Reaching The Ground With Lightning (draft
0.2)

Rusty Russell <rusty@blockstream.com >

November 20, 2015

Abstract

The Lightning Network (as proposed by Joseph Poon and Thaddeus
Dryja|7]) requires some new sighash modes in order to work with Bitcoin.
This paper proposes a simplified variant which requires only modifica-
tions which are already proposed for bitcoin, and slightly simplifies the
revocation of existing contracts.

Keywords: bitcoin, lightning, revocation hash, HTLC, BIP62, BIP65,
BIP68

1 Introduction

The Bitcoin network[5] allows the transfer of value between peers using trans-
actions. Each bitcoin transaction consists of one or more outputs (typically
specifying the hash of the recipient’s key), and one or more inputs (typically
containing the recipient’s key and a signature of the transaction). Thus one
transfers value to another peer by creating a transaction which spends one or
more outputs and creates an output which the recipient can spent using their
private key.

While such cryptographic transfer of value is near-instantaneous, ensuring
that the transaction has been included in the consensus of the shared ledger (aka.
blockchain) creates delays ranging from a few minutes to hours, depending on
the level of reliability required. Inclusion in the blockchain is performed by
miners, who preferentially include transactions paying greatest fee per byte.

Thus using the blockchain directly is slow, and too expensive for genuinely
small transfers (typical fees are a few cents).

2 Previous Work

To work around the bitcoin network’s delays and fees, several forms of off-chain
transaction patterns have been developed, where series of transactions are sent
directly between two parties, with only the initial opening transaction and final
redemption transaction being included in the bitcoin blockchain.

The Lightning Network paper proposed a solution, but at the cost of intro-
ducing new signature variants (sighash ops). Adding a new signature opcode
would allow many other improvements'? but that is precisely why it’s a matter
for longer term research and unlikely to be deployed in Bitcoin in the immediate
future.

2.1 Payment Channels

The concept of payment channels (sometimes called micropayment channels) has
existed in various forms for several years[2]. The simplest form is as follows, and
allows A to quickly and cheaply pay B a stream of slightly increasing amounts:

1. A creates an anchor transaction to open the channel which:

(a) Outputs $1,
(b) Requires the signatures of both A and B to redeem.

2. A sends the transaction ID of the anchor, which output to spend, and the
amount of that output to B.

3. B signs a “refund” transaction which:

(a) spends that anchor output,
(b) outputs the $1 to an address controlled by A, and
(c) can only be spent in 24 hours (using the locktime field)

4. B sends A the refund transaction.

5. A broadcasts the anchor transaction, knowing she can get the funds back
in 24 hours using the refund if B vanishes.

A can now pay B 1 cent by signing a new commitment transaction to send to
B, which spends the anchor output and has two outputs: one pays A 99¢, and
the other pays B 1 cent. A can later pay B another cent by signing another
transaction (“updating the commitment”) for B which pays A 98¢ and B 2c, etc.

At any point, B can “close the channel” by signing and broadcasting the
latest commitment transaction to collect the money. B should do this before 24
hours pass, otherwise A can use the refund transaction.

2.1.1 Limitations Of Simple Payment Channels
Simple channels have several limitations:

Single recipient. A new recipient requires a new channel, which must wait for
consensus on the anchor transaction.

LSchnorr signatures offer faster batch validation, according to
https://github.com/ElementsProject/elementsproject.github.io#schnorr-signature-validation
2DER encoding adds unnecessary bytes and is a cause of malleability

One way. They cannot be reversed: A can sign a transaction which pays B less
money than the last, but B could still broadcast the older transaction.

Vulnerable to malleability. The anchor transaction could be altered in sev-
eral ways (without invaliding it completely) before inclusion in the blockchain:
this alters its transaction id and thus makes the refund transaction unus-
able.

This last issue is a common one with complex bitcoin transactions, and BIP62[9]
is proposed to prevent non-signing parties from being able to malleate transac-
tions.

2.2 Generalized Payment Channels Using Revocable Trans-
actions

The Lightning network introduced generalized, bi-directional payment channels,
referred to here as Poon-Dryja channels. These use a mutual anchor, which
both create to provide the channel funding, and a symmetrical pair of updatable
commitment transactions rather than the single transaction used in the one-way
channel case, as shown in figure 13,

Funding Tx (F)

Sras

I Commitment Tx 1b (C1b)
| Only Bob sends sig to Alice | Only Alice sends sig to Bob
| Can be broadcasted anytime | Can be broadcasted anytime

I 1
| Commitment Tx 1a (Cla) | I
| 1
| I
I outputs | I outputs: |
1 0. 2-0f-2 Alice&Bob 0.5 BTC 1 0. Alice 0.5 BTC ,

| 1. Bob 0.5 BTC ! | 1. 2-0f-2 Alice&Bob 0.5 BTC
| I

I

! No LockTime | No LockTime 1

' Commitment Refund Tx 1a (CR1a) | ! Commitment Close Tx 1b (CC1a)
TS only Bob gives sig to Alice \ | Alice can spend immediately
| Output: Alice 0.5 >

1
1
| Output: Alice 0.5 1
| 40-day LockTime ! | No LockTime |

! Commitment Close Tx 1a (CC1b) ! Commitment Refund Tx 1a (CR1b) |
outout 1 |

1
Bab can spend mmediately | .o A
| Output: Bob 0.5 1 1 Output: Bob 0.5
1

| No LockTime | 40-day LockTime !

Figure 1: Figure 1 from the Lightning Network Draft 0.5

To update the commitment, A sends B a signature for B’s new commitment
transaction, and B sends A a signature for A’s new commitment transaction.

As before, each commitment transaction contains two outputs, one for A and
one for B; but A’s commitment transaction output to itself is encumbered by an
additional restriction (as is B’s output to itself). Instead of paying A directly,
A’s output needs both A and B’s signature. B provides such a signature, but on
a “commitment refund” transaction which can only be spent after a delay (40

3Note: this diagram has been corrected since: Commitment Close Tx 1A (CC1b) — should
be CCla, and vice-versa

days in the paper). Thus if A closes the channel by signing and broadcasting
its commitment transaction, B can collect its output immediately, but A must
wait 40 days.

This delay encumbering the output is what makes the commitment trans-
action revocable; once an updated commitment transaction is agreed upon, the
previous commitment transaction pair is revoked by sharing the private keys
needed to redeem those encumbered outputs. Thus, A shares its (throwaway)
private key, and B shares its throwaway private key. If A were to sign and broad-
cast a revoked commitment transaction, B could not only immediately spend
its own output, but it has both A’s key and its own to generate a transaction
which can spend the output which would normally go to A after a delay.

2.3 Hashed Timelock Contracts (HTLCs)

The Lightning Network paper used a set of 4 transactions to implement a hashed
timelock contract, which guarantees payment of a given amount on presentation
of a secret value R within a certain timespan. Any number of these could be
active within a generalized channel, and this is what allows a network to form:
Node A offers node B $1 for the secret within 2 days, node B offers node C 99¢
for the secret within 1 day, etc.

This arrangement for one side of a single node is shown in figure 2.

Funding Tx (F)

! Commitment Close Tx 2b (cc2b) !

{ | Alice can spend anytime !

-=-=-=-a1 [I

Commitment Tx 2b (C2b) | Output: Alice 0.4 |
I only Alice sends sig to Bob

|Can be broadcasted anytime |

! Commitment Tx 2a (C2a)
Only Bob sends sig to Alice
I Can be broadcasted anytime

I
outputs: L= Em e e m - - - = 1

0. Alice 0.4 BTC | ! commitment Refund Tx 2a (CR2b) |
11. 2-0f-2 Alice&Bob 0.5 BTC

| Alice gives sig to Bol
12. HTLC Alice&Bob 0.1BTC L output: Bob 0.5 !
| 40-day LockTime !

: Outputs:

0. 2-0f-2 Alice&Bob 0.4 BTC
I 1.Bob 0.5 BTC
I 2. HTLC Alice&Bob 0.18TC

I
| No LockTime

)< "t { Timeout Tx 1a (T1a)
output 1 i

H Only Bob sends sig to Alice
Input: Alice and Bob's sig

Output: Alice&Bob 0.1

3-day LockTime

! Commitment Close Tx 2a (cC2a)
Bob can spend anytime

I

| Output: Bob 0.5 V

Timeout Refund Tx 1a (TR1a)
Only Bob sends sig to Alice

1 Input: Alice and Bob's sig

Output: Alice 0.1

40-day LockTime

Commitment Refund Tx 1a (CR2a) |
| Bob gives sig to Alice
|l Output: Alice 0.4

| 40-day LockTime I

| Settlement Tx 1a (S1a) L e il |

| Only Alice sends sig to Bob I | Settlement Delivery Tx 1a (SD1a) |
Can be broadcast within 3 days ; Only Alice sends sig to Bob

! Input: Hash, Alice2&Bob2's sig | Output: Bob 0.1 I

1

| Output: Alicel&Bobl 0.1 ! 40-day LockTime
| No LockTime 1

Figure 2: Figure 2 from the Lightning Network Draft 0.5

3 Enhancements To Lightning

This paper proposes various modifications.

3.1 Poon-Dryja Generalized Payment Channel Modifica-
tions

This paper proposes three changes to the commitment transactions.

3.1.1 Placing Timeout in Output Script

Rather than using a separate transaction to enforce the delay, BIP65[8] proposes
an OP _CHECKLOCKTIMEVERIFY which allows an output to specify the
minimum time at which it can be spent. With this enhancement, we no longer
need a separate “commitment refund” transaction. The commitment transaction
to-self output script would be a little more complex:

e A and B’s signature, OR
e A’s signature and OP CHECKLOCKTIMEVERIFY <40 days>

As of Nov. 13, 2015, BIP65 has been deployed and is in the process of being
activated.

3.1.2 Using Relative Locktime

The Poon-Dryja channel uses a 40 day locktime, because transaction locktime
is absolute. Before 40 days the channel must be closed, otherwise spending
a revoked transaction and immediately following it with the commit refund
transaction is possible.

BIP112[#BIP112] proposes OP _CHECKSEQUENCEVERIFY, an opcode
which allows an output to specify a minimum relative time before the output
can be spent[4, 3| can reduce this timeout (say, to 1 day) and avoid placing a
lifetime limit on the channel, like so:

e A and B’s signature, OR
o A’s signature and OP _CHECKSEQUENCEVERIFY <1 day>

As of Nov. 13, 2015, BIP112 has not been deployed.

3.1.3 Using Revocation Preimages Instead of Private Keys

There’s a slightly more intuitive and more efficient method than exchanging
private keys, which is to reuse a technique of hash preimages which is already
needed for HTLCs (as we see later).

Instead of using a private key, B uses knowledge of a hash preimage as well
as its signature to steal funds from a revoked commitment transaction. Thus,

to create a commitment transaction each side provides a hash value; to revoke
a commitment transaction it provides the prehash image.
The resulting commitment transaction to-self output now looks like:

e B’s signature and a preimage which hashes to <revocation-hash>, OR
e A’s signature and OP CHECKSEQUENCEVERIFY <1 day>

This can be expressed fairly easily in bitcoin’s script-based scripting language, as
annotated in Commitment Transactions For Generalized Channels. The final
pair of commitment transaction outputs is shown in Figure 3.

O

SIGA&B SIGA&B
Commit Commit
Tx A Tx B
SIG IB i l SIGA
REVOCATION-A & SIG B REVOCATION-B & SIG A
OR OR
OP_CSV &SIG A OP_CSV & SIG B

Figure 3: Commitment Transaction Outputs

3.2 Channel Opening Modifications

The method of creating the first commitment transaction before signing the
anchor transaction (as proposed in the paper) presents two problems in practice:

1. The anchor transaction id required for the commitment input will only be
known once the anchor is signed, and

2. The anchor transaction can be malleated by either party before entering
the blockchain, rendering the commitment input unusable.

The last of these is particularly pernicious, as BIP62 doesn’t solve it: signa-
tories can always re-sign a transaction, hence altering its transaction ID. The
paper proposes new SIGHASH flags which mitigate this problem, but we are
attempting to avoid that.

Our approach is to only have one-sided anchors. These can be later bal-
anced by the lightning network itself, or an atomic-swap to an on-chain bitcoin
transaction[1]. Any bitcoin transaction fees are initially funded by that anchor,
but the implementation splits fees where possible and never allows either side
to spend funds in the channel if they would no longer be able to pay their share.

3.3 Hashed Timelock Contract (HTLC) Modification

Using the same techniques used above, we can condense each HTLC into a single
output script on the commitment transaction. This output is spendable under
three conditions:

1. Recipient knows the R value (funds go to recipient), or
2. The HTLC has timed out (funds return to sender), or

3. The Commit transaction has been revoked (funds to go other side).

Unlike the original paper, we use revocation preimages instead of sharing tem-
porary private keys. If we also use OP CHECKLOCKTIMEVERIFY and
OP CHECKSEQUENCEVERIFY it is fairly simple to express these condi-
tions in a single output script.

For each direction the HTLC could transfer funds, there are two scripts
required; one for A’s commitment transaction and one for B’s commitment
transaction. It’s also a requirement that the conditions which allow payment
to oneself be delayed, to give the other side an opportunity to take the funds
in case of revocation. This is shown (omitting the HTLC to-self delays, which
depend on the orientation of payer/payee with respect to A and B) in figure 4.

—O=

SIGA&B SIGA&B
Commit Commit
TxA Tx B
SIG IB l l sieA
REVOCATION-A & 5IG B REVOCATION-B & SIG A
OR OR
OP_CSV &SIG A OP_CSV &SIG B
Y
RVALUE & SIG-PAYEE R-VALUE & SIG-PAYEE
OR OR
HTLC-TIMEOUT & SIG-PAYER ~ HTLC-TIMEOUT & SIG-PAYER
OR OR
REVOCATION-A & SIG B REVOCATION-B & SIG A

Figure 4: HTLC Using Revocation Preimages, OP _CLTV and OP _CSV (sim-
plified)

The scripts for this can be found in Appendix A: Transaction Scripts.

4 Conclusions

Secret preimages can replace exposure of temporary private keys in the Light-
ning Network constructs with no loss of generality, and a slight gain in simplicity.

The use of script conditionals to enforce timeouts instead of using separate
pre-signed transactions reduces an HTLC from a set of four dual-signed trans-
actions to a single (more complex) output script, and additionally avoids any
requirement for new CHECKSIG flags for HTLCs.

By using a rebalanced single anchor, channel establishment can also avoid
new CHECKSIG flags, though it loses the important ability to outsource the
enforcement of channel contract terms.

Acknowlegments

Thanks to mmeijeri on Reddit’s r/Bitcoin for pointing out a flaw in escape
transactions reusing the same A and B keys as the commitment transaction in
Appendix B: Dual Anchors With Escape Transactions*. Thanks to John New-
bery for multiple formatting and typing corrections.

Thanks to Joseph Poon for designing the escape/fast-escape dual-anchor
method, as well as finding a flaw in my original formulation of the dual anchor
construct and reviewing an earlier draft of this paper. Also thanks to him and
Thaddeus Dryja for the initial eye-opening Lightning Network paper.

References

[1] Idea to improve lightning network. https://bitcointalk.org/index.php?
topic=1134319.msgl11963141#msg11963141.

[2] Instant TX for established business relationships (need replace-
ments/nLockTime). https://bitcointalk.org/index.php?
topic=25786.0.

[3] Mark Freidenbach BtcDrak and Eric Lombrozo. CHECKSEQUENCEV-
ERIFY. https://github.com/bitcoin/bips/blob/master/bip-0112.
mediawiki.

[4] Mark Friedenbach. [bitcoin-development] [BIP draft] consensus-enforced
transaction replacement signalled via sequence numbers. http://lists.
linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.
html.

[5] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[6] Tier Nolan. Alt chains and atomic transfers. https://bitcointalk.org/
index.php7topic=193281.msg2224949#msg2224949.

[7] Joseph Poon and Thaddeus Dryja. The bitcoin lightning net-
work draft wversion 0.5, 2015. http://lightning.network/
lightning-network-paper-DRAFT-0.5.pdf.

4https://www.reddit.com/r/Bitcoin/comments/3dlxw4 /reaching_the ground with lightning lightning/ct80xpp

https://bitcointalk.org/index.php?topic=1134319.msg11963141#msg11963141
https://bitcointalk.org/index.php?topic=1134319.msg11963141#msg11963141
https://bitcointalk.org/index.php?topic=25786.0
https://bitcointalk.org/index.php?topic=25786.0
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0112.mediawiki
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
http://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-June/008452.html
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
https://bitcointalk.org/index.php?topic=193281.msg2224949#msg2224949
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf
http://lightning.network/lightning-network-paper-DRAFT-0.5.pdf

[8] Peter Todd. OP_ CHECKLOCKTIMEVERIFY. https://github.com/
bitcoin/bips/blob/master/bip-0065.mediawiki.

[9] Pieter Wuille. Dealing with malleability. https://github.com/bitcoin/
bips/blob/master/bip-0062.mediawiki.

Appendix A: Transaction Scripts

All outputs are expressed as pay-to-scripthash outputs, where the redeeming
input provides the redeemscript. Where a redeem-hash value is optional, it is
generally supplied: for example, if we want to pay to A if a preimage is supplied
and B if no preimage is supplied, we expect the input scriptsig to provide two
arguments in both cases (generally a zero in the second case). This saves an
extra test (of form “OP_DEPTH <N> OP_ EQUAL”), at cost of a single byte
in the input script.

Anchor Transaction

The anchor inputs are whatever the node chooses.

Anchor Output Redeemscript

The anchor output is a pay to script hash, with a redeemscript as follows:
OP HASH <SECRET-A-HASH> OP_ EQUAL If the secret is supplied,
OP_IF
<KEY-B’> Should be signed by B’s escape key.
OP ELSE
<KEY-B> Should be signed by B’s commitment key.
OP ENDIF
2 OP_ SWAP Put 2 before B’s key on the stack.
<KEY-A> 2 OP CHECKMULTISIG Make sure A and B have signed.

Commitment Transactions For Generalized Channels

These examples are for A’s Commitment Transaction; switch A and B to get
B’s commitment transaction.

https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0062.mediawiki

Commitment Input Script

The commitment transaction has two inputs; one which spends each anchor
output. The zero after the signature indicates it is not revealing the secret:

0 <SIG-B> <SIG-A> 0 {<ANCHOR-REDEEMSCRIPT >}

Commitment Transaction Output Redeemscripts

One output pays B’s funds to B as normal (eg. pay to scripthash “<KEY-B>
OP CHECKSIG”). The other output pays A’s funds: either to B if they supply
the revocation preimage, or to A after a delay. This is the redeemscript:

OP HASH160 <COMMIT-REVOCATION-HASH> OP EQUAL Did
they supply revocation preimage?

OP_IF
<B-KEY> To B.
OP_ELSE

<LOCKTIME> OP CHECKSEQUENCEVERIFY OP DROP
Spending transaction must be after timeout

<A-KEY> To A.

OP_ENDIF
OP_ CHECKSIG Signature must be correct.

Spending Commitment OQutput
Either B using a revocation preimage:

<SIG-B> <COMMIT-REVOCATION-IMAGE-A> {<COMMITMENT-REDEEMSCRIPT >}

Or A using after a timeout:

<SIG-A> 0 {<COMMITMENT-REDEEMSCRIPT >}

Hash Locked Transaction Commitments

There are two styles of commitment transaction outputs for HTLCs: a “sender”
and ‘“receiver” case. The output is a pay-to-script-hash, so the redeemscripts
are shown below.

These scripts show A as the sender, and B as the receiver: exchange A and
B for the reverse.

10

HTLC Sender Redeemscript
OP HASHI160 OP DUP Replace top element with two copies of its hash
<R-HASH> OP_ EQUAL Test if they supplied the HTLC R value

OP SWAP <COMMIT-REVOCATION-HASH> OP EQUAL OP_ ADD
Or the commitment revocation hash

OP _IF If any hash matched.
<KEY-B> Pay to B.
OP_ELSE Must be A, after HTLC has timed out.

<HTLC-TIMEOUT> OP CHECKLOCKTIMEVERIFY Ensure
(absolute) time has passed.

<DELAY> OP CHECKSEQUENCEVERIFY Delay gives B enough
time to use revocation if it has it.

OP 2DROP Drop the delay and htlc-timeout from the stack.
<KEY-A> Pay to A.

OP_ENDIF
OP CHECKSIG Verify A or B’s signature is correct.

HTLC Receiver Redeemscript

OP HASH160 OP DUP Replace top element with two copies of its hash
<R-HASH> OP EQUAL B redeeming the contract, using R preimage?
OP IF

<DELAY> OP CHECKSEQUENCEVERIFY Delay gives A enough
time to use revocation if it has it.

OP_2DROP Drop extra hash and delay from the stack
<KEY-B> Pay to B

OP_ELSE

<COMMIT-REVOCATION-HASH> OP EQUAL If the commit
has been revoked.

OP_ NOTIF If not, you need to wait for timeout.

<HTLC-TIMEOUT> OP CHECKLOCKTIMEVERIFY OP DROP
Ensure (absolute) time has passed.

OP_ ENDIF
<KEY-A> Payto A

OP_ENDIF
OP CHECKSIG Verify A or B’s signature is correct.

11

Redeeming A HTLC Output

To redeem an HTLC, the recipient one provides the preimage R, and their
signature. In our example above, B can redeem the HTLC:

<SIG-B> <HTLC-R-VALUE> {<HTLC-REDEEMSCRIPT>}

Claiming a Timed-out HTLC

To claim a timed-out HTLC, the sender supplies a zero value (which is nice and
short, but fails to hash to any of the revocation hashes), and their signature. In
our example above, A can claim the timed-out HTLC:

<SIG-A> 0 {<HTLC-REDEEMSCRIPT>}

Claiming A HTLC Output For A Revoked Commitment Transaction

If either side publishes a commitment transaction which has been revoked, we
can use the revocation preimage they supplied to spend all the outputs. This
example shows A claiming the HTLC output if B broadcasts a revoked commit-
ment transaction:

<SIG-A> <COMMIT-REVOCATION > {<HTLC-REDEEMSCRIPT >}

Appendix B: Dual Anchors With Escape Transac-
tions

This appendix presents a dual-input anchor solution which doesn’t require ad-
ditional bitcoin signature flags. It is not being proposed currently, as it seems
that a single-sided anchor is probably sufficient.

4.1 Separate Anchor Transactions

To avoid the problem of needing all anchor signatures to derive the anchor
transaction ID to create the commitment transaction input, we split the anchor
into two transactions; thus A knows its anchor transaction ID, and B knows its
anchor transaction ID as shown in Figure 5.

12

bt i

SIGA & SIGB SIGA|& SIGB

Y Y

SIGA&B SIGA&B
Commit Commit
Tx A Tx B

Figure 5: Simplistic Dual Anchor Design

This form allows A and B to create commitment transactions which spends
the anchors outputs by exchanging anchor transaction IDs. It has the problem
that if the other party does not then broadcast its anchor transaction, we cannot
spend the commitment transaction, and our own anchor funds are stuck.

Thus we introduce an escape transaction, which lets us regain our anchor
funds in that case, as shown in Figure 6.

13

bt il

SIGA & SIGB SIGA & SIGB

SIGA & SIGB Y SIGA & SIGB
()-lezeoe?]

SIGA SIGB

Y Yy

SIGA&B SIGA&B
Commit Commit
TxX A Tx B

Figure 6: Dual Anchor With Simple Escape Transactions

However, this escape transaction would let either side remove its funds from
the channel at any time, which would make the channel insecure. Thus, after the
commitment transactions have been established, we want to revoke the escape
transactions. We can do the same way we did for the commitment transaction
revocation; by placing restrictions on the “to-me” output. In particular, adding
a delay if paying back to the anchor owner, and allowing it to be spent by the
other party immediately if they possess the revocation preimage, as shown in
Figure 7.

14

. N LS

SIGA & SIGB SIGA & SIGB

Y SIGA & SIGB
Escape B

SIGA & SIGB

Escape A

OP_CSV & SIGA OP_CSV & SIGB
OR
RIMAGE-A & SIGB RIMAGE-B & SIGA

Y Yy

SIGA&B SIGA&B
Commit Commit
TxX A Tx B

Figure 7: Dual Anchors With Revocable Escape Transactions

Unfortunately, this revocation is not a complete solution; if B uses its escape
transaction, A can collect B’s anchor funds, but it has no way of collecting its
own! The commitment transaction cannot be used, as one of its inputs has been
spent by B’s escape transaction. A’s own escape transaction has been revoked,
so B would simply steal the funds.

Thus we need an additional construction, such that using one escape trans-
action immediately unlocks the other anchor funds for its owner. To do this, we
ensure that the escape transaction is forced to reveal a secret, which is a fairly
well-established technique[6]. The anchor transaction is modified to either re-
quire both signatures (for the commitment transaction), or both signatures and
the secret (for the escape transaction), as shown in Figure 8. Note that this
requires the other party to provide an alternate key (denoted here using A’ and
B’), otherwise there is no way to force the escape transaction to provide the
secret.

15

N LS

Anchor B

SIGA & SIGB
OR
B' & SECRET-A SIGA' & SIGB & SECRET-B

SIGA & SIGB' & SECRET-A ¥ SIGA' & SIGB & SECRET-B

PRETT

OP_(SV & SIGB

RIMAGE-A & SIGB RIMAGE-B & SIGA

Y Yy

SIGA&B SIGA&B
Commit Commit
Tx A Tx B

Figure 8: Secret Revelation by Escape Transactions

That revealed secret can be used with the other alternative: the fast escape
transaction. This reveals the secret just like the escape transaction, but its
output is immediately usable if one knows the other side’s secret. This is shown
in Figure 9. Thus, if B broadcasts its escape transaction after it has been
revoked, A can (after ensuring escape B is sufficiently deep in the block chain)
broadcast its fast escape transaction and use B’s secret to immediately spend
the output.

On the other hand, if B broadcasts its fast escape transaction without know-
ing A’s secret, A can simply wait for the timeout and spend the fast escape
output, then use its own fast escape transaction and B’s secret to recover its
own anchor funds as well.

16

N LS

Anchor B

SIGA & SIGB
OR
B' & SECRET-A SIGA' & SIGB & SECRET-B

SIGA & SIGB' & SECRET-A Y SIGA' & SIGB & SECRET-B
Escape B

OP_(SV & SIGB

RIMAGE-B & SIGA

SIGA' & SIGB & SECRET-B

Fast Esc B
¢ Y OP_CSV & SIGA
SIGA&B SIGA&B PR

SECRET-B & SIGA | Commit Commit SECRET-A & SIGB
Tx A Tx B

Figure 9: Final Dual Anchor Design

The final scripts are shown in Appendix A: Transaction Scripts.

4.2 Disadvantages of The Dual Anchor Approach

Unlike the mutual anchor approach, use of escape transactions is not outsourca-
ble: you cannot have an untrusted third party which can monitor the network
for the other sides’ revoked escape transaction and respond with your own es-
cape transaction. If you were to provide a third party with your fast escape
transaction, you would necessarily provide it with the secret, which it could
give to B.

4.3 Script Definitions for Escape Transactions

Escape Transaction

The escape transaction for A spends A’s anchor output and reveals A’s secret.
Similarly for B.

Escape Input Script
The extra 0 at the start is due to the OP _ CHECKMULTISIG out-by-one-bug.

0 <SIG-B’> <SIG-A> <SECRET-A> {<ANCHOR-REDEEMSCRIPT>}

17

Escape Output Redeemscript

This allows two paths: one for the other side to use the revocation image, and
one for this side to get their funds back after a delay. This show’s A’s script,
but B’s is the same with A and B exchanged.

OP HASHI160 <RHASH-A> OP EQUAL Check if the top of the stack
contains the revocation image.

OP_IF
<KEY-B> Funds for B.
OP _ELSE It’s A getting their funds back

<DELAYTIME> OP CHECKSEQUENCEVERIFY OP_ DROP
Ensure delay.

<KEY-A> Needs to be signed by A.

OP ENDIF
OP CHECKSIG Make sure it’s signed correctly.

Spending The Escape Output

Either B using a revocation preimage:

<SIG-B> <REVOCATION-IMAGE-A> {<ESCAPE-REDEEMSCRIPT>}

Or A using after a timeout:

<SIG-A> 0 {<ESCAPE-REDEEMSCRIPT >}

Fast-Escape Transaction
Fast-Escape Input Script
This is identical to the normal escape input script.

0 <SIG-B’> <SIG-A> <SECRET-A> {<ANCHOR-REDEEMSCRIPT>}

Fast-Escape Output Redeemscript

This allows two paths: one for this side to use the other side’s secret (revealed
by them using an escape transaction), and one for the other side to claim this
side’s anchor funds after a delay. This shows A’s script, but B’s is the same
with A and B exchanged.

18

OP_ HASH <SECRET-B-HASH> OP_ EQUAL If top argument is B’s
secret

OP _IF
<KEY-A> For A
OP ELSE B gets it if A doesn’t know the secret.

<DELAYTIME> OP CHECKSEQUENCEVERIFY OP DROP
Ensure delay.

<KEY-B> Needs to be signed by B.

OP ENDIF
OP CHECKSIG Make sure it’s signed correctly.

Spending The Fast-Escape Output

Either A using B’s secret revealed by B using its own escape transaction:

<SIG-A> <SECRET-B> {<FAST-ESCAPE-REDEEMSCRIPT >}

Or B using after a timeout:

<SIG-B> 0 {<FAST-ESCAPE-REDEEMSCRIPT >}

19

	1 Introduction
	2 Previous Work
	2.1 Payment Channels
	2.1.1 Limitations Of Simple Payment Channels

	2.2 Generalized Payment Channels Using Revocable Transactions
	2.3 Hashed Timelock Contracts (HTLCs)

	3 Enhancements To Lightning
	3.1 Poon-Dryja Generalized Payment Channel Modifications
	3.1.1 Placing Timeout in Output Script
	3.1.2 Using Relative Locktime
	3.1.3 Using Revocation Preimages Instead of Private Keys

	3.2 Channel Opening Modifications
	3.3 Hashed Timelock Contract (HTLC) Modification

	4 Conclusions
	References
	4.1 Separate Anchor Transactions
	4.2 Disadvantages of The Dual Anchor Approach
	4.3 Script Definitions for Escape Transactions

