#include "bitcoind.h" #include "close_tx.h" #include "commit_tx.h" #include "controlled_time.h" #include "cryptopkt.h" #include "dns.h" #include "find_p2sh_out.h" #include "jsonrpc.h" #include "lightningd.h" #include "log.h" #include "names.h" #include "peer.h" #include "secrets.h" #include "state.h" #include "timeout.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define FIXME_STUB(peer) do { log_broken((peer)->dstate->base_log, "%s:%u: Implement %s!", __FILE__, __LINE__, __func__); abort(); } while(0) struct json_connecting { /* This owns us, so we're freed after command_fail or command_success */ struct command *cmd; const char *name, *port; u64 satoshis; }; struct pending_cmd { struct list_node list; void (*dequeue)(struct peer *, void *arg); void *arg; }; static struct peer *find_peer(struct lightningd_state *dstate, const char *buffer, jsmntok_t *peeridtok) { struct pubkey peerid; struct peer *peer; if (!pubkey_from_hexstr(dstate->secpctx, buffer + peeridtok->start, peeridtok->end - peeridtok->start, &peerid)) return NULL; list_for_each(&dstate->peers, peer, list) { if (peer->state != STATE_INIT && pubkey_eq(&peer->id, &peerid)) return peer; } return NULL; } static void queue_output_pkt(struct peer *peer, Pkt *pkt) { size_t n = tal_count(peer->outpkt); tal_resize(&peer->outpkt, n+1); peer->outpkt[n] = pkt; /* In case it was waiting for output. */ io_wake(peer); } static struct json_result *null_response(const tal_t *ctx) { struct json_result *response; response = new_json_result(ctx); json_object_start(response, NULL); json_object_end(response); return response; } static void peer_cmd_complete(struct peer *peer, enum command_status status) { assert(peer->curr_cmd.cmd != INPUT_NONE); /* If it's a json command, complete that now. */ if (peer->curr_cmd.jsoncmd) { if (status == CMD_FAIL) /* FIXME: y'know, details. */ command_fail(peer->curr_cmd.jsoncmd, "Failed"); else { assert(status == CMD_SUCCESS); command_success(peer->curr_cmd.jsoncmd, null_response(peer->curr_cmd.jsoncmd)); } } peer->curr_cmd.cmd = INPUT_NONE; } static void set_current_command(struct peer *peer, const enum state_input input, void *idata, struct command *jsoncmd) { assert(peer->curr_cmd.cmd == INPUT_NONE); assert(input != INPUT_NONE); peer->curr_cmd.cmd = input; /* This is a union, so assign to any member. */ peer->curr_cmd.cmddata.pkt = idata; peer->curr_cmd.jsoncmd = jsoncmd; } static void state_single(struct peer *peer, const enum state_input input, const union input *idata) { enum command_status status; Pkt *outpkt; const struct bitcoin_tx *broadcast; status = state(peer, peer, input, idata, &outpkt, &broadcast); log_debug(peer->log, "%s => %s", input_name(input), state_name(peer->state)); switch (status) { case CMD_NONE: break; case CMD_SUCCESS: log_add(peer->log, " (command success)"); peer_cmd_complete(peer, CMD_SUCCESS); break; case CMD_FAIL: log_add(peer->log, " (command FAIL)"); peer_cmd_complete(peer, CMD_FAIL); break; case CMD_REQUEUE: log_add(peer->log, " (Command requeue)"); break; } if (outpkt) { log_add(peer->log, " (out %s)", input_name(outpkt->pkt_case)); queue_output_pkt(peer, outpkt); } if (broadcast) { struct sha256_double txid; bitcoin_txid(broadcast, &txid); /* FIXME: log_struct */ log_add(peer->log, " (tx %02x%02x%02x%02x...)", txid.sha.u.u8[0], txid.sha.u.u8[1], txid.sha.u.u8[2], txid.sha.u.u8[3]); bitcoind_send_tx(peer->dstate, broadcast); } /* Start output if not running already; it will close conn. */ if (peer->cond == PEER_CLOSED) io_wake(peer); /* FIXME: Some of these should just result in this peer being killed? */ if (state_is_error(peer->state)) { log_broken(peer->log, "Entered error state %s", state_name(peer->state)); fatal("Peer entered error state"); } /* Break out and free this peer if it's completely done. */ if (peer->state == STATE_CLOSED) io_break(peer); } static void try_command(struct peer *peer) { /* If we can accept a command, and we have one queued, run it. */ while (peer->cond == PEER_CMD_OK && !list_empty(&peer->pending_cmd)) { struct pending_cmd *pend = list_pop(&peer->pending_cmd, struct pending_cmd, list); assert(peer->curr_cmd.cmd == INPUT_NONE); /* This can fail to enqueue a command! */ pend->dequeue(peer, pend->arg); tal_free(pend); if (peer->curr_cmd.cmd != INPUT_NONE) { state_single(peer, peer->curr_cmd.cmd, &peer->curr_cmd.cmddata); } } } #define queue_cmd(peer, cb, arg) \ queue_cmd_((peer), \ typesafe_cb_preargs(void, void *, \ (cb), (arg), \ struct peer *), \ (arg)) static void queue_cmd_(struct peer *peer, void (*dequeue)(struct peer *peer, void *arg), void *arg) { struct pending_cmd *pend = tal(peer, struct pending_cmd); pend->dequeue = dequeue; pend->arg = arg; list_add_tail(&peer->pending_cmd, &pend->list); try_command(peer); }; static void state_event(struct peer *peer, const enum state_input input, const union input *idata) { state_single(peer, input, idata); if (peer->cleared != INPUT_NONE && !committed_to_htlcs(peer)) { enum state_input all_done = peer->cleared; peer->cleared = INPUT_NONE; state_single(peer, all_done, NULL); } try_command(peer); } static struct io_plan *pkt_out(struct io_conn *conn, struct peer *peer) { Pkt *out; size_t n = tal_count(peer->outpkt); if (n == 0) { /* We close the connection once we've sent everything. */ if (peer->cond == PEER_CLOSED) return io_close(conn); return io_out_wait(conn, peer, pkt_out, peer); } out = peer->outpkt[0]; memmove(peer->outpkt, peer->outpkt + 1, (sizeof(*peer->outpkt)*(n-1))); tal_resize(&peer->outpkt, n-1); return peer_write_packet(conn, peer, out, NULL, NULL, pkt_out); } static struct io_plan *pkt_in(struct io_conn *conn, struct peer *peer) { union input idata; const tal_t *ctx = tal(peer, char); idata.pkt = tal_steal(ctx, peer->inpkt); /* We ignore packets if they tell us to. */ if (peer->cond != PEER_CLOSED) state_event(peer, peer->inpkt->pkt_case, &idata); /* Free peer->inpkt unless stolen above. */ tal_free(ctx); return peer_read_packet(conn, peer, pkt_in); } static void do_anchor_offer(struct peer *peer, void *unused) { set_current_command(peer, peer->us.offer_anchor, NULL, NULL); } /* Crypto is on, we are live. */ static struct io_plan *peer_crypto_on(struct io_conn *conn, struct peer *peer) { peer_secrets_init(peer); peer_get_revocation_hash(peer, 0, &peer->us.revocation_hash); peer_get_revocation_hash(peer, 1, &peer->us.next_revocation_hash); assert(peer->state == STATE_INIT); /* Using queue_cmd is overkill here, but it works. */ queue_cmd(peer, do_anchor_offer, NULL); return io_duplex(conn, peer_read_packet(conn, peer, pkt_in), pkt_out(conn, peer)); } static void destroy_peer(struct peer *peer) { if (peer->conn) io_close(peer->conn); list_del_from(&peer->dstate->peers, &peer->list); } static void peer_disconnect(struct io_conn *conn, struct peer *peer) { Pkt *outpkt; const struct bitcoin_tx *broadcast; log_info(peer->log, "Disconnected"); /* No longer connected. */ peer->conn = NULL; /* Not even set up yet? Simply free.*/ if (peer->state == STATE_INIT) { tal_free(peer); return; } /* FIXME: Try to reconnect. */ if (peer->cond == PEER_CLOSED) return; state(peer, peer, INPUT_CONNECTION_LOST, NULL, &outpkt, &broadcast); assert(!outpkt); if (broadcast) { struct sha256_double txid; bitcoin_txid(broadcast, &txid); /* FIXME: log_struct */ log_debug(peer->log, "INPUT_CONN_LOST: tx %02x%02x%02x%02x...", txid.sha.u.u8[0], txid.sha.u.u8[1], txid.sha.u.u8[2], txid.sha.u.u8[3]); bitcoind_send_tx(peer->dstate, broadcast); } } static struct peer *new_peer(struct lightningd_state *dstate, struct io_conn *conn, int addr_type, int addr_protocol, enum state_input offer_anchor, const char *in_or_out) { struct peer *peer = tal(dstate, struct peer); assert(offer_anchor == CMD_OPEN_WITH_ANCHOR || offer_anchor == CMD_OPEN_WITHOUT_ANCHOR); /* FIXME: Stop listening if too many peers? */ list_add(&dstate->peers, &peer->list); peer->state = STATE_INIT; peer->cond = PEER_CMD_OK; peer->dstate = dstate; peer->addr.type = addr_type; peer->addr.protocol = addr_protocol; peer->io_data = NULL; peer->secrets = NULL; list_head_init(&peer->watches); peer->outpkt = tal_arr(peer, Pkt *, 0); peer->curr_cmd.cmd = INPUT_NONE; list_head_init(&peer->pending_cmd); peer->current_htlc = NULL; peer->commit_tx_counter = 0; peer->cstate = NULL; peer->close_watch_timeout = NULL; peer->anchor.watches = NULL; peer->cur_commit.watch = NULL; peer->closing.their_sig = NULL; peer->cleared = INPUT_NONE; /* If we free peer, conn should be closed, but can't be freed * immediately so don't make peer a parent. */ peer->conn = conn; io_set_finish(conn, peer_disconnect, peer); peer->us.offer_anchor = offer_anchor; if (!seconds_to_rel_locktime(dstate->config.rel_locktime, &peer->us.locktime)) fatal("Invalid locktime configuration %u", dstate->config.rel_locktime); peer->us.mindepth = dstate->config.anchor_confirms; peer->us.commit_fee_rate = dstate->config.commitment_fee_rate; peer->us.commit = peer->them.commit = NULL; /* FIXME: Attach IO logging for this peer. */ tal_add_destructor(peer, destroy_peer); peer->addr.addrlen = sizeof(peer->addr.saddr); if (getpeername(io_conn_fd(conn), &peer->addr.saddr.s, &peer->addr.addrlen) != 0) { log_unusual(dstate->base_log, "Could not get address for peer: %s", strerror(errno)); return tal_free(peer); } peer->log = new_log(peer, dstate->log_record, "%s%s:%s:", log_prefix(dstate->base_log), in_or_out, netaddr_name(peer, &peer->addr)); return peer; } static struct io_plan *peer_connected_out(struct io_conn *conn, struct lightningd_state *dstate, struct json_connecting *connect) { /* Initiator currently funds channel */ struct peer *peer = new_peer(dstate, conn, SOCK_STREAM, IPPROTO_TCP, CMD_OPEN_WITH_ANCHOR, "out"); if (!peer) { command_fail(connect->cmd, "Failed to make peer for %s:%s", connect->name, connect->port); return io_close(conn); } log_info(peer->log, "Connected out to %s:%s", connect->name, connect->port); peer->anchor.satoshis = connect->satoshis; command_success(connect->cmd, null_response(connect)); return peer_crypto_setup(conn, peer, peer_crypto_on); } static struct io_plan *peer_connected_in(struct io_conn *conn, struct lightningd_state *dstate) { struct peer *peer = new_peer(dstate, conn, SOCK_STREAM, IPPROTO_TCP, CMD_OPEN_WITHOUT_ANCHOR, "in"); if (!peer) return io_close(conn); log_info(peer->log, "Peer connected in"); return peer_crypto_setup(conn, peer, peer_crypto_on); } static int make_listen_fd(struct lightningd_state *dstate, int domain, void *addr, socklen_t len) { int fd = socket(domain, SOCK_STREAM, 0); if (fd < 0) { log_debug(dstate->base_log, "Failed to create %u socket: %s", domain, strerror(errno)); return -1; } if (!addr || bind(fd, addr, len) == 0) { if (listen(fd, 5) == 0) return fd; log_unusual(dstate->base_log, "Failed to listen on %u socket: %s", domain, strerror(errno)); } else log_debug(dstate->base_log, "Failed to bind on %u socket: %s", domain, strerror(errno)); close_noerr(fd); return -1; } void setup_listeners(struct lightningd_state *dstate, unsigned int portnum) { struct sockaddr_in addr; struct sockaddr_in6 addr6; socklen_t len; int fd1, fd2; u16 listen_port; addr.sin_family = AF_INET; addr.sin_addr.s_addr = INADDR_ANY; addr.sin_port = htons(portnum); addr6.sin6_family = AF_INET6; addr6.sin6_addr = in6addr_any; addr6.sin6_port = htons(portnum); /* IPv6, since on Linux that (usually) binds to IPv4 too. */ fd1 = make_listen_fd(dstate, AF_INET6, portnum ? &addr6 : NULL, sizeof(addr6)); if (fd1 >= 0) { struct sockaddr_in6 in6; len = sizeof(in6); if (getsockname(fd1, (void *)&in6, &len) != 0) { log_unusual(dstate->base_log, "Failed get IPv6 sockname: %s", strerror(errno)); close_noerr(fd1); } else { addr.sin_port = in6.sin6_port; listen_port = ntohs(addr.sin_port); log_info(dstate->base_log, "Creating IPv6 listener on port %u", listen_port); io_new_listener(dstate, fd1, peer_connected_in, dstate); } } /* Just in case, aim for the same port... */ fd2 = make_listen_fd(dstate, AF_INET, addr.sin_port ? &addr : NULL, sizeof(addr)); if (fd2 >= 0) { len = sizeof(addr); if (getsockname(fd2, (void *)&addr, &len) != 0) { log_unusual(dstate->base_log, "Failed get IPv4 sockname: %s", strerror(errno)); close_noerr(fd2); } else { listen_port = ntohs(addr.sin_port); log_info(dstate->base_log, "Creating IPv4 listener on port %u", listen_port); io_new_listener(dstate, fd2, peer_connected_in, dstate); } } if (fd1 < 0 && fd2 < 0) fatal("Could not bind to a network address"); } static void peer_failed(struct lightningd_state *dstate, struct json_connecting *connect) { /* FIXME: Better diagnostics! */ command_fail(connect->cmd, "Failed to connect to peer %s:%s", connect->name, connect->port); } static void json_connect(struct command *cmd, const char *buffer, const jsmntok_t *params) { struct json_connecting *connect; jsmntok_t *host, *port, *satoshis; if (!json_get_params(buffer, params, "host", &host, "port", &port, "satoshis", &satoshis, NULL)) { command_fail(cmd, "Need host, port and satoshis"); return; } connect = tal(cmd, struct json_connecting); connect->cmd = cmd; connect->name = tal_strndup(connect, buffer + host->start, host->end - host->start); connect->port = tal_strndup(connect, buffer + port->start, port->end - port->start); if (!json_tok_u64(buffer, satoshis, &connect->satoshis)) command_fail(cmd, "'%.*s' is not a valid number", (int)(satoshis->end - satoshis->start), buffer + satoshis->start); if (!dns_resolve_and_connect(cmd->dstate, connect->name, connect->port, peer_connected_out, peer_failed, connect)) { command_fail(cmd, "DNS failed"); return; } } const struct json_command connect_command = { "connect", json_connect, "Connect to a {host} at {port} offering anchor of {satoshis}", "Returns an empty result on success" }; struct anchor_watch { struct peer *peer; enum state_input depthok; enum state_input timeout; enum state_input unspent; enum state_input theyspent; enum state_input otherspent; /* If timeout != INPUT_NONE, this is the timer. */ struct oneshot *timer; }; static void anchor_depthchange(struct peer *peer, int depth, const struct sha256_double *blkhash, struct anchor_watch *w) { /* Still waiting for it to reach depth? */ if (w->depthok != INPUT_NONE) { /* Beware sign! */ if (depth >= (int)peer->us.mindepth) { enum state_input in = w->depthok; w->depthok = INPUT_NONE; /* We don't need the timeout timer any more. */ w->timer = tal_free(w->timer); state_event(peer, in, NULL); } } else { if (depth < 0 && w->unspent != INPUT_NONE) { enum state_input in = w->unspent; w->unspent = INPUT_NONE; state_event(peer, in, NULL); } } } /* We don't compare scriptSigs: we don't know them anyway! */ static bool txmatch(const struct bitcoin_tx *txa, const struct bitcoin_tx *txb) { size_t i; if (txa->version != txb->version || txa->input_count != txb->input_count || txa->output_count != txb->output_count || txa->lock_time != txb->lock_time) return false; for (i = 0; i < txa->input_count; i++) { if (!structeq(&txa->input[i].txid, &txb->input[i].txid) || txa->input[i].index != txb->input[i].index || txa->input[i].sequence_number != txb->input[i].sequence_number) return false; } for (i = 0; i < txa->output_count; i++) { if (txa->output[i].amount != txb->output[i].amount || txa->output[i].script_length != txb->output[i].script_length || memcmp(txa->output[i].script, txb->output[i].script, txa->output[i].script_length != 0)) return false; } return true; } /* A mutual close is a simple 2 output p2sh to the final addresses, but * without knowing fee we can't determine order, so examine each output. */ static bool is_mutual_close(const struct peer *peer, const struct bitcoin_tx *tx) { const u8 *ctx, *our_p2sh, *their_p2sh; bool matches; if (tx->output_count != 2) return false; if (!is_p2sh(tx->output[0].script, tx->output[0].script_length) || !is_p2sh(tx->output[1].script, tx->output[1].script_length)) return false; /* FIXME: Cache these! */ ctx = tal(NULL, u8); our_p2sh = scriptpubkey_p2sh(ctx, bitcoin_redeem_single(tx, &peer->us.finalkey)); their_p2sh = scriptpubkey_p2sh(ctx, bitcoin_redeem_single(tx, &peer->them.finalkey)); matches = (memcmp(tx->output[0].script, our_p2sh, tal_count(our_p2sh)) == 0 && memcmp(tx->output[1].script, their_p2sh, tal_count(their_p2sh)) == 0) || (memcmp(tx->output[0].script, their_p2sh, tal_count(their_p2sh)) == 0 && memcmp(tx->output[1].script, our_p2sh, tal_count(our_p2sh)) == 0); tal_free(ctx); return matches; } static void close_depth_cb(struct peer *peer, int depth) { if (depth >= peer->dstate->config.forever_confirms) { state_event(peer, BITCOIN_CLOSE_DONE, NULL); } } /* We assume the tx is valid! Don't do a blockchain.info and feed this * invalid transactions! */ static void anchor_spent(struct peer *peer, const struct bitcoin_tx *tx, struct anchor_watch *w) { union input idata; /* FIXME: change type in idata? */ idata.btc = (struct bitcoin_event *)tx; if (txmatch(tx, peer->them.commit)) state_event(peer, w->theyspent, &idata); else if (is_mutual_close(peer, tx)) add_close_tx_watch(peer, peer, tx, close_depth_cb); else state_event(peer, w->otherspent, &idata); } static void anchor_timeout(struct anchor_watch *w) { assert(w == w->peer->anchor.watches); state_event(w->peer, w->timeout, NULL); /* Freeing this gets rid of the other watches, and timer, too. */ w->peer->anchor.watches = tal_free(w); } void peer_watch_anchor(struct peer *peer, enum state_input depthok, enum state_input timeout, enum state_input unspent, enum state_input theyspent, enum state_input otherspent) { struct anchor_watch *w; w = peer->anchor.watches = tal(peer, struct anchor_watch); w->peer = peer; w->depthok = depthok; w->timeout = timeout; w->unspent = unspent; w->theyspent = theyspent; w->otherspent = otherspent; add_anchor_watch(w, peer, &peer->anchor.txid, peer->anchor.index, anchor_depthchange, anchor_spent, w); /* For anchor timeout, expect 20 minutes per block, +2 hours. * * Probability(no block in time N) = e^(-N/600). * Thus for 1 block, P = e^(-(7200+1*1200)/600) = 0.83 in a million. * * Glenn Willen says, if we want to know how many 10-minute intervals for * a 1 in a million chance of spurious failure for N blocks, put * this into http://www.wolframalpha.com: * * e^(-x) * sum x^i / fact(i), i=0 to N < 1/1000000 * * N=20: 51 * N=10: 35 * N=8: 31 * N=6: 28 * N=4: 24 * N=3: 22 * N=2: 20 * * So, our formula of 12 + N*2 holds for N <= 20 at least. */ if (w->timeout != INPUT_NONE) { w->timer = oneshot_timeout(peer->dstate, w, 7200 + 20*peer->us.mindepth, anchor_timeout, w); } else w->timer = NULL; } void peer_unwatch_anchor_depth(struct peer *peer, enum state_input depthok, enum state_input timeout) { assert(peer->anchor.watches); peer->anchor.watches = tal_free(peer->anchor.watches); } static void commit_tx_depth(struct peer *peer, int depth, const struct sha256_double *blkhash, ptrint_t *canspend) { log_debug(peer->log, "Commit tx reached depth %i", depth); /* FIXME: Handle locktime in blocks, as well as seconds! */ /* Fell out of a block? */ if (depth < 0) { /* Forget any old block. */ peer->cur_commit.start_time = 0; memset(&peer->cur_commit.blockid, 0xFF, sizeof(peer->cur_commit.blockid)); return; } /* In a new block? */ if (!structeq(blkhash, &peer->cur_commit.blockid)) { peer->cur_commit.start_time = 0; peer->cur_commit.blockid = *blkhash; bitcoind_get_mediantime(peer->dstate, blkhash, &peer->cur_commit.start_time); return; } /* Don't yet know the median start time? */ if (!peer->cur_commit.start_time) return; /* FIXME: We should really use bitcoin time here. */ if (controlled_time().ts.tv_sec > peer->cur_commit.start_time + rel_locktime_to_seconds(&peer->them.locktime)) { /* Free this watch; we're done */ peer->cur_commit.watch = tal_free(peer->cur_commit.watch); state_event(peer, ptr2int(canspend), NULL); } } /* FIXME: We tell bitcoind to watch all the outputs, which is overkill */ static void watch_tx_outputs(struct peer *peer, const struct bitcoin_tx *tx) { varint_t i; for (i = 0; i < tx->output_count; i++) { struct ripemd160 redeemhash; if (!is_p2sh(tx->output[i].script, tx->output[i].script_length)) fatal("Unexpected non-p2sh output"); memcpy(&redeemhash, tx->output[i].script+2, sizeof(redeemhash)); bitcoind_watch_addr(peer->dstate, &redeemhash); } } /* Watch the commit tx until our side is spendable. */ void peer_watch_delayed(struct peer *peer, const struct bitcoin_tx *tx, enum state_input canspend) { struct sha256_double txid; assert(tx == peer->us.commit); bitcoin_txid(tx, &txid); memset(&peer->cur_commit.blockid, 0xFF, sizeof(peer->cur_commit.blockid)); peer->cur_commit.watch = add_commit_tx_watch(tx, peer, &txid, commit_tx_depth, int2ptr(canspend)); watch_tx_outputs(peer, tx); } static void spend_tx_done(struct peer *peer, int depth, const struct sha256_double *blkhash, ptrint_t *done) { log_debug(peer->log, "tx reached depth %i", depth); if (depth >= (int)peer->dstate->config.forever_confirms) state_event(peer, ptr2int(done), NULL); } uint64_t commit_tx_fee(const struct bitcoin_tx *commit, uint64_t anchor_satoshis) { uint64_t i, total = 0; for (i = 0; i < commit->output_count; i++) total += commit->output[i].amount; assert(anchor_satoshis >= total); return anchor_satoshis - total; } /* Watch this tx until it's buried enough to be forgotten. */ void peer_watch_tx(struct peer *peer, const struct bitcoin_tx *tx, enum state_input done) { struct sha256_double txid; bitcoin_txid(tx, &txid); log_debug(peer->log, "Watching tx %02x%02x%02x%02x...", txid.sha.u.u8[0], txid.sha.u.u8[1], txid.sha.u.u8[2], txid.sha.u.u8[3]); add_commit_tx_watch(tx, peer, &txid, spend_tx_done, int2ptr(done)); } struct bitcoin_tx *peer_create_close_tx(const tal_t *ctx, const struct peer *peer, u64 fee) { struct channel_state cstate; /* We don't need a deep copy here, just fee levels. */ cstate = *peer->cstate; if (!force_fee(&cstate, fee)) { log_unusual(peer->log, "peer_create_close_tx: can't afford fee %"PRIu64, fee); return NULL; } log_debug(peer->log, "creating close-tx with fee %"PRIu64": to %02x%02x%02x%02x/%02x%02x%02x%02x, amounts %u/%u", fee, peer->us.finalkey.der[0], peer->us.finalkey.der[1], peer->us.finalkey.der[2], peer->us.finalkey.der[3], peer->them.finalkey.der[0], peer->them.finalkey.der[1], peer->them.finalkey.der[2], peer->them.finalkey.der[3], cstate.a.pay_msat / 1000, cstate.b.pay_msat / 1000); return create_close_tx(peer->dstate->secpctx, ctx, &peer->us.finalkey, &peer->them.finalkey, &peer->anchor.txid, peer->anchor.index, peer->anchor.satoshis, cstate.a.pay_msat / 1000, cstate.b.pay_msat / 1000); } void peer_calculate_close_fee(struct peer *peer) { /* Use actual worst-case length of close tx: based on BOLT#02's * commitment tx numbers, but only 1 byte for output count */ const uint64_t txsize = 41 + 221 + 10 + 32 + 32; uint64_t maxfee; /* FIXME: Dynamic fee */ peer->closing.our_fee = fee_by_feerate(txsize, peer->dstate->config.closing_fee_rate); /* BOLT #2: * The sender MUST set `close_fee` lower than or equal to the * fee of the final commitment transaction and MUST set * `close_fee` to an even number of satoshis. */ maxfee = commit_tx_fee(peer->us.commit, peer->anchor.satoshis); if (peer->closing.our_fee > maxfee) { /* This shouldn't happen: we never accept a commit fee * less than the min_rate, which is greater than the * closing_fee_rate. Also, our txsize estimate for * the closing tx is 2 bytes smaller than the commitment tx. */ log_unusual(peer->log, "Closing fee %"PRIu64" exceeded commit fee %"PRIu64", reducing.", peer->closing.our_fee, maxfee); peer->closing.our_fee = maxfee; /* This can happen if actual commit txfee is odd. */ if (peer->closing.our_fee & 1) peer->closing.our_fee--; } assert(!(peer->closing.our_fee & 1)); } bool peer_has_close_sig(const struct peer *peer) { return peer->closing.their_sig; } static void send_close_timeout(struct peer *peer) { /* FIXME: Remove any close_tx watches! */ state_event(peer, INPUT_CLOSE_COMPLETE_TIMEOUT, NULL); } void peer_watch_close(struct peer *peer, enum state_input done, enum state_input timedout) { /* We save some work by assuming these. */ assert(done == BITCOIN_CLOSE_DONE); /* FIXME: We can't send CLOSE, so timeout immediately */ if (!peer->conn) { assert(timedout == INPUT_CLOSE_COMPLETE_TIMEOUT); oneshot_timeout(peer->dstate, peer, 0, send_close_timeout, peer); return; } /* Give them a reasonable time to respond. */ /* FIXME: config? */ if (timedout != INPUT_NONE) { assert(timedout == INPUT_CLOSE_COMPLETE_TIMEOUT); peer->close_watch_timeout = oneshot_timeout(peer->dstate, peer, 120, send_close_timeout, peer); } /* anchor_spent will get called, we match against close_tx there. */ } void peer_unwatch_close_timeout(struct peer *peer, enum state_input timedout) { assert(peer->close_watch_timeout); peer->close_watch_timeout = tal_free(peer->close_watch_timeout); } bool peer_watch_our_htlc_outputs(struct peer *peer, const struct bitcoin_tx *tx, enum state_input tous_timeout, enum state_input tothem_spent, enum state_input tothem_timeout) { if (committed_to_htlcs(peer)) FIXME_STUB(peer); return false; } bool peer_watch_their_htlc_outputs(struct peer *peer, const struct bitcoin_event *tx, enum state_input tous_timeout, enum state_input tothem_spent, enum state_input tothem_timeout) { FIXME_STUB(peer); } void peer_unwatch_htlc_output(struct peer *peer, const struct htlc *htlc, enum state_input all_done) { FIXME_STUB(peer); } void peer_unwatch_all_htlc_outputs(struct peer *peer) { FIXME_STUB(peer); } void peer_watch_htlc_spend(struct peer *peer, const struct bitcoin_tx *tx, const struct htlc *htlc, enum state_input done) { /* FIXME! */ } void peer_unwatch_htlc_spend(struct peer *peer, const struct htlc *htlc, enum state_input all_done) { FIXME_STUB(peer); } void peer_unexpected_pkt(struct peer *peer, const Pkt *pkt) { FIXME_STUB(peer); } /* Someone declined our HTLC: details in pkt (we will also get CMD_FAIL) */ void peer_htlc_declined(struct peer *peer, const Pkt *pkt) { log_unusual(peer->log, "Peer declined htlc, reason %i", pkt->update_decline_htlc->reason_case); peer->current_htlc = tal_free(peer->current_htlc); } /* Called when their update overrides our update cmd. */ void peer_htlc_ours_deferred(struct peer *peer) { FIXME_STUB(peer); } /* Successfully added/fulfilled/timedout/routefail an HTLC. */ void peer_htlc_done(struct peer *peer) { peer->current_htlc = tal_free(peer->current_htlc); } /* Someone aborted an existing HTLC. */ void peer_htlc_aborted(struct peer *peer) { FIXME_STUB(peer); } /* An on-chain transaction revealed an R value. */ const struct htlc *peer_tx_revealed_r_value(struct peer *peer, const struct bitcoin_event *btc) { FIXME_STUB(peer); } bool committed_to_htlcs(const struct peer *peer) { /* This is only set after anchor established. */ if (!peer->cstate) return false; return tal_count(peer->cstate->a.htlcs) != 0 || tal_count(peer->cstate->b.htlcs) != 0; } void peer_watch_htlcs_cleared(struct peer *peer, enum state_input all_done) { assert(peer->cleared == INPUT_NONE); assert(all_done != INPUT_NONE); peer->cleared = all_done; } /* Create a bitcoin close tx, using last signature they sent. */ const struct bitcoin_tx *bitcoin_close(const tal_t *ctx, struct peer *peer) { struct bitcoin_tx *close_tx; struct bitcoin_signature our_close_sig; close_tx = peer_create_close_tx(ctx, peer, peer->closing.their_fee); our_close_sig.stype = SIGHASH_ALL; peer_sign_mutual_close(peer, close_tx, &our_close_sig.sig); /* Complete the close_tx, using signatures. */ close_tx->input[0].script = scriptsig_p2sh_2of2(close_tx, peer->closing.their_sig, &our_close_sig, &peer->them.commitkey, &peer->us.commitkey); close_tx->input[0].script_length = tal_count(close_tx->input[0].script); return close_tx; } /* Create a bitcoin spend tx (to spend our commit's outputs) */ const struct bitcoin_tx *bitcoin_spend_ours(const tal_t *ctx, const struct peer *peer) { u8 *redeemscript, *linear; const struct bitcoin_tx *commit = peer->us.commit; struct bitcoin_signature sig; struct bitcoin_tx *tx; unsigned int p2sh_out; /* The redeemscript for a commit tx is fairly complex. */ redeemscript = bitcoin_redeem_secret_or_delay(ctx, &peer->us.finalkey, &peer->them.locktime, &peer->them.finalkey, &peer->us.revocation_hash); /* Now, create transaction to spend it. */ tx = bitcoin_tx(ctx, 1, 1); bitcoin_txid(commit, &tx->input[0].txid); p2sh_out = find_p2sh_out(commit, redeemscript); tx->input[0].index = p2sh_out; tx->input[0].input_amount = commit->output[p2sh_out].amount; tx->input[0].sequence_number = bitcoin_nsequence(&peer->them.locktime); tx->output[0].amount = commit->output[p2sh_out].amount; tx->output[0].script = scriptpubkey_p2sh(tx, bitcoin_redeem_single(tx, &peer->us.finalkey)); tx->output[0].script_length = tal_count(tx->output[0].script); /* Use signature, until we have fee. */ sig.stype = SIGHASH_ALL; peer_sign_spend(peer, tx, redeemscript, &sig.sig); tx->input[0].script = scriptsig_p2sh_secret(tx, NULL, 0, &sig, redeemscript, tal_count(redeemscript)); tx->input[0].script_length = tal_count(tx->input[0].script); /* FIXME: Figure out length first, then calc fee! */ /* Now, calculate the fee, given length. */ /* FIXME: Dynamic fees! */ linear = linearize_tx(ctx, tx); tx->fee = fee_by_feerate(tal_count(linear), peer->dstate->config.closing_fee_rate); /* FIXME: Fail gracefully in these cases (not worth collecting) */ if (tx->fee > tx->output[0].amount || is_dust_amount(tx->output[0].amount - tx->fee)) fatal("Amount of %"PRIu64" won't cover fee %"PRIu64, tx->output[0].amount, tx->fee); /* Re-sign with the real values. */ tx->input[0].script_length = 0; tx->output[0].amount -= tx->fee; peer_sign_spend(peer, tx, redeemscript, &sig.sig); tx->input[0].script = scriptsig_p2sh_secret(tx, NULL, 0, &sig, redeemscript, tal_count(redeemscript)); tx->input[0].script_length = tal_count(tx->input[0].script); return tx; } /* Create a bitcoin spend tx (to spend their commit's outputs) */ const struct bitcoin_tx *bitcoin_spend_theirs(const tal_t *ctx, const struct peer *peer, const struct bitcoin_event *btc) { FIXME_STUB(peer); } /* Create a bitcoin steal tx (to steal all their commit's outputs) */ const struct bitcoin_tx *bitcoin_steal(const tal_t *ctx, const struct peer *peer, struct bitcoin_event *btc) { FIXME_STUB(peer); } /* Sign and return our commit tx */ const struct bitcoin_tx *bitcoin_commit(const tal_t *ctx, struct peer *peer) { struct bitcoin_signature sig; /* Can't be signed already! */ assert(peer->us.commit->input[0].script_length == 0); sig.stype = SIGHASH_ALL; peer_sign_ourcommit(peer, peer->us.commit, &sig.sig); peer->us.commit->input[0].script = scriptsig_p2sh_2of2(peer->us.commit, &peer->cur_commit.theirsig, &sig, &peer->them.commitkey, &peer->us.commitkey); peer->us.commit->input[0].script_length = tal_count(peer->us.commit->input[0].script); return peer->us.commit; } /* Create a HTLC refund collection */ const struct bitcoin_tx *bitcoin_htlc_timeout(const tal_t *ctx, const struct peer *peer, const struct htlc *htlc) { FIXME_STUB(peer); } /* Create a HTLC collection */ const struct bitcoin_tx *bitcoin_htlc_spend(const tal_t *ctx, const struct peer *peer, const struct htlc *htlc) { FIXME_STUB(peer); } static void created_anchor(struct lightningd_state *dstate, const struct bitcoin_tx *tx, struct peer *peer) { bitcoin_txid(tx, &peer->anchor.txid); peer->anchor.index = find_p2sh_out(tx, peer->anchor.redeemscript); assert(peer->anchor.satoshis == tx->output[peer->anchor.index].amount); /* We'll need this later, when we're told to broadcast it. */ peer->anchor.tx = tal_steal(peer, tx); /* FIXME: Check their cstate too (different fee rate!) */ peer->cstate = initial_funding(peer, peer->us.offer_anchor == CMD_OPEN_WITH_ANCHOR, peer->anchor.satoshis, peer->us.commit_fee_rate); if (!peer->cstate) fatal("Insufficient anchor funds for commitfee"); /* Now we can make initial (unsigned!) commit txs. */ make_commit_txs(peer, peer, &peer->us.revocation_hash, &peer->them.revocation_hash, peer->cstate, &peer->us.commit, &peer->them.commit); state_event(peer, BITCOIN_ANCHOR_CREATED, NULL); } /* Start creation of the bitcoin anchor tx. */ void bitcoin_create_anchor(struct peer *peer, enum state_input done) { struct sha256 h; struct ripemd160 redeemhash; char *p2shaddr; /* We must be offering anchor for us to try creating it */ assert(peer->us.offer_anchor); sha256(&h, peer->anchor.redeemscript, tal_count(peer->anchor.redeemscript)); ripemd160(&redeemhash, h.u.u8, sizeof(h)); p2shaddr = p2sh_to_base58(peer, peer->dstate->config.testnet, &redeemhash); assert(done == BITCOIN_ANCHOR_CREATED); bitcoind_create_payment(peer->dstate, p2shaddr, peer->anchor.satoshis, created_anchor, peer); } /* We didn't end up broadcasting the anchor: release the utxos. * If done != INPUT_NONE, remove existing create_anchor too. */ void bitcoin_release_anchor(struct peer *peer, enum state_input done) { /* FIXME: stop bitcoind command */ log_unusual(peer->log, "Anchor not spent, please -zapwallettxs"); } /* Get the bitcoin anchor tx. */ const struct bitcoin_tx *bitcoin_anchor(const tal_t *ctx, struct peer *peer) { return peer->anchor.tx; } void make_commit_txs(const tal_t *ctx, const struct peer *peer, const struct sha256 *our_revocation_hash, const struct sha256 *their_revocation_hash, const struct channel_state *cstate, struct bitcoin_tx **ours, struct bitcoin_tx **theirs) { struct channel_state their_cstate; *ours = create_commit_tx(ctx, &peer->us.finalkey, &peer->them.finalkey, &peer->them.locktime, &peer->anchor.txid, peer->anchor.index, peer->anchor.satoshis, our_revocation_hash, cstate); /* Shallow copy: we don't touch HTLCs, just amounts and fees. */ their_cstate = *cstate; invert_cstate(&their_cstate); adjust_fee(&their_cstate, peer->them.commit_fee_rate); *theirs = create_commit_tx(ctx, &peer->them.finalkey, &peer->us.finalkey, &peer->us.locktime, &peer->anchor.txid, peer->anchor.index, peer->anchor.satoshis, their_revocation_hash, &their_cstate); } static void json_add_abstime(struct json_result *response, const char *id, const struct abs_locktime *t) { json_object_start(response, id); if (abs_locktime_is_seconds(t)) json_add_num(response, "second", abs_locktime_to_seconds(t)); else json_add_num(response, "block", abs_locktime_to_blocks(t)); json_object_end(response); } static void json_add_cstate(struct json_result *response, const char *id, const struct channel_oneside *side) { size_t i; json_object_start(response, id); json_add_num(response, "pay", side->pay_msat); json_add_num(response, "fee", side->fee_msat); json_array_start(response, "htlcs"); for (i = 0; i < tal_count(side->htlcs); i++) { json_object_start(response, NULL); json_add_u64(response, "msatoshis", side->htlcs[i].msatoshis); json_add_abstime(response, "expiry", &side->htlcs[i].expiry); json_add_hex(response, "rhash", &side->htlcs[i].rhash, sizeof(side->htlcs[i].rhash)); json_object_end(response); } json_array_end(response); json_object_end(response); } /* FIXME: Somehow we should show running DNS lookups! */ /* FIXME: Show status of peers! */ static void json_getpeers(struct command *cmd, const char *buffer, const jsmntok_t *params) { struct peer *p; struct json_result *response = new_json_result(cmd); json_object_start(response, NULL); json_array_start(response, "peers"); list_for_each(&cmd->dstate->peers, p, list) { json_object_start(response, NULL); json_add_string(response, "name", log_prefix(p->log)); json_add_string(response, "state", state_name(p->state)); json_add_string(response, "cmd", input_name(p->curr_cmd.cmd)); /* This is only valid after crypto setup. */ if (p->state != STATE_INIT) json_add_hex(response, "peerid", p->id.der, sizeof(p->id.der)); if (p->cstate) { json_object_start(response, "channel"); json_add_cstate(response, "us", &p->cstate->a); json_add_cstate(response, "them", &p->cstate->b); json_object_end(response); } json_object_end(response); } json_array_end(response); json_object_end(response); command_success(cmd, response); } const struct json_command getpeers_command = { "getpeers", json_getpeers, "List the current peers", "Returns a 'peers' array" }; static void set_htlc_command(struct peer *peer, struct channel_state *cstate, struct command *jsoncmd, enum state_input cmd, const union htlc_staging *stage) { assert(!peer->current_htlc); peer->current_htlc = tal(peer, struct htlc_progress); peer->current_htlc->cstate = tal_steal(peer->current_htlc, cstate); peer->current_htlc->stage = *stage; peer_get_revocation_hash(peer, peer->commit_tx_counter+1, &peer->current_htlc->our_revocation_hash); /* FIXME: Do we need current_htlc as idata arg? */ set_current_command(peer, cmd, peer->current_htlc, jsoncmd); } /* FIXME: Keep a timeout for each peer, in case they're unresponsive. */ static void check_htlc_expiry(struct peer *peer, void *unused) { size_t i; union htlc_staging stage; stage.fail.fail = HTLC_FAIL; /* Check their htlcs for expiry. */ for (i = 0; i < tal_count(peer->cstate->b.htlcs); i++) { struct channel_htlc *htlc = &peer->cstate->b.htlcs[i]; struct channel_state *cstate; /* Not a seconds-based expiry? */ if (!abs_locktime_is_seconds(&htlc->expiry)) continue; /* Not well-expired? */ if (controlled_time().ts.tv_sec - 30 < abs_locktime_to_seconds(&htlc->expiry)) continue; cstate = copy_funding(peer, peer->cstate); funding_b_fail_htlc(cstate, i); stage.fail.index = i; set_htlc_command(peer, cstate, NULL, CMD_SEND_HTLC_FAIL, &stage); return; } } static void htlc_expiry_timeout(struct peer *peer) { log_debug(peer->log, "Expiry timedout!"); queue_cmd(peer, check_htlc_expiry, NULL); } void peer_add_htlc_expiry(struct peer *peer, const struct abs_locktime *expiry) { time_t when; /* Add 30 seconds to be sure peers agree on timeout. */ when = abs_locktime_to_seconds(expiry) - controlled_time().ts.tv_sec; when += 30; oneshot_timeout(peer->dstate, peer, when, htlc_expiry_timeout, peer); } struct newhtlc { struct channel_htlc htlc; struct command *jsoncmd; }; /* We do final checks just before we start command, as things may have * changed. */ static void do_newhtlc(struct peer *peer, struct newhtlc *newhtlc) { struct channel_state *cstate; union htlc_staging stage; stage.add.add = HTLC_ADD; stage.add.htlc = newhtlc->htlc; /* Can we even offer this much? We check now, just before we * execute. */ cstate = copy_funding(newhtlc, peer->cstate); if (!funding_a_add_htlc(cstate, newhtlc->htlc.msatoshis, &newhtlc->htlc.expiry, &newhtlc->htlc.rhash, 0)) { command_fail(newhtlc->jsoncmd, "Cannot afford %"PRIu64" milli-satoshis", newhtlc->htlc.msatoshis); return; } /* FIXME: Never propose duplicate rvalues? */ peer_add_htlc_expiry(peer, &newhtlc->htlc.expiry); set_htlc_command(peer, cstate, newhtlc->jsoncmd, CMD_SEND_HTLC_ADD, &stage); } static void json_newhtlc(struct command *cmd, const char *buffer, const jsmntok_t *params) { struct peer *peer; jsmntok_t *peeridtok, *msatoshistok, *expirytok, *rhashtok; unsigned int expiry; struct newhtlc *newhtlc; if (!json_get_params(buffer, params, "peerid", &peeridtok, "msatoshis", &msatoshistok, "expiry", &expirytok, "rhash", &rhashtok, NULL)) { command_fail(cmd, "Need peerid, msatoshis, expiry and rhash"); return; } peer = find_peer(cmd->dstate, buffer, peeridtok); if (!peer) { command_fail(cmd, "Could not find peer with that peerid"); return; } /* Attach to cmd until it's complete. */ newhtlc = tal(cmd, struct newhtlc); newhtlc->jsoncmd = cmd; if (!json_tok_u64(buffer, msatoshistok, &newhtlc->htlc.msatoshis)) { command_fail(cmd, "'%.*s' is not a valid number", (int)(msatoshistok->end - msatoshistok->start), buffer + msatoshistok->start); return; } if (!json_tok_number(buffer, expirytok, &expiry)) { command_fail(cmd, "'%.*s' is not a valid number", (int)(expirytok->end - expirytok->start), buffer + expirytok->start); return; } if (!seconds_to_abs_locktime(expiry, &newhtlc->htlc.expiry)) { command_fail(cmd, "'%.*s' is not a valid number", (int)(expirytok->end - expirytok->start), buffer + expirytok->start); return; } if (abs_locktime_to_seconds(&newhtlc->htlc.expiry) < controlled_time().ts.tv_sec + peer->dstate->config.min_expiry) { command_fail(cmd, "HTLC expiry too soon!"); return; } if (abs_locktime_to_seconds(&newhtlc->htlc.expiry) > controlled_time().ts.tv_sec + peer->dstate->config.max_expiry) { command_fail(cmd, "HTLC expiry too far!"); return; } if (!hex_decode(buffer + rhashtok->start, rhashtok->end - rhashtok->start, &newhtlc->htlc.rhash, sizeof(newhtlc->htlc.rhash))) { command_fail(cmd, "'%.*s' is not a valid sha256 hash", (int)(rhashtok->end - rhashtok->start), buffer + rhashtok->start); return; } queue_cmd(peer, do_newhtlc, newhtlc); } const struct json_command newhtlc_command = { "newhtlc", json_newhtlc, "Offer {peerid} an HTLC worth {msatoshis} in {expiry} (in seconds since Jan 1 1970) with {rhash}", "Returns an empty result on success" }; struct fulfillhtlc { struct command *jsoncmd; struct sha256 r; }; static void do_fullfill(struct peer *peer, struct fulfillhtlc *fulfillhtlc) { struct channel_state *cstate; struct sha256 rhash; size_t i; union htlc_staging stage; stage.fulfill.fulfill = HTLC_FULFILL; stage.fulfill.r = fulfillhtlc->r; sha256(&rhash, &fulfillhtlc->r, sizeof(fulfillhtlc->r)); i = funding_find_htlc(&peer->cstate->b, &rhash); if (i == tal_count(peer->cstate->b.htlcs)) { command_fail(fulfillhtlc->jsoncmd, "preimage htlc not found"); return; } stage.fulfill.index = i; cstate = copy_funding(fulfillhtlc, peer->cstate); funding_b_fulfill_htlc(cstate, i); set_htlc_command(peer, cstate, fulfillhtlc->jsoncmd, CMD_SEND_HTLC_FULFILL, &stage); } static void json_fulfillhtlc(struct command *cmd, const char *buffer, const jsmntok_t *params) { struct peer *peer; jsmntok_t *peeridtok, *rtok; struct fulfillhtlc *fulfillhtlc; if (!json_get_params(buffer, params, "peerid", &peeridtok, "r", &rtok, NULL)) { command_fail(cmd, "Need peerid and r"); return; } peer = find_peer(cmd->dstate, buffer, peeridtok); if (!peer) { command_fail(cmd, "Could not find peer with that peerid"); return; } fulfillhtlc = tal(cmd, struct fulfillhtlc); fulfillhtlc->jsoncmd = cmd; if (!hex_decode(buffer + rtok->start, rtok->end - rtok->start, &fulfillhtlc->r, sizeof(fulfillhtlc->r))) { command_fail(cmd, "'%.*s' is not a valid sha256 preimage", (int)(rtok->end - rtok->start), buffer + rtok->start); return; } queue_cmd(peer, do_fullfill, fulfillhtlc); } const struct json_command fulfillhtlc_command = { "fulfillhtlc", json_fulfillhtlc, "Redeem htlc proposed by {peerid} using {r}", "Returns an empty result on success" }; struct failhtlc { struct command *jsoncmd; struct sha256 rhash; }; static void do_failhtlc(struct peer *peer, struct failhtlc *failhtlc) { struct channel_state *cstate; size_t i; union htlc_staging stage; stage.fail.fail = HTLC_FAIL; i = funding_find_htlc(&peer->cstate->b, &failhtlc->rhash); if (i == tal_count(peer->cstate->b.htlcs)) { command_fail(failhtlc->jsoncmd, "htlc not found"); return; } stage.fail.index = i; cstate = copy_funding(failhtlc, peer->cstate); funding_b_fail_htlc(cstate, i); set_htlc_command(peer, cstate, failhtlc->jsoncmd, CMD_SEND_HTLC_FAIL, &stage); } static void json_failhtlc(struct command *cmd, const char *buffer, const jsmntok_t *params) { struct peer *peer; jsmntok_t *peeridtok, *rhashtok; struct failhtlc *failhtlc; if (!json_get_params(buffer, params, "peerid", &peeridtok, "rhash", &rhashtok, NULL)) { command_fail(cmd, "Need peerid and rhash"); return; } peer = find_peer(cmd->dstate, buffer, peeridtok); if (!peer) { command_fail(cmd, "Could not find peer with that peerid"); return; } failhtlc = tal(cmd, struct failhtlc); failhtlc->jsoncmd = cmd; if (!hex_decode(buffer + rhashtok->start, rhashtok->end - rhashtok->start, &failhtlc->rhash, sizeof(failhtlc->rhash))) { command_fail(cmd, "'%.*s' is not a valid sha256 preimage", (int)(rhashtok->end - rhashtok->start), buffer + rhashtok->start); return; } queue_cmd(peer, do_failhtlc, failhtlc); } const struct json_command failhtlc_command = { "failhtlc", json_failhtlc, "Fail htlc proposed by {peerid} which has redeem hash {rhash}", "Returns an empty result on success" }; static void json_close(struct command *cmd, const char *buffer, const jsmntok_t *params) { struct peer *peer; jsmntok_t *peeridtok; if (!json_get_params(buffer, params, "peerid", &peeridtok, NULL)) { command_fail(cmd, "Need peerid"); return; } peer = find_peer(cmd->dstate, buffer, peeridtok); if (!peer) { command_fail(cmd, "Could not find peer with that peerid"); return; } if (peer->cond == PEER_CLOSING) { command_fail(cmd, "Peer is already closing"); return; } /* Unlike other things, CMD_CLOSE is always valid. */ log_debug(peer->log, "Sending CMD_CLOSE"); state_event(peer, CMD_CLOSE, NULL); command_success(cmd, null_response(cmd)); } const struct json_command close_command = { "close", json_close, "Close the channel with peer {peerid}", "Returns an empty result on success" };