#include "privkey.h" #include "pubkey.h" #include "script.h" #include "shadouble.h" #include "signature.h" #include "tx.h" #include #include #undef DEBUG #ifdef DEBUG # include # include #define SHA_FMT \ "%02x%02x%02x%02x%02x%02x%02x%02x" \ "%02x%02x%02x%02x%02x%02x%02x%02x" \ "%02x%02x%02x%02x%02x%02x%02x%02x" \ "%02x%02x%02x%02x%02x%02x%02x%02x" #define SHA_VALS(e) \ e[0], e[1], e[2], e[3], e[4], e[5], e[6], e[7], \ e[8], e[9], e[10], e[11], e[12], e[13], e[14], e[15], \ e[16], e[17], e[18], e[19], e[20], e[21], e[22], e[23], \ e[24], e[25], e[25], e[26], e[28], e[29], e[30], e[31] static void dump_tx(const char *msg, const struct bitcoin_tx *tx, size_t inputnum, const u8 *script, size_t script_len, const struct pubkey *key, const struct sha256_double *h) { size_t i, j; warnx("%s tx version %u locktime %#x:", msg, tx->version, tx->lock_time); for (i = 0; i < tx->input_count; i++) { warnx("input[%zu].txid = "SHA_FMT, i, SHA_VALS(tx->input[i].txid.sha.u.u8)); warnx("input[%zu].index = %u", i, tx->input[i].index); } for (i = 0; i < tx->output_count; i++) { warnx("output[%zu].amount = %llu", i, (long long)tx->output[i].amount); warnx("output[%zu].script = %llu", i, (long long)tx->output[i].script_length); for (j = 0; j < tx->output[i].script_length; j++) fprintf(stderr, "%02x", tx->output[i].script[j]); fprintf(stderr, "\n"); } warnx("input[%zu].script = %zu", inputnum, script_len); for (i = 0; i < script_len; i++) fprintf(stderr, "%02x", script[i]); if (key) { fprintf(stderr, "\nPubkey: "); for (i = 0; i < sizeof(key->pubkey); i++) fprintf(stderr, "%02x", ((u8 *)&key->pubkey)[i]); fprintf(stderr, "\n"); } if (h) { fprintf(stderr, "\nHash: "); for (i = 0; i < sizeof(h->sha.u.u8); i++) fprintf(stderr, "%02x", h->sha.u.u8[i]); fprintf(stderr, "\n"); } } #else static void dump_tx(const char *msg, const struct bitcoin_tx *tx, size_t inputnum, const u8 *script, size_t script_len, const struct pubkey *key, const struct sha256_double *h) { } #endif void sign_hash(secp256k1_context *secpctx, const struct privkey *privkey, const struct sha256_double *h, struct signature *s) { bool ok; ok = secp256k1_ecdsa_sign(secpctx, &s->sig, h->sha.u.u8, privkey->secret, NULL, NULL); assert(ok); } /* Only does SIGHASH_ALL */ static void sha256_tx_one_input(struct bitcoin_tx *tx, size_t input_num, const u8 *script, size_t script_len, const u8 *witness_script, struct sha256_double *hash) { size_t i; assert(input_num < tx->input_count); /* You must have all inputs zeroed to start. */ for (i = 0; i < tx->input_count; i++) assert(tx->input[i].script_length == 0); tx->input[input_num].script_length = script_len; tx->input[input_num].script = cast_const(u8 *, script); sha256_tx_for_sig(hash, tx, input_num, SIGHASH_ALL, witness_script); /* Reset it for next time. */ tx->input[input_num].script_length = 0; tx->input[input_num].script = NULL; } /* Only does SIGHASH_ALL */ void sign_tx_input(secp256k1_context *secpctx, struct bitcoin_tx *tx, unsigned int in, const u8 *subscript, size_t subscript_len, const u8 *witness_script, const struct privkey *privkey, const struct pubkey *key, struct signature *sig) { struct sha256_double hash; sha256_tx_one_input(tx, in, subscript, subscript_len, witness_script, &hash); dump_tx("Signing", tx, in, subscript, subscript_len, key, &hash); sign_hash(secpctx, privkey, &hash, sig); } bool check_signed_hash(secp256k1_context *secpctx, const struct sha256_double *hash, const struct signature *signature, const struct pubkey *key) { int ret; ret = secp256k1_ecdsa_verify(secpctx, &signature->sig, hash->sha.u.u8, &key->pubkey); return ret == 1; } bool check_tx_sig(secp256k1_context *secpctx, struct bitcoin_tx *tx, size_t input_num, const u8 *redeemscript, size_t redeemscript_len, const u8 *witness_script, const struct pubkey *key, const struct bitcoin_signature *sig) { struct sha256_double hash; bool ret; assert(input_num < tx->input_count); sha256_tx_one_input(tx, input_num, redeemscript, redeemscript_len, witness_script, &hash); /* We only use SIGHASH_ALL for the moment. */ if (sig->stype != SIGHASH_ALL) return false; ret = check_signed_hash(secpctx, &hash, &sig->sig, key); if (!ret) dump_tx("Sig failed", tx, input_num, redeemscript, redeemscript_len, key, &hash); return ret; } /* Stolen direct from bitcoin/src/script/sign.cpp: // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. */ static bool IsValidSignatureEncoding(const unsigned char sig[], size_t len) { // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash] // * total-length: 1-byte length descriptor of everything that follows, // excluding the sighash byte. // * R-length: 1-byte length descriptor of the R value that follows. // * R: arbitrary-length big-endian encoded R value. It must use the shortest // possible encoding for a positive integers (which means no null bytes at // the start, except a single one when the next byte has its highest bit set). // * S-length: 1-byte length descriptor of the S value that follows. // * S: arbitrary-length big-endian encoded S value. The same rules apply. // * sighash: 1-byte value indicating what data is hashed (not part of the DER // signature) // Minimum and maximum size constraints. if (len < 9) return false; if (len > 73) return false; // A signature is of type 0x30 (compound). if (sig[0] != 0x30) return false; // Make sure the length covers the entire signature. if (sig[1] != len - 3) return false; // Extract the length of the R element. unsigned int lenR = sig[3]; // Make sure the length of the S element is still inside the signature. if (5 + lenR >= len) return false; // Extract the length of the S element. unsigned int lenS = sig[5 + lenR]; // Verify that the length of the signature matches the sum of the length // of the elements. if ((size_t)(lenR + lenS + 7) != len) return false; // Check whether the R element is an integer. if (sig[2] != 0x02) return false; // Zero-length integers are not allowed for R. if (lenR == 0) return false; // Negative numbers are not allowed for R. if (sig[4] & 0x80) return false; // Null bytes at the start of R are not allowed, unless R would // otherwise be interpreted as a negative number. if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false; // Check whether the S element is an integer. if (sig[lenR + 4] != 0x02) return false; // Zero-length integers are not allowed for S. if (lenS == 0) return false; // Negative numbers are not allowed for S. if (sig[lenR + 6] & 0x80) return false; // Null bytes at the start of S are not allowed, unless S would otherwise be // interpreted as a negative number. if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false; return true; } size_t signature_to_der(secp256k1_context *secpctx, u8 der[72], const struct signature *sig) { size_t len = 72; secp256k1_ecdsa_signature_serialize_der(secpctx, der, &len, &sig->sig); /* IsValidSignatureEncoding() expect extra byte for sighash */ assert(IsValidSignatureEncoding(der, len + 1)); return len; } /* Signature must have low S value. */ bool sig_valid(secp256k1_context *secpctx, const struct signature *sig) { secp256k1_ecdsa_signature tmp; if (secp256k1_ecdsa_signature_normalize(secpctx, &tmp, &sig->sig) == 0) return true; return false; }