element( ¶ms[i].ephemeralkey, ¶ms[i - 1].ephemeralkey, params[i - 1].blind)) return NULL; /* Blind this hop's point with all previous blinding factors * Order is indifferent, multiplication is commutative. */ memcpy(&blind, sessionkey, 32); temp = path->hops[i].pubkey; if (!blind_group_element(&temp, &temp, blind)) return NULL; for (j = 0; j < i; j++) if (!blind_group_element( &temp, &temp, params[j].blind)) return NULL; /* Now hash temp and store it. This requires us to * DER-serialize first and then skip the sign byte. */ u8 der[PUBKEY_CMPR_LEN]; pubkey_to_der(der, &temp); struct sha256 h; sha256(&h, der, sizeof(der)); memcpy(¶ms[i].secret, &h, sizeof(h)); compute_blinding_factor( ¶ms[i].ephemeralkey, ¶ms[i].secret, params[i].blind); } return params; } static void sphinx_write_frame(u8 *dest, const struct sphinx_hop *hop) { memcpy(dest, hop->raw_payload, tal_bytelen(hop->raw_payload)); memcpy(dest + tal_bytelen(hop->raw_payload), hop->hmac.bytes, sizeof(hop->hmac.bytes)); } static void sphinx_prefill_stream_xor(u8 *dst, size_t dstlen, const struct secret *shared_secret) { struct secret padkey; subkey_from_hmac("prefill", shared_secret, &padkey); xor_cipher_stream(dst, &padkey, dstlen); } static void sphinx_prefill(u8 *routinginfo, const struct sphinx_path *sp, size_t prefill_size, struct hop_params *params, size_t fixed_size) { int num_hops = tal_count(sp->hops); size_t fillerSize = sphinx_path_payloads_size(sp) - sphinx_hop_size(&sp->hops[num_hops - 1]); size_t last_hop_size = sphinx_hop_size(&sp->hops[num_hops - 1]); int prefill_offset = fixed_size - fillerSize - last_hop_size - prefill_size; struct secret shared_secret; /* Generate the prefill stream, which cancels out the layers of * encryption that will be applied while wrapping the onion. This * leaves the middle, unused, section with all 0x00 bytes after * encrypting. */ generate_prefill(routinginfo + prefill_offset, prefill_size, fixed_size, sp, params); /* Now fill in the obfuscation stream, which can be regenerated by the * node processing this onion. */ sphinx_create_shared_secret(&shared_secret, sp->rendezvous_id, sp->session_key); sphinx_prefill_stream_xor(routinginfo + prefill_offset, prefill_size, &shared_secret); } struct onionpacket *create_onionpacket( const tal_t *ctx, struct sphinx_path *sp, size_t fixed_size, struct secret **path_secrets ) { struct onionpacket *packet = talz(ctx, struct onionpacket); int i, num_hops = tal_count(sp->hops); size_t fillerSize = sphinx_path_payloads_size(sp) - sphinx_hop_size(&sp->hops[num_hops - 1]); u8 *filler; struct keyset keys; struct secret padkey; struct hmac nexthmac; struct hop_params *params; struct secret *secrets = tal_arr(ctx, struct secret, num_hops); size_t payloads_size = sphinx_path_payloads_size(sp); size_t max_prefill = fixed_size - payloads_size; if (sphinx_path_payloads_size(sp) > fixed_size) { tal_free(packet); tal_free(secrets); return NULL; } packet->routinginfo = tal_arr(packet, u8, fixed_size); if (sp->session_key == NULL) { sp->session_key = tal(sp, struct secret); randombytes_buf(sp->session_key, sizeof(struct secret)); } params = generate_hop_params(ctx, sp->session_key->data, sp); if (!params) { tal_free(packet); tal_free(secrets); return NULL; } packet->version = 0; memset(nexthmac.bytes, 0, sizeof(nexthmac.bytes)); /* BOLT #4: * * The packet is initialized with 1300 _random_ bytes derived from a * CSPRNG */ /* Note that this is just hop_payloads: the rest of the packet is * overwritten below or above anyway. */ subkey_from_hmac("pad", sp->session_key, &padkey); generate_cipher_stream(packet->routinginfo, &padkey, fixed_size); filler = tal_arr(tmpctx, u8, fillerSize); generate_header_padding(filler, tal_bytelen(filler), fixed_size, sp, params); if (sp->rendezvous_id != NULL) /* FIXME: Fuzz this or expose to the caller to hide encoded * route length. */ sphinx_prefill(packet->routinginfo, sp, max_prefill, params, fixed_size); for (i = num_hops - 1; i >= 0; i--) { sp->hops[i].hmac = nexthmac; generate_key_set(¶ms[i].secret, &keys); /* Rightshift mix-header by FRAME_SIZE */ size_t shiftSize = sphinx_hop_size(&sp->hops[i]); memmove(packet->routinginfo + shiftSize, packet->routinginfo, fixed_size - shiftSize); sphinx_write_frame(packet->routinginfo, &sp->hops[i]); xor_cipher_stream(packet->routinginfo, &keys.rho, fixed_size); if (i == num_hops - 1) { memcpy(packet->routinginfo + fixed_size - fillerSize, filler, fillerSize); } compute_packet_hmac(packet, sp->associated_data, tal_bytelen(sp->associated_data), &keys.mu, &nexthmac); } packet->hmac = nexthmac; packet->ephemeralkey = params[0].ephemeralkey; for (i=0; i<num_hops; i++) { secrets[i] = params[i].secret; } *path_secrets = secrets; return packet; } #if DEVELOPER bool dev_fail_process_onionpacket; #endif /* * Given an onionpacket msg extract the information for the current * node and unwrap the remainder so that the node can forward it. */ struct route_step *process_onionpacket( const tal_t *ctx, const struct onionpacket *msg, const struct secret *shared_secret, const u8 *assocdata, const size_t assocdatalen, bool has_realm ) { struct route_step *step = talz(ctx, struct route_step); struct hmac hmac; struct keyset keys; u8 blind[BLINDING_FACTOR_SIZE]; u8 *paddedheader; size_t payload_size; bigsize_t shift_size; bool valid; step->next = talz(step, struct onionpacket); step->next->version = msg->version; generate_key_set(shared_secret, &keys); compute_packet_hmac(msg, assocdata, assocdatalen, &keys.mu, &hmac); if (!hmac_eq(&msg->hmac, &hmac) || IFDEV(dev_fail_process_onionpacket, false)) { /* Computed MAC does not match expected MAC, the message was modified. */ return tal_free(step); } //FIXME:store seen secrets to avoid replay attacks paddedheader = tal_arrz(step, u8, tal_bytelen(msg->routinginfo)*2); memcpy(paddedheader, msg->routinginfo, tal_bytelen(msg->routinginfo)); xor_cipher_stream(paddedheader, &keys.rho, tal_bytelen(paddedheader)); compute_blinding_factor(&msg->ephemeralkey, shared_secret, blind); if (!blind_group_element(&step->next->ephemeralkey, &msg->ephemeralkey, blind)) return tal_free(step); payload_size = onion_payload_length(paddedheader, tal_bytelen(msg->routinginfo), has_realm, &valid, NULL); /* Can't decode? Treat it as terminal. */ if (!valid) { shift_size = payload_size; memset(step->next->hmac.bytes, 0, sizeof(step->next->hmac.bytes)); } else { assert(payload_size <= tal_bytelen(msg->routinginfo) - HMAC_SIZE); /* Copy hmac */ shift_size = payload_size + HMAC_SIZE; memcpy(step->next->hmac.bytes, paddedheader + payload_size, HMAC_SIZE); } step->raw_payload = tal_dup_arr(step, u8, paddedheader, payload_size, 0); /* Left shift the current payload out and make the remainder the new onion */ step->next->routinginfo = tal_dup_arr(step->next, u8, paddedheader + shift_size, tal_bytelen(msg->routinginfo), 0); if (memeqzero(step->next->hmac.bytes, sizeof(step->next->hmac.bytes))) { step->nextcase = ONION_END; } else { step->nextcase = ONION_FORWARD; } tal_free(paddedheader); return step; } struct onionreply *create_onionreply(const tal_t *ctx, const struct secret *shared_secret, const u8 *failure_msg) { size_t msglen = tal_count(failure_msg); size_t padlen = ONION_REPLY_SIZE - msglen; struct onionreply *reply = tal(ctx, struct onionreply); u8 *payload = tal_arr(ctx, u8, 0); struct secret key; struct hmac hmac; /* BOLT #4: * * The node generating the error message (_erring node_) builds a return * packet consisting of * the following fields: * * 1. data: * * [`32*byte`:`hmac`] * * [`u16`:`failure_len`] * * [`failure_len*byte`:`failuremsg`] * * [`u16`:`pad_len`] * * [`pad_len*byte`:`pad`] */ towire_u16(&payload, msglen); towire(&payload, failure_msg, msglen); towire_u16(&payload, padlen); towire_pad(&payload, padlen); /* BOLT #4: * * The _erring node_: * - SHOULD set `pad` such that the `failure_len` plus `pad_len` is * equal to 256. * - Note: this value is 118 bytes longer than the longest * currently-defined message. */ assert(tal_count(payload) == ONION_REPLY_SIZE + 4); /* BOLT #4: * * Where `hmac` is an HMAC authenticating the remainder of the packet, * with a key generated using the above process, with key type `um` */ subkey_from_hmac("um", shared_secret, &key); compute_hmac(&key, payload, tal_count(payload), NULL, 0, &hmac); reply->contents = tal_arr(reply, u8, 0), towire_hmac(&reply->contents, &hmac); towire(&reply->contents, payload, tal_count(payload)); tal_free(payload); return reply; } struct onionreply *wrap_onionreply(const tal_t *ctx, const struct secret *shared_secret, const struct onionreply *reply) { struct secret key; struct onionreply *result = tal(ctx, struct onionreply); /* BOLT #4: * * The erring node then generates a new key, using the key type `ammag`. * This key is then used to generate a pseudo-random stream, which is * in turn applied to the packet using `XOR`. * * The obfuscation step is repeated by every hop along the return path. */ subkey_from_hmac("ammag", shared_secret, &key); result->contents = tal_dup_talarr(result, u8, reply->contents); xor_cipher_stream(result->contents, &key, tal_bytelen(result->contents)); return result; } u8 *unwrap_onionreply(const tal_t *ctx, const struct secret *shared_secrets, const int numhops, const struct onionreply *reply, int *origin_index) { struct onionreply *r; struct secret key; struct hmac hmac; const u8 *cursor; u8 *final; size_t max; u16 msglen; if (tal_count(reply->contents) != ONION_REPLY_SIZE + sizeof(hmac) + 4) { return NULL; } r = new_onionreply(tmpctx, reply->contents); *origin_index = -1; for (int i = 0; i < numhops; i++) { /* Since the encryption is just XORing with the cipher * stream encryption is identical to decryption */ r = wrap_onionreply(tmpctx, &shared_secrets[i], r); /* Check if the HMAC matches, this means that this is * the origin */ subkey_from_hmac("um", &shared_secrets[i], &key); compute_hmac(&key, r->contents + sizeof(hmac.bytes), tal_count(r->contents) - sizeof(hmac.bytes), NULL, 0, &hmac); if (memcmp(hmac.bytes, r->contents, sizeof(hmac.bytes)) == 0) { *origin_index = i; break; } } if (*origin_index == -1) { return NULL; } cursor = r->contents + sizeof(hmac); max = tal_count(r->contents) - sizeof(hmac); msglen = fromwire_u16(&cursor, &max); if (msglen > ONION_REPLY_SIZE) { return NULL; } final = tal_arr(ctx, u8, msglen); if (!fromwire(&cursor, &max, final, msglen)) return tal_free(final); return final; } struct onionpacket *sphinx_decompress(const tal_t *ctx, const struct sphinx_compressed_onion *src, const struct secret *shared_secret) { struct onionpacket *res = tal(ctx, struct onionpacket); size_t srclen = tal_bytelen(src->routinginfo); size_t prefill_size = ROUTING_INFO_SIZE - srclen; res->version = src->version; res->ephemeralkey = src->ephemeralkey; res->hmac = src->hmac; /* Decompress routinginfo by copying the unmodified prefix, setting * the compressed suffix to 0x00 bytes and then xoring the obfuscation * stream in place. */ res->routinginfo = tal_arrz(res, u8, ROUTING_INFO_SIZE); memcpy(res->routinginfo, src->routinginfo, srclen); sphinx_prefill_stream_xor(res->routinginfo + srclen, prefill_size, shared_secret); return res; } struct sphinx_compressed_onion * sphinx_compress(const tal_t *ctx, const struct onionpacket *packet, const struct sphinx_path *path) { struct sphinx_compressed_onion *res; size_t payloads_size = sphinx_path_payloads_size(path); /* We can't compress an onion that doesn't have a rendez-vous node. */ if (path->rendezvous_id == NULL) return NULL; res = tal(ctx, struct sphinx_compressed_onion); res->version = packet->version; res->ephemeralkey = packet->ephemeralkey; res->hmac = packet->hmac; res->routinginfo = tal_arr(res, u8, payloads_size); memcpy(res->routinginfo, packet->routinginfo, payloads_size); return res; } u8 *sphinx_compressed_onion_serialize(const tal_t *ctx, const struct sphinx_compressed_onion *onion) { size_t routelen = tal_bytelen(onion->routinginfo); size_t len = VERSION_SIZE + PUBKEY_SIZE + routelen + HMAC_SIZE; u8 *dst = tal_arr(ctx, u8, len); u8 der[PUBKEY_CMPR_LEN]; int p = 0; pubkey_to_der(der, &onion->ephemeralkey); write_buffer(dst, &onion->version, VERSION_SIZE, &p); write_buffer(dst, der, PUBKEY_SIZE, &p); write_buffer(dst, onion->routinginfo, routelen, &p); write_buffer(dst, onion->hmac.bytes, sizeof(onion->hmac.bytes), &p); assert(p == len); return dst; } struct sphinx_compressed_onion * sphinx_compressed_onion_deserialize(const tal_t *ctx, const u8 *src) { const u8 *cursor = src; size_t max = tal_bytelen(src); struct sphinx_compressed_onion *dst = tal(ctx, struct sphinx_compressed_onion); /* This is not a compressed onion, so let's not parse it. */ if (max > TOTAL_PACKET_SIZE(ROUTING_INFO_SIZE)) return tal_free(dst); dst->version = fromwire_u8(&cursor, &max); if (dst->version != 0x00) return tal_free(dst); fromwire_pubkey(&cursor, &max, &dst->ephemeralkey); dst->routinginfo = fromwire_tal_arrn(dst, &cursor, &max, max - HMAC_SIZE); fromwire_hmac(&cursor, &max, &dst->hmac); /* If at any point we failed to pull from the serialized compressed * onion the entire deserialization is considered to have failed. */ if (cursor == NULL) return tal_free(dst); return dst; }