#include "features.h" #include #include #include #include #include /* We keep a map of our features for each context, with the assumption that * the init features is a superset of the others. */ static struct feature_set *our_features; enum feature_copy_style { /* Feature is not exposed (importantly, being 0, this is the default!). */ FEATURE_DONT_REPRESENT, /* Feature is exposed. */ FEATURE_REPRESENT, /* Feature is exposed, but always optional. */ FEATURE_REPRESENT_AS_OPTIONAL, }; struct feature_style { u32 bit; enum feature_copy_style copy_style[NUM_FEATURE_PLACE]; }; static const struct feature_style feature_styles[] = { { OPT_DATA_LOSS_PROTECT, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT } }, { OPT_INITIAL_ROUTING_SYNC, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT_AS_OPTIONAL, [NODE_ANNOUNCE_FEATURE] = FEATURE_DONT_REPRESENT } }, { OPT_UPFRONT_SHUTDOWN_SCRIPT, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT } }, { OPT_GOSSIP_QUERIES, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT } }, { OPT_GOSSIP_QUERIES_EX, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT } }, { OPT_VAR_ONION, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [GLOBAL_INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT, [BOLT11_FEATURE] = FEATURE_REPRESENT } }, { OPT_STATIC_REMOTEKEY, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [GLOBAL_INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT } }, { OPT_PAYMENT_SECRET, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT, [BOLT11_FEATURE] = FEATURE_REPRESENT } }, { OPT_BASIC_MPP, .copy_style = { [INIT_FEATURE] = FEATURE_REPRESENT, [NODE_ANNOUNCE_FEATURE] = FEATURE_REPRESENT, [BOLT11_FEATURE] = FEATURE_REPRESENT } }, }; static enum feature_copy_style feature_copy_style(u32 f, enum feature_place p) { for (size_t i = 0; i < ARRAY_SIZE(feature_styles); i++) { if (feature_styles[i].bit == COMPULSORY_FEATURE(f)) return feature_styles[i].copy_style[p]; } abort(); } static u8 *mkfeatures(const tal_t *ctx, enum feature_place place) { u8 *f = tal_arr(ctx, u8, 0); const u8 *base = our_features->bits[INIT_FEATURE]; assert(place != INIT_FEATURE); for (size_t i = 0; i < tal_bytelen(base)*8; i++) { if (!feature_is_set(base, i)) continue; switch (feature_copy_style(i, place)) { case FEATURE_DONT_REPRESENT: continue; case FEATURE_REPRESENT: set_feature_bit(&f, i); continue; case FEATURE_REPRESENT_AS_OPTIONAL: set_feature_bit(&f, OPTIONAL_FEATURE(i)); continue; } abort(); } return f; } struct feature_set *features_core_init(const u8 *feature_bits) { assert(!our_features); our_features = notleak(tal(NULL, struct feature_set)); our_features->bits[INIT_FEATURE] = tal_dup_talarr(our_features, u8, feature_bits); /* Make other masks too */ for (enum feature_place f = INIT_FEATURE+1; f < NUM_FEATURE_PLACE; f++) our_features->bits[f] = mkfeatures(our_features, f); return our_features; } void features_init(struct feature_set *fset TAKES) { assert(!our_features); if (taken(fset)) our_features = notleak(tal_steal(NULL, fset)); else { our_features = notleak(tal(NULL, struct feature_set)); for (size_t i = 0; i < ARRAY_SIZE(fset->bits); i++) our_features->bits[i] = tal_dup_talarr(our_features, u8, fset->bits[i]); } } void features_cleanup(void) { our_features = tal_free(our_features); } bool features_additional(const struct feature_set *newfset) { /* Check first, before we change anything! */ for (size_t i = 0; i < ARRAY_SIZE(newfset->bits); i++) { /* FIXME: We could allow a plugin to upgrade an optional feature * to a compulsory one? */ for (size_t b = 0; b < tal_bytelen(newfset->bits[i])*8; b++) { if (feature_is_set(newfset->bits[i], b) && feature_is_set(our_features->bits[i], b)) return false; } } for (size_t i = 0; i < ARRAY_SIZE(newfset->bits); i++) { for (size_t b = 0; b < tal_bytelen(newfset->bits[i])*8; b++) { if (feature_is_set(newfset->bits[i], b)) set_feature_bit(&our_features->bits[i], b); } } return true; } /* BOLT #1: * * All data fields are unsigned big-endian unless otherwise specified. */ void set_feature_bit(u8 **ptr, u32 bit) { size_t len = tal_count(*ptr); if (bit / 8 >= len) { size_t newlen = (bit / 8) + 1; u8 *newarr = tal_arrz(tal_parent(*ptr), u8, newlen); memcpy(newarr + (newlen - len), *ptr, len); tal_free(*ptr); *ptr = newarr; len = newlen; } (*ptr)[len - 1 - bit / 8] |= (1 << (bit % 8)); } static bool test_bit(const u8 *features, size_t byte, unsigned int bit) { assert(byte < tal_count(features)); return features[tal_count(features) - 1 - byte] & (1 << (bit % 8)); } u8 *get_offered_nodefeatures(const tal_t *ctx) { return tal_dup_talarr(ctx, u8, our_features->bits[NODE_ANNOUNCE_FEATURE]); } u8 *get_offered_initfeatures(const tal_t *ctx) { return tal_dup_talarr(ctx, u8, our_features->bits[INIT_FEATURE]); } u8 *get_offered_globalinitfeatures(const tal_t *ctx) { return tal_dup_talarr(ctx, u8, our_features->bits[GLOBAL_INIT_FEATURE]); } static void clear_feature_bit(u8 *features, u32 bit) { size_t bytenum = bit / 8, bitnum = bit % 8, len = tal_count(features); if (bytenum >= len) return; features[len - 1 - bytenum] &= ~(1 << bitnum); } /* BOLT #7: * * - MUST set `features` based on what features were negotiated for this channel, according to [BOLT #9](09-features.md#assigned-features-flags) * - MUST set `len` to the minimum length required to hold the `features` bits * it sets. */ u8 *get_agreed_channelfeatures(const tal_t *ctx, const u8 *theirfeatures) { u8 *f = tal_dup_talarr(ctx, u8, our_features->bits[CHANNEL_FEATURE]); size_t max_len = 0; /* Clear any features which they didn't offer too */ for (size_t i = 0; i < 8 * tal_count(f); i += 2) { if (!feature_offered(f, i)) continue; if (!feature_offered(theirfeatures, i)) { clear_feature_bit(f, COMPULSORY_FEATURE(i)); clear_feature_bit(f, OPTIONAL_FEATURE(i)); continue; } max_len = (i / 8) + 1; } /* Trim to length */ tal_resize(&f, max_len); return f; } u8 *get_offered_bolt11features(const tal_t *ctx) { return tal_dup_talarr(ctx, u8, our_features->bits[BOLT11_FEATURE]); } bool feature_is_set(const u8 *features, size_t bit) { size_t bytenum = bit / 8; if (bytenum >= tal_count(features)) return false; return test_bit(features, bytenum, bit % 8); } bool feature_offered(const u8 *features, size_t f) { return feature_is_set(features, COMPULSORY_FEATURE(f)) || feature_is_set(features, OPTIONAL_FEATURE(f)); } bool feature_negotiated(const u8 *lfeatures, size_t f) { return feature_offered(lfeatures, f) && feature_offered(our_features->bits[INIT_FEATURE], f); } /** * all_supported_features - Check if we support what's being asked * * Given the features vector that the remote connection is expecting * from us, we check to see if we support all even bit features, i.e., * the required features. * * @bitmap: the features bitmap the peer is asking for * * Returns -1 on success, or first unsupported feature. */ static int all_supported_features(const u8 *bitmap) { size_t len = tal_count(bitmap) * 8; /* It's OK to be odd: only check even bits. */ for (size_t bitnum = 0; bitnum < len; bitnum += 2) { if (!test_bit(bitmap, bitnum/8, bitnum%8)) continue; if (feature_offered(our_features->bits[INIT_FEATURE], bitnum)) continue; return bitnum; } return -1; } int features_unsupported(const u8 *features) { /* BIT 2 would logically be "compulsory initial_routing_sync", but * that does not exist, so we special case it. */ if (feature_is_set(features, COMPULSORY_FEATURE(OPT_INITIAL_ROUTING_SYNC))) return COMPULSORY_FEATURE(OPT_INITIAL_ROUTING_SYNC); return all_supported_features(features); } static const char *feature_name(const tal_t *ctx, size_t f) { static const char *fnames[] = { "option_data_loss_protect", "option_initial_routing_sync", "option_upfront_shutdown_script", "option_gossip_queries", "option_var_onion_optin", "option_gossip_queries_ex", "option_static_remotekey", "option_payment_secret", "option_basic_mpp", }; if (f / 2 >= ARRAY_SIZE(fnames)) return tal_fmt(ctx, "option_unknown_%zu/%s", COMPULSORY_FEATURE(f), (f & 1) ? "odd" : "even"); return tal_fmt(ctx, "%s/%s", fnames[f / 2], (f & 1) ? "odd" : "even"); } const char **list_supported_features(const tal_t *ctx) { const char **list = tal_arr(ctx, const char *, 0); for (size_t i = 0; i < tal_bytelen(our_features->bits[INIT_FEATURE]) * 8; i++) { if (test_bit(our_features->bits[INIT_FEATURE], i / 8, i % 8)) tal_arr_expand(&list, feature_name(list, i)); } return list; } u8 *featurebits_or(const tal_t *ctx, const u8 *f1 TAKES, const u8 *f2 TAKES) { size_t l1 = tal_bytelen(f1), l2 = tal_bytelen(f2); u8 *result; /* Easier if f2 is shorter. */ if (l1 < l2) return featurebits_or(ctx, f2, f1); assert(l2 <= l1); result = tal_dup_arr(ctx, u8, f1, l1, 0); /* Note: features are packed to the end of the bitmap */ for (size_t i = 0; i < l2; i++) result[l1 - l2 + i] |= f2[i]; /* Cleanup the featurebits if we were told to do so. */ if (taken(f2)) tal_free(f2); return result; } struct feature_set *fromwire_feature_set(const tal_t *ctx, const u8 **cursor, size_t *max) { struct feature_set *fset = tal(ctx, struct feature_set); for (size_t i = 0; i < ARRAY_SIZE(fset->bits); i++) fset->bits[i] = fromwire_tal_arrn(fset, cursor, max, fromwire_u16(cursor, max)); if (!*cursor) return tal_free(fset); return fset; } void towire_feature_set(u8 **pptr, const struct feature_set *fset) { for (size_t i = 0; i < ARRAY_SIZE(fset->bits); i++) { towire_u16(pptr, tal_bytelen(fset->bits[i])); towire_u8_array(pptr, fset->bits[i], tal_bytelen(fset->bits[i])); } }