#include "lightningd.h" #include "log.h" #include "overflows.h" #include "packets.h" #include "pseudorand.h" #include "routing.h" #include "wire/gen_peer_wire.h" #include #include #include #include #include #include #include /* 365.25 * 24 * 60 / 10 */ #define BLOCKS_PER_YEAR 52596 struct routing_state *new_routing_state(const tal_t *ctx, struct log *base_log) { struct routing_state *rstate = tal(ctx, struct routing_state); rstate->base_log = base_log; rstate->nodes = empty_node_map(rstate); rstate->broadcasts = new_broadcast_state(rstate); return rstate; } const secp256k1_pubkey *node_map_keyof_node(const struct node *n) { return &n->id.pubkey; } size_t node_map_hash_key(const secp256k1_pubkey *key) { return siphash24(siphash_seed(), key, sizeof(*key)); } bool node_map_node_eq(const struct node *n, const secp256k1_pubkey *key) { return structeq(&n->id.pubkey, key); } struct node_map *empty_node_map(const tal_t *ctx) { struct node_map *map = tal(ctx, struct node_map); node_map_init(map); return map; } struct node *get_node(struct routing_state *rstate, const struct pubkey *id) { return node_map_get(rstate->nodes, &id->pubkey); } static void destroy_node(struct node *node) { /* These remove themselves from the array. */ while (tal_count(node->in)) tal_free(node->in[0]); while (tal_count(node->out)) tal_free(node->out[0]); } struct node *new_node(struct routing_state *rstate, const struct pubkey *id) { struct node *n; assert(!get_node(rstate, id)); n = tal(rstate, struct node); n->id = *id; n->in = tal_arr(n, struct node_connection *, 0); n->out = tal_arr(n, struct node_connection *, 0); n->port = 0; n->alias = NULL; n->hostname = NULL; n->node_announcement = NULL; node_map_add(rstate->nodes, n); tal_add_destructor(n, destroy_node); return n; } struct node *add_node( struct routing_state *rstate, const struct pubkey *pk, char *hostname, int port) { struct node *n = get_node(rstate, pk); if (!n) { n = new_node(rstate, pk); log_debug_struct(rstate->base_log, "Creating new node %s", struct pubkey, pk); } else { log_debug_struct(rstate->base_log, "Update existing node %s", struct pubkey, pk); } n->hostname = tal_steal(n, hostname); n->port = port; return n; } static bool remove_conn_from_array(struct node_connection ***conns, struct node_connection *nc) { size_t i, n; n = tal_count(*conns); for (i = 0; i < n; i++) { if ((*conns)[i] != nc) continue; n--; memmove(*conns + i, *conns + i + 1, sizeof(**conns) * (n - i)); tal_resize(conns, n); return true; } return false; } static void destroy_connection(struct node_connection *nc) { if (!remove_conn_from_array(&nc->dst->in, nc) || !remove_conn_from_array(&nc->src->out, nc)) fatal("Connection not found in array?!"); } struct node_connection * get_connection(struct routing_state *rstate, const struct pubkey *from_id, const struct pubkey *to_id) { int i, n; struct node *from, *to; from = get_node(rstate, from_id); to = get_node(rstate, to_id); if (!from || ! to) return NULL; n = tal_count(to->in); for (i = 0; i < n; i++) { if (to->in[i]->src == from) return to->in[i]; } return NULL; } struct node_connection *get_connection_by_scid(const struct routing_state *rstate, const struct short_channel_id *schanid, const u8 direction) { struct node *n; int i, num_conn; struct node_map *nodes = rstate->nodes; struct node_connection *c; struct node_map_iter it; //FIXME(cdecker) We probably want to speed this up by indexing by chanid. for (n = node_map_first(nodes, &it); n; n = node_map_next(nodes, &it)) { num_conn = tal_count(n->out); for (i = 0; i < num_conn; i++){ c = n->out[i]; if (structeq(&c->short_channel_id, schanid) && (c->flags&0x1) == direction) return c; } } return NULL; } static struct node_connection * get_or_make_connection(struct routing_state *rstate, const struct pubkey *from_id, const struct pubkey *to_id) { size_t i, n; struct node *from, *to; struct node_connection *nc; from = get_node(rstate, from_id); if (!from) from = new_node(rstate, from_id); to = get_node(rstate, to_id); if (!to) to = new_node(rstate, to_id); n = tal_count(to->in); for (i = 0; i < n; i++) { if (to->in[i]->src == from) { log_debug_struct(rstate->base_log, "Updating existing route from %s", struct pubkey, &from->id); log_add_struct(rstate->base_log, " to %s", struct pubkey, &to->id); return to->in[i]; } } log_debug_struct(rstate->base_log, "Creating new route from %s", struct pubkey, &from->id); log_add_struct(rstate->base_log, " to %s", struct pubkey, &to->id); nc = tal(rstate, struct node_connection); nc->src = from; nc->dst = to; nc->channel_announcement = NULL; nc->channel_update = NULL; log_add(rstate->base_log, " = %p (%p->%p)", nc, from, to); /* Hook it into in/out arrays. */ i = tal_count(to->in); tal_resize(&to->in, i+1); to->in[i] = nc; i = tal_count(from->out); tal_resize(&from->out, i+1); from->out[i] = nc; tal_add_destructor(nc, destroy_connection); return nc; } struct node_connection *half_add_connection(struct routing_state *rstate, const struct pubkey *from, const struct pubkey *to, const struct short_channel_id *schanid, const u16 flags ) { struct node_connection *nc; nc = get_or_make_connection(rstate, from, to); nc->short_channel_id = *schanid; nc->active = false; nc->last_timestamp = 0; nc->flags = flags; nc->min_blocks = 0; nc->proportional_fee = 0; nc->base_fee = 0; nc->delay = 0; return nc; } /* Updates existing route if required. */ struct node_connection *add_connection(struct routing_state *rstate, const struct pubkey *from, const struct pubkey *to, u32 base_fee, s32 proportional_fee, u32 delay, u32 min_blocks) { struct node_connection *c = get_or_make_connection(rstate, from, to); c->base_fee = base_fee; c->proportional_fee = proportional_fee; c->delay = delay; c->min_blocks = min_blocks; c->active = true; c->last_timestamp = 0; memset(&c->short_channel_id, 0, sizeof(c->short_channel_id)); c->flags = get_channel_direction(from, to); return c; } void remove_connection(struct routing_state *rstate, const struct pubkey *src, const struct pubkey *dst) { struct node *from, *to; size_t i, num_edges; log_debug_struct(rstate->base_log, "Removing route from %s", struct pubkey, src); log_add_struct(rstate->base_log, " to %s", struct pubkey, dst); from = get_node(rstate, src); to = get_node(rstate, dst); if (!from || !to) { log_debug(rstate->base_log, "Not found: src=%p dst=%p", from, to); return; } num_edges = tal_count(from->out); for (i = 0; i < num_edges; i++) { if (from->out[i]->dst != to) continue; log_add(rstate->base_log, " Matched route %zu of %zu", i, num_edges); /* Destructor makes it delete itself */ tal_free(from->out[i]); return; } log_add(rstate->base_log, " None of %zu routes matched", num_edges); } /* Too big to reach, but don't overflow if added. */ #define INFINITE 0x3FFFFFFFFFFFFFFFULL static void clear_bfg(struct node_map *nodes) { struct node *n; struct node_map_iter it; for (n = node_map_first(nodes, &it); n; n = node_map_next(nodes, &it)) { size_t i; for (i = 0; i < ARRAY_SIZE(n->bfg); i++) { n->bfg[i].total = INFINITE; n->bfg[i].risk = 0; } } } s64 connection_fee(const struct node_connection *c, u64 msatoshi) { s64 fee; if (mul_overflows_s64(c->proportional_fee, msatoshi)) return INFINITE; fee = (c->proportional_fee * msatoshi) / 1000000; /* This can't overflow: c->base_fee is a u32 */ return c->base_fee + fee; } /* Risk of passing through this channel. We insert a tiny constant here * in order to prefer shorter routes, all things equal. */ static u64 risk_fee(s64 amount, u32 delay, double riskfactor) { /* If fees are so negative we're making money, ignore risk. */ if (amount < 0) return 1; return 1 + amount * delay * riskfactor / BLOCKS_PER_YEAR / 10000; } /* We track totals, rather than costs. That's because the fee depends * on the current amount passing through. */ static void bfg_one_edge(struct node *node, size_t edgenum, double riskfactor) { struct node_connection *c = node->in[edgenum]; size_t h; assert(c->dst == node); for (h = 0; h < ROUTING_MAX_HOPS; h++) { /* FIXME: Bias against smaller channels. */ s64 fee = connection_fee(c, node->bfg[h].total); u64 risk = node->bfg[h].risk + risk_fee(node->bfg[h].total + fee, c->delay, riskfactor); if (node->bfg[h].total + (s64)fee + (s64)risk < c->src->bfg[h+1].total + (s64)c->src->bfg[h+1].risk) { c->src->bfg[h+1].total = node->bfg[h].total + fee; c->src->bfg[h+1].risk = risk; c->src->bfg[h+1].prev = c; } } } struct node_connection * find_route(const tal_t *ctx, struct routing_state *rstate, const struct pubkey *from, const struct pubkey *to, u64 msatoshi, double riskfactor, s64 *fee, struct node_connection ***route) { struct node *n, *src, *dst; struct node_map_iter it; struct node_connection *first_conn; int runs, i, best; /* Note: we map backwards, since we know the amount of satoshi we want * at the end, and need to derive how much we need to send. */ dst = get_node(rstate, from); src = get_node(rstate, to); if (!src) { log_info_struct(rstate->base_log, "find_route: cannot find %s", struct pubkey, to); return NULL; } else if (dst == src) { log_info_struct(rstate->base_log, "find_route: this is %s, refusing to create empty route", struct pubkey, to); return NULL; } /* Reset all the information. */ clear_bfg(rstate->nodes); /* Bellman-Ford-Gibson: like Bellman-Ford, but keep values for * every path length. */ src->bfg[0].total = msatoshi; src->bfg[0].risk = 0; for (runs = 0; runs < ROUTING_MAX_HOPS; runs++) { log_debug(rstate->base_log, "Run %i", runs); /* Run through every edge. */ for (n = node_map_first(rstate->nodes, &it); n; n = node_map_next(rstate->nodes, &it)) { size_t num_edges = tal_count(n->in); for (i = 0; i < num_edges; i++) { if (!n->in[i]->active) continue; bfg_one_edge(n, i, riskfactor); log_debug(rstate->base_log, "We seek %p->%p, this is %p -> %p", dst, src, n->in[i]->src, n->in[i]->dst); log_debug_struct(rstate->base_log, "Checking from %s", struct pubkey, &n->in[i]->src->id); log_add_struct(rstate->base_log, " to %s", struct pubkey, &n->in[i]->dst->id); } } } best = 0; for (i = 1; i <= ROUTING_MAX_HOPS; i++) { if (dst->bfg[i].total < dst->bfg[best].total) best = i; } /* No route? */ if (dst->bfg[best].total >= INFINITE) { log_info_struct(rstate->base_log, "find_route: No route to %s", struct pubkey, to); return NULL; } /* Save route from *next* hop (we return first hop as peer). * Note that we take our own fees into account for routing, even * though we don't pay them: it presumably effects preference. */ first_conn = dst->bfg[best].prev; dst = dst->bfg[best].prev->dst; best--; *fee = dst->bfg[best].total - msatoshi; *route = tal_arr(ctx, struct node_connection *, best); for (i = 0, n = dst; i < best; n = n->bfg[best-i].prev->dst, i++) { (*route)[i] = n->bfg[best-i].prev; } assert(n == src); msatoshi += *fee; log_info(rstate->base_log, "find_route:"); log_add_struct(rstate->base_log, "via %s", struct pubkey, &first_conn->dst->id); /* If there are intermidiaries, dump them, and total fees. */ if (best != 0) { for (i = 0; i < best; i++) { log_add_struct(rstate->base_log, " %s", struct pubkey, &(*route)[i]->dst->id); log_add(rstate->base_log, "(%i+%i=%"PRIu64")", (*route)[i]->base_fee, (*route)[i]->proportional_fee, connection_fee((*route)[i], msatoshi)); msatoshi -= connection_fee((*route)[i], msatoshi); } log_add(rstate->base_log, "=%"PRIi64"(%+"PRIi64")", (*route)[best-1]->dst->bfg[best-1].total, *fee); } return first_conn; } static bool get_slash_u32(const char **arg, u32 *v) { size_t len; char *endp; if (**arg != '/') return false; (*arg)++; len = strcspn(*arg, "/"); *v = strtoul(*arg, &endp, 10); (*arg) += len; return (endp == *arg); } bool short_channel_id_from_str(const char *str, size_t strlen, struct short_channel_id *dst) { u32 blocknum, txnum; u16 outnum; int matches; char buf[strlen + 1]; memcpy(buf, str, strlen); buf[strlen] = 0; matches = sscanf(buf, "%u:%u:%hu", &blocknum, &txnum, &outnum); dst->blocknum = blocknum; dst->txnum = txnum; dst->outnum = outnum; return matches == 3; } /* srcid/dstid/base/var/delay/minblocks */ char *opt_add_route(const char *arg, struct lightningd_state *dstate) { size_t len; struct pubkey src, dst; u32 base, var, delay, minblocks; len = strcspn(arg, "/"); if (!pubkey_from_hexstr(arg, len, &src)) return "Bad src pubkey"; arg += len + 1; len = strcspn(arg, "/"); if (!pubkey_from_hexstr(arg, len, &dst)) return "Bad dst pubkey"; arg += len; if (!get_slash_u32(&arg, &base) || !get_slash_u32(&arg, &var) || !get_slash_u32(&arg, &delay) || !get_slash_u32(&arg, &minblocks)) return "Bad base/var/delay/minblocks"; if (*arg) return "Data after minblocks"; add_connection(dstate->rstate, &src, &dst, base, var, delay, minblocks); return NULL; } bool add_channel_direction(struct routing_state *rstate, const struct pubkey *from, const struct pubkey *to, const struct short_channel_id *short_channel_id, const u8 *announcement) { struct node_connection *c = get_connection(rstate, from, to); u16 direction = get_channel_direction(from, to); if (c){ /* Do not clobber connections added otherwise */ memcpy(&c->short_channel_id, short_channel_id, sizeof(c->short_channel_id)); c->flags = direction; return false; }else if(get_connection_by_scid(rstate, short_channel_id, direction)) { return false; } c = half_add_connection(rstate, from, to, short_channel_id, direction); /* Remember the announcement so we can forward it to new peers */ tal_free(c->channel_announcement); c->channel_announcement = tal_dup_arr(c, u8, announcement, tal_count(announcement), 0); return true; } /* BOLT #7: * * The following `address descriptor` types are defined: * * 1. `0`: padding. data = none (length 0). * 1. `1`: IPv4. data = `[4:ipv4-addr][2:port]` (length 6) * 2. `2`: IPv6. data = `[16:ipv6-addr][2:port]` (length 18) */ /* FIXME: Don't just take first one, depends whether we have IPv6 ourselves */ /* Returns false iff it was malformed */ bool read_ip(const tal_t *ctx, const u8 *addresses, char **hostname, int *port) { size_t len = tal_count(addresses); const u8 *p = addresses; char tempaddr[INET6_ADDRSTRLEN]; be16 portnum; *hostname = NULL; while (len) { u8 type = *p; p++; len--; switch (type) { case 0: break; case 1: /* BOLT #7: * * The receiving node SHOULD fail the connection if * `addrlen` is insufficient to hold the address * descriptors of the known types. */ if (len < 6) return false; inet_ntop(AF_INET, p, tempaddr, sizeof(tempaddr)); memcpy(&portnum, p + 4, sizeof(portnum)); *hostname = tal_strdup(ctx, tempaddr); *port = be16_to_cpu(portnum); return true; case 2: if (len < 18) return false; inet_ntop(AF_INET6, p, tempaddr, sizeof(tempaddr)); memcpy(&portnum, p + 16, sizeof(portnum)); *hostname = tal_strdup(ctx, tempaddr); *port = be16_to_cpu(portnum); return true; default: /* BOLT #7: * * The receiving node SHOULD ignore the first `address * descriptor` which does not match the types defined * above. */ return true; } } /* Not a fatal error. */ return true; } /* BOLT #7: * * The creating node SHOULD fill `addresses` with an address descriptor for * each public network address which expects incoming connections, and MUST * set `addrlen` to the number of bytes in `addresses`. Non-zero typed * address descriptors MUST be placed in ascending order; any number of * zero-typed address descriptors MAY be placed anywhere, but SHOULD only be * used for aligning fields following `addresses`. * * The creating node MUST NOT create a type 1 or type 2 address descriptor * with `port` equal to zero, and SHOULD ensure `ipv4-addr` and `ipv6-addr` * are routable addresses. The creating node MUST NOT include more than one * `address descriptor` of the same type. */ /* FIXME: handle case where we have both ipv6 and ipv4 addresses! */ u8 *write_ip(const tal_t *ctx, const char *srcip, int port) { u8 *address; be16 portnum = cpu_to_be16(port); if (!port) return tal_arr(ctx, u8, 0); if (!strchr(srcip, ':')) { address = tal_arr(ctx, u8, 7); address[0] = 1; inet_pton(AF_INET, srcip, address+1); memcpy(address + 5, &portnum, sizeof(portnum)); return address; } else { address = tal_arr(ctx, u8, 18); address[0] = 2; inet_pton(AF_INET6, srcip, address+1); memcpy(address + 17, &portnum, sizeof(portnum)); return address; } } /* Verify the signature of a channel_update message */ static bool check_channel_update(const struct pubkey *node_key, const secp256k1_ecdsa_signature *node_sig, const u8 *update) { /* 2 byte msg type + 64 byte signatures */ int offset = 66; struct sha256_double hash; sha256_double(&hash, update + offset, tal_len(update) - offset); return check_signed_hash(&hash, node_sig, node_key); } static bool check_channel_announcement( const struct pubkey *node1_key, const struct pubkey *node2_key, const struct pubkey *bitcoin1_key, const struct pubkey *bitcoin2_key, const secp256k1_ecdsa_signature *node1_sig, const secp256k1_ecdsa_signature *node2_sig, const secp256k1_ecdsa_signature *bitcoin1_sig, const secp256k1_ecdsa_signature *bitcoin2_sig, const u8 *announcement) { /* 2 byte msg type + 256 byte signatures */ int offset = 258; struct sha256_double hash; sha256_double(&hash, announcement + offset, tal_len(announcement) - offset); return check_signed_hash(&hash, node1_sig, node1_key) && check_signed_hash(&hash, node2_sig, node2_key) && check_signed_hash(&hash, bitcoin1_sig, bitcoin1_key) && check_signed_hash(&hash, bitcoin2_sig, bitcoin2_key); } void handle_channel_announcement( struct routing_state *rstate, const u8 *announce, size_t len) { u8 *serialized; bool forward = false; secp256k1_ecdsa_signature node_signature_1; secp256k1_ecdsa_signature node_signature_2; struct short_channel_id short_channel_id; secp256k1_ecdsa_signature bitcoin_signature_1; secp256k1_ecdsa_signature bitcoin_signature_2; struct pubkey node_id_1; struct pubkey node_id_2; struct pubkey bitcoin_key_1; struct pubkey bitcoin_key_2; const tal_t *tmpctx = tal_tmpctx(rstate); u8 *features; serialized = tal_dup_arr(tmpctx, u8, announce, len, 0); if (!fromwire_channel_announcement(tmpctx, serialized, NULL, &node_signature_1, &node_signature_2, &bitcoin_signature_1, &bitcoin_signature_2, &short_channel_id, &node_id_1, &node_id_2, &bitcoin_key_1, &bitcoin_key_2, &features)) { tal_free(tmpctx); return; } // FIXME: Check features! //FIXME(cdecker) Check chain topology for the anchor TX log_debug(rstate->base_log, "Received channel_announcement for channel %d:%d:%d", short_channel_id.blocknum, short_channel_id.txnum, short_channel_id.outnum ); if (!check_channel_announcement(&node_id_1, &node_id_2, &bitcoin_key_1, &bitcoin_key_2, &node_signature_1, &node_signature_2, &bitcoin_signature_1, &bitcoin_signature_2, serialized)) { log_debug( rstate->base_log, "Signature verification of channel announcement failed"); tal_free(tmpctx); return; } forward |= add_channel_direction(rstate, &node_id_1, &node_id_2, &short_channel_id, serialized); forward |= add_channel_direction(rstate, &node_id_2, &node_id_1, &short_channel_id, serialized); if (!forward) { log_debug(rstate->base_log, "Not forwarding channel_announcement"); tal_free(tmpctx); return; } u8 *tag = tal_arr(tmpctx, u8, 0); towire_short_channel_id(&tag, &short_channel_id); queue_broadcast(rstate->broadcasts, WIRE_CHANNEL_ANNOUNCEMENT, tag, serialized); tal_free(tmpctx); } void handle_channel_update(struct routing_state *rstate, const u8 *update, size_t len) { u8 *serialized; struct node_connection *c; secp256k1_ecdsa_signature signature; struct short_channel_id short_channel_id; u32 timestamp; u16 flags; u16 expiry; u32 htlc_minimum_msat; u32 fee_base_msat; u32 fee_proportional_millionths; const tal_t *tmpctx = tal_tmpctx(rstate); serialized = tal_dup_arr(tmpctx, u8, update, len, 0); if (!fromwire_channel_update(serialized, NULL, &signature, &short_channel_id, ×tamp, &flags, &expiry, &htlc_minimum_msat, &fee_base_msat, &fee_proportional_millionths)) { tal_free(tmpctx); return; } log_debug(rstate->base_log, "Received channel_update for channel %d:%d:%d(%d)", short_channel_id.blocknum, short_channel_id.txnum, short_channel_id.outnum, flags & 0x01 ); c = get_connection_by_scid(rstate, &short_channel_id, flags & 0x1); if (!c) { log_debug(rstate->base_log, "Ignoring update for unknown channel %d:%d:%d", short_channel_id.blocknum, short_channel_id.txnum, short_channel_id.outnum ); tal_free(tmpctx); return; } else if (c->last_timestamp >= timestamp) { log_debug(rstate->base_log, "Ignoring outdated update."); tal_free(tmpctx); return; } else if (!check_channel_update(&c->src->id, &signature, serialized)) { log_debug(rstate->base_log, "Signature verification failed."); tal_free(tmpctx); return; } //FIXME(cdecker) Check signatures c->last_timestamp = timestamp; c->delay = expiry; c->htlc_minimum_msat = htlc_minimum_msat; c->base_fee = fee_base_msat; c->proportional_fee = fee_proportional_millionths; c->active = (flags & ROUTING_FLAGS_DISABLED) == 0; log_debug(rstate->base_log, "Channel %d:%d:%d(%d) was updated.", short_channel_id.blocknum, short_channel_id.txnum, short_channel_id.outnum, flags ); u8 *tag = tal_arr(tmpctx, u8, 0); towire_short_channel_id(&tag, &short_channel_id); towire_u16(&tag, flags & 0x1); queue_broadcast(rstate->broadcasts, WIRE_CHANNEL_UPDATE, tag, serialized); tal_free(c->channel_update); c->channel_update = tal_steal(c, serialized); tal_free(tmpctx); } void handle_node_announcement( struct routing_state *rstate, const u8 *node_ann, size_t len) { u8 *serialized; struct sha256_double hash; struct node *node; secp256k1_ecdsa_signature signature; u32 timestamp; struct pubkey node_id; u8 rgb_color[3]; u8 alias[32]; u8 *features, *addresses; const tal_t *tmpctx = tal_tmpctx(rstate); serialized = tal_dup_arr(tmpctx, u8, node_ann, len, 0); if (!fromwire_node_announcement(tmpctx, serialized, NULL, &signature, ×tamp, &node_id, rgb_color, alias, &features, &addresses)) { tal_free(tmpctx); return; } // FIXME: Check features! log_debug_struct(rstate->base_log, "Received node_announcement for node %s", struct pubkey, &node_id); sha256_double(&hash, serialized + 66, tal_count(serialized) - 66); if (!check_signed_hash(&hash, &signature, &node_id)) { log_debug(rstate->base_log, "Ignoring node announcement, signature verification failed."); tal_free(tmpctx); return; } node = get_node(rstate, &node_id); if (!node) { log_debug(rstate->base_log, "Node not found, was the node_announcement preceeded by at least channel_announcement?"); tal_free(tmpctx); return; } else if (node->last_timestamp >= timestamp) { log_debug(rstate->base_log, "Ignoring node announcement, it's outdated."); tal_free(tmpctx); return; } node->last_timestamp = timestamp; node->hostname = tal_free(node->hostname); if (!read_ip(node, addresses, &node->hostname, &node->port)) { /* FIXME: SHOULD fail connection here. */ tal_free(serialized); return; } memcpy(node->rgb_color, rgb_color, 3); u8 *tag = tal_arr(tmpctx, u8, 0); towire_pubkey(&tag, &node_id); queue_broadcast(rstate->broadcasts, WIRE_NODE_ANNOUNCEMENT, tag, serialized); tal_free(node->node_announcement); node->node_announcement = tal_steal(node, serialized); tal_free(tmpctx); } struct route_hop *get_route(tal_t *ctx, struct routing_state *rstate, const struct pubkey *source, const struct pubkey *destination, const u32 msatoshi, double riskfactor) { struct node_connection **route; u64 total_amount; unsigned int total_delay; s64 fee; struct route_hop *hops; int i; struct node_connection *first_conn; first_conn = find_route(ctx, rstate, source, destination, msatoshi, riskfactor, &fee, &route); if (!first_conn) { return NULL; } /* Fees, delays need to be calculated backwards along route. */ hops = tal_arr(ctx, struct route_hop, tal_count(route) + 1); total_amount = msatoshi; total_delay = 0; for (i = tal_count(route) - 1; i >= 0; i--) { hops[i + 1].channel_id = route[i]->short_channel_id; hops[i + 1].nodeid = route[i]->dst->id; hops[i + 1].amount = total_amount; total_amount += connection_fee(route[i], total_amount); total_delay += route[i]->delay; if (total_delay < route[i]->min_blocks) total_delay = route[i]->min_blocks; hops[i + 1].delay = total_delay; } /* Backfill the first hop manually */ hops[0].channel_id = first_conn->short_channel_id; hops[0].nodeid = first_conn->dst->id; /* We don't charge ourselves any fees. */ hops[0].amount = total_amount; /* We do require delay though. */ total_delay += first_conn->delay; hops[0].delay = total_delay; return hops; }