You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

653 lines
17 KiB

#include "bitcoin/shadouble.h"
#include "bitcoin/signature.h"
#include "cryptopkt.h"
#include "lightning.pb-c.h"
#include "lightningd.h"
#include "log.h"
#include "names.h"
#include "peer.h"
#include "peer_internal.h"
#include "protobuf_convert.h"
#include "secrets.h"
#include "utils.h"
#include <ccan/build_assert/build_assert.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/mem/mem.h>
#include <ccan/short_types/short_types.h>
#include <ccan/structeq/structeq.h>
#include <inttypes.h>
#include <secp256k1.h>
#include <secp256k1_ecdh.h>
#include <sodium/crypto_aead_chacha20poly1305.h>
#include <sodium/randombytes.h>
#define MAX_PKT_LEN (1024 * 1024)
/* FIXME-OLD#1:
`length` is a 4-byte little-endian field indicating the size of the unencrypted body.
*/
struct crypto_pkt {
le32 length;
u8 auth_tag[crypto_aead_chacha20poly1305_ABYTES];
/* ... contents... */
u8 data[];
};
/* Temporary structure for negotiation */
struct key_negotiate {
struct lightningd_state *dstate;
/* Our session secret key. */
u8 seckey[32];
/* Our pubkey, their pubkey. */
le32 keylen;
u8 our_sessionpubkey[33], their_sessionpubkey[33];
/* After DH key exchange, we create io_data to check auth. */
struct io_data *iod;
/* Logging structure we're using. */
struct log *log;
/* Did we expect a particular ID? */
const struct pubkey *expected_id;
/* Callback once it's all done. */
struct io_plan *(*cb)(struct io_conn *conn,
struct lightningd_state *dstate,
struct io_data *iod,
struct log *log,
const struct pubkey *id,
void *arg);
void *arg;
};
struct enckey {
struct sha256 k;
};
/* FIXME-OLD #1:
* * sending-key: SHA256(shared-secret || sending-node-session-pubkey)
* * receiving-key: SHA256(shared-secret || receiving-node-session-pubkey)
*/
static struct enckey enckey_from_secret(const unsigned char secret[32],
const unsigned char serial_pubkey[33])
{
struct sha256_ctx ctx;
struct enckey enckey;
sha256_init(&ctx);
sha256_update(&ctx, memcheck(secret, 32), 32);
sha256_update(&ctx, memcheck(serial_pubkey, 33), 33);
sha256_done(&ctx, &enckey.k);
return enckey;
}
struct dir_state {
u64 nonce;
struct enckey enckey;
/* Current packet (encrypted). */
struct crypto_pkt *cpkt;
size_t pkt_len;
};
static void setup_crypto(struct dir_state *dir,
u8 shared_secret[32], u8 serial_pubkey[33])
{
/* FIXME-OLD #1: Nonces...MUST begin at 0 */
dir->nonce = 0;
dir->enckey = enckey_from_secret(shared_secret, serial_pubkey);
dir->cpkt = NULL;
}
struct io_data {
/* Stuff we need to keep around to talk to peer. */
struct dir_state in, out;
/* Callback once packet decrypted. */
struct io_plan *(*cb)(struct io_conn *, struct peer *);
/* Once peer is assigned, this is set. */
struct peer *peer;
/* Length we're currently reading. */
struct crypto_pkt hdr_in;
};
static void *proto_tal_alloc(void *allocator_data, size_t size)
{
return tal_arr(allocator_data, char, size);
}
static void proto_tal_free(void *allocator_data, void *pointer)
{
tal_free(pointer);
}
static void le64_nonce(unsigned char *npub, u64 nonce)
{
/* FIXME-OLD #1: Nonces are 64-bit little-endian numbers */
le64 le_nonce = cpu_to_le64(nonce);
memcpy(npub, &le_nonce, sizeof(le_nonce));
BUILD_ASSERT(crypto_aead_chacha20poly1305_NPUBBYTES == sizeof(le_nonce));
}
/* Encrypts data..data + len - 1 inclusive into data..data + len - 1 and
* then writes the authentication tag at data+len.
*
* This increments nonce every time.
*/
static void encrypt_in_place(void *data, size_t len,
u64 *nonce, const struct enckey *enckey)
{
int ret;
unsigned long long clen;
unsigned char npub[crypto_aead_chacha20poly1305_NPUBBYTES];
le64_nonce(npub, *nonce);
ret = crypto_aead_chacha20poly1305_encrypt(data, &clen,
memcheck(data, len), len,
NULL, 0, NULL,
npub, enckey->k.u.u8);
assert(ret == 0);
assert(clen == len + crypto_aead_chacha20poly1305_ABYTES);
(*nonce)++;
}
/* Checks authentication tag at data+len, then
* decrypts data..data + len - 1 inclusive into data..data + len - 1.
*
* This increments nonce every time.
*/
static bool decrypt_in_place(void *data, size_t len,
u64 *nonce, const struct enckey *enckey)
{
int ret;
unsigned long long mlen;
unsigned char npub[crypto_aead_chacha20poly1305_NPUBBYTES];
le64_nonce(npub, *nonce);
mlen = len + crypto_aead_chacha20poly1305_ABYTES;
ret = crypto_aead_chacha20poly1305_decrypt(data, &mlen, NULL,
memcheck(data, mlen), mlen,
NULL, 0,
npub, enckey->k.u.u8);
if (ret == 0) {
assert(mlen == len);
(*nonce)++;
return true;
}
return false;
}
static Pkt *decrypt_body(const tal_t *ctx, struct io_data *iod, struct log *log)
{
struct ProtobufCAllocator prototal;
Pkt *ret;
size_t data_len = le32_to_cpu(iod->hdr_in.length);
if (!decrypt_in_place(iod->in.cpkt->data, data_len,
&iod->in.nonce, &iod->in.enckey)) {
/* Free encrypted packet. */
iod->in.cpkt = tal_free(iod->in.cpkt);
log_unusual(log, "Body decryption failed");
return NULL;
}
/* De-protobuf it. */
prototal.alloc = proto_tal_alloc;
prototal.free = proto_tal_free;
prototal.allocator_data = tal(ctx, char);
ret = pkt__unpack(&prototal, data_len, iod->in.cpkt->data);
if (!ret) {
log_unusual(log, "Packet failed to unpack!");
tal_free(prototal.allocator_data);
} else {
/* Make sure packet owns contents */
tal_steal(ctx, ret);
tal_steal(ret, prototal.allocator_data);
log_debug(log, "Received packet LEN=%zu, type=%s",
data_len,
ret->pkt_case == PKT__PKT_AUTH ? "PKT_AUTH"
: pkt_name(ret->pkt_case));
}
/* Free encrypted packet. */
iod->in.cpkt = tal_free(iod->in.cpkt);
return ret;
}
static struct crypto_pkt *encrypt_pkt(struct io_data *iod, const Pkt *pkt,
size_t *totlen)
{
struct crypto_pkt *cpkt;
size_t len;
len = pkt__get_packed_size(pkt);
*totlen = sizeof(*cpkt) + len + crypto_aead_chacha20poly1305_ABYTES;
cpkt = (struct crypto_pkt *)tal_arr(iod, char, *totlen);
cpkt->length = cpu_to_le32(len);
/* Encrypt header. */
encrypt_in_place(cpkt, sizeof(cpkt->length),
&iod->out.nonce, &iod->out.enckey);
/* Encrypt body. */
pkt__pack(pkt, cpkt->data);
encrypt_in_place(cpkt->data, len, &iod->out.nonce, &iod->out.enckey);
return cpkt;
}
static struct io_plan *recv_body(struct io_conn *conn, struct peer *peer)
{
struct io_data *iod = peer->io_data;
assert(!peer->inpkt);
/* We have full packet. */
peer->inpkt = decrypt_body(iod, iod, peer->log);
if (!peer->inpkt)
return io_close(conn);
return iod->cb(conn, peer);
}
static bool decrypt_header(struct log *log, struct io_data *iod,
size_t *body_len)
{
/* We have length: Check it. */
if (!decrypt_in_place(&iod->hdr_in.length, sizeof(iod->hdr_in.length),
&iod->in.nonce, &iod->in.enckey)) {
log_unusual(log, "Header decryption failed");
return false;
}
log_debug(log, "Decrypted header len %u",
le32_to_cpu(iod->hdr_in.length));
/* FIXME-OLD #1: `length` MUST NOT exceed 1MB (1048576 bytes). */
if (le32_to_cpu(iod->hdr_in.length) > MAX_PKT_LEN) {
log_unusual(log,
"Packet overlength: %"PRIu64,
le64_to_cpu(iod->hdr_in.length));
return false;
}
/* Allocate room for body, copy header. */
*body_len = le32_to_cpu(iod->hdr_in.length)
+ crypto_aead_chacha20poly1305_ABYTES;
iod->in.cpkt = (struct crypto_pkt *)
tal_arr(iod, char, sizeof(iod->hdr_in) + *body_len);
*iod->in.cpkt = iod->hdr_in;
return true;
}
static struct io_plan *recv_header(struct io_conn *conn, struct peer *peer)
{
struct io_data *iod = peer->io_data;
size_t body_len;
if (!decrypt_header(peer->log, iod, &body_len))
return io_close(conn);
return io_read(conn, iod->in.cpkt->data, body_len, recv_body, peer);
}
struct io_plan *peer_read_packet(struct io_conn *conn,
struct peer *peer,
struct io_plan *(*cb)(struct io_conn *,
struct peer *))
{
struct io_data *iod = peer->io_data;
iod->cb = cb;
return io_read(conn, &iod->hdr_in, sizeof(iod->hdr_in),
recv_header, peer);
}
/* Caller must free data! */
struct io_plan *peer_write_packet(struct io_conn *conn,
struct peer *peer,
const Pkt *pkt,
struct io_plan *(*next)(struct io_conn *,
struct peer *))
{
struct io_data *iod = peer->io_data;
size_t totlen;
/* We free previous packet here, rather than doing indirection
* via io_write */
tal_free(iod->out.cpkt);
iod->out.cpkt = encrypt_pkt(iod, pkt, &totlen);
/* Free unencrypted packet. */
tal_free(pkt);
return io_write(conn, iod->out.cpkt, totlen, next, peer);
}
static void *pkt_unwrap(Pkt *inpkt, struct log *log, Pkt__PktCase which)
{
size_t i;
const ProtobufCMessage *base;
if (inpkt->pkt_case != which) {
log_unusual(log, "Expected %u, got %u",
which, inpkt->pkt_case);
return NULL;
}
/* It's a union, and each member starts with base. Pick one */
base = &inpkt->error->base;
/* Look for unknown fields. Remember, "It's OK to be odd!" */
for (i = 0; i < base->n_unknown_fields; i++) {
log_debug(log, "Unknown field in %u: %u",
which, base->unknown_fields[i].tag);
/* Odd is OK */
if (base->unknown_fields[i].tag & 1)
continue;
log_unusual(log, "Unknown field %u in %u",
base->unknown_fields[i].tag, which);
return NULL;
}
return inpkt->error;
}
static bool check_proof(struct key_negotiate *neg, struct log *log,
Pkt *inpkt,
const struct pubkey *expected_id,
struct pubkey *id)
{
struct sha256_double sha;
secp256k1_ecdsa_signature sig;
Authenticate *auth;
auth = pkt_unwrap(inpkt, log, PKT__PKT_AUTH);
if (!auth)
return false;
/* FIXME-OLD #1:
*
* The receiving node MUST check that:
*
* 1. `node_id` is the expected value for the sending node.
*/
if (!proto_to_pubkey(auth->node_id, id)) {
log_unusual(log, "Invalid auth id");
return false;
}
if (expected_id && !structeq(id, expected_id)) {
log_unusual(log, "Incorrect auth id");
return false;
}
/* FIXME-OLD #1:
*
* 2. `session_sig` is a valid secp256k1 ECDSA signature encoded as
* a 32-byte big endian R value, followed by a 32-byte big
* endian S value.
*/
if (!proto_to_signature(auth->session_sig, &sig)) {
log_unusual(log, "Invalid auth signature");
return false;
}
/* FIXME-OLD #1:
*
* 3. `session_sig` is the signature of the SHA256 of SHA256 of the
* its own sessionpubkey, using the secret key corresponding to
* the sender's `node_id`.
*/
sha256_double(&sha, neg->our_sessionpubkey,
sizeof(neg->our_sessionpubkey));
if (!check_signed_hash(&sha, &sig, id)) {
log_unusual(log, "Bad auth signature");
return false;
}
return true;
}
static struct io_plan *recv_body_negotiate(struct io_conn *conn,
struct key_negotiate *neg)
{
struct io_data *iod = neg->iod;
struct io_plan *plan;
Pkt *pkt;
struct pubkey id;
/* We have full packet. */
pkt = decrypt_body(neg, iod, neg->log);
if (!pkt)
return io_close(conn);
if (!check_proof(neg, neg->log, pkt, neg->expected_id, &id))
return io_close(conn);
plan = neg->cb(conn, neg->dstate, neg->iod, neg->log, &id, neg->arg);
tal_free(neg);
return plan;
}
static struct io_plan *recv_header_negotiate(struct io_conn *conn,
struct key_negotiate *neg)
{
size_t body_len;
struct io_data *iod = neg->iod;
if (!decrypt_header(neg->log, iod, &body_len))
return io_close(conn);
return io_read(conn, iod->in.cpkt->data, body_len, recv_body_negotiate,
neg);
}
static struct io_plan *receive_proof(struct io_conn *conn,
struct key_negotiate *neg)
{
return io_read(conn, &neg->iod->hdr_in, sizeof(neg->iod->hdr_in),
recv_header_negotiate, neg);
}
/* Steals w onto the returned Pkt */
static Pkt *pkt_wrap(const tal_t *ctx, void *w, Pkt__PktCase pkt_case)
{
Pkt *pkt = tal(ctx, Pkt);
pkt__init(pkt);
pkt->pkt_case = pkt_case;
/* Union, so any will do */
pkt->error = tal_steal(pkt, w);
return pkt;
}
static Pkt *authenticate_pkt(const tal_t *ctx,
const struct pubkey *node_id,
const secp256k1_ecdsa_signature *sig)
{
Authenticate *auth = tal(ctx, Authenticate);
authenticate__init(auth);
auth->node_id = pubkey_to_proto(auth, node_id);
auth->session_sig = signature_to_proto(auth, sig);
return pkt_wrap(ctx, auth, PKT__PKT_AUTH);
}
static struct io_plan *keys_exchanged(struct io_conn *conn,
struct key_negotiate *neg)
{
u8 shared_secret[32];
struct pubkey sessionkey;
secp256k1_ecdsa_signature sig;
Pkt *auth;
size_t totlen;
if (!pubkey_from_der(neg->their_sessionpubkey,
sizeof(neg->their_sessionpubkey),
&sessionkey)) {
log_unusual_blob(neg->log, "Bad sessionkey %s",
neg->their_sessionpubkey,
sizeof(neg->their_sessionpubkey));
return io_close(conn);
}
/* Derive shared secret. */
if (!secp256k1_ecdh(secp256k1_ctx, shared_secret,
&sessionkey.pubkey, neg->seckey)) {
log_unusual(neg->log, "Bad ECDH");
return io_close(conn);
}
/* Each side combines with their OWN session key to SENDING crypto. */
neg->iod = tal(neg, struct io_data);
setup_crypto(&neg->iod->in, shared_secret, neg->their_sessionpubkey);
setup_crypto(&neg->iod->out, shared_secret, neg->our_sessionpubkey);
/* FIXME-OLD #1:
*
* `session_sig` is the signature of the SHA256 of SHA256 of the its
* own sessionpubkey, using the secret key corresponding to the
* sender's `node_id`.
*/
privkey_sign(neg->dstate, neg->their_sessionpubkey,
sizeof(neg->their_sessionpubkey), &sig);
auth = authenticate_pkt(neg, &neg->dstate->id, &sig);
neg->iod->out.cpkt = encrypt_pkt(neg->iod, auth, &totlen);
return io_write(conn, neg->iod->out.cpkt, totlen, receive_proof, neg);
}
/* Read and ignore any extra bytes... */
static struct io_plan *discard_extra(struct io_conn *conn,
struct key_negotiate *neg)
{
size_t len = le32_to_cpu(neg->keylen);
/* FIXME-OLD#1: Additional fields MAY be added, and MUST be
* included in the `length` field. These MUST be ignored by
* implementations which do not understand them. */
if (len > sizeof(neg->their_sessionpubkey)) {
char *discard;
len -= sizeof(neg->their_sessionpubkey);
discard = tal_arr(neg, char, len);
log_unusual(neg->log,
"Ignoring %zu extra handshake bytes",
len);
return io_read(conn, discard, len, keys_exchanged, neg);
}
return keys_exchanged(conn, neg);
}
static struct io_plan *session_key_receive(struct io_conn *conn,
struct key_negotiate *neg)
{
/* FIXME-OLD#1: The `length` field is the length after the field
itself, and MUST be 33 or greater. */
if (le32_to_cpu(neg->keylen) < sizeof(neg->their_sessionpubkey)) {
log_unusual(neg->log, "short session key length %u",
le32_to_cpu(neg->keylen));
return io_close(conn);
}
/* FIXME-OLD#1: `length` MUST NOT exceed 1MB (1048576 bytes). */
if (le32_to_cpu(neg->keylen) > 1048576) {
log_unusual(neg->log,
"Oversize session key length %u",
le32_to_cpu(neg->keylen));
return io_close(conn);
}
log_debug(neg->log, "Session key length %u", le32_to_cpu(neg->keylen));
/* Now read their key. */
return io_read(conn, neg->their_sessionpubkey,
sizeof(neg->their_sessionpubkey), discard_extra, neg);
}
static struct io_plan *session_key_len_receive(struct io_conn *conn,
struct key_negotiate *neg)
{
/* Read the amount of data they will send.. */
return io_read(conn, &neg->keylen, sizeof(neg->keylen),
session_key_receive, neg);
}
static void gen_sessionkey(u8 seckey[32],
secp256k1_pubkey *pubkey)
{
do {
randombytes_buf(seckey, 32);
} while (!secp256k1_ec_pubkey_create(secp256k1_ctx, pubkey, seckey));
}
static struct io_plan *write_sessionkey(struct io_conn *conn,
struct key_negotiate *neg)
{
return io_write(conn, neg->our_sessionpubkey,
sizeof(neg->our_sessionpubkey),
session_key_len_receive, neg);
}
struct io_plan *peer_crypto_setup_(struct io_conn *conn,
struct lightningd_state *dstate,
const struct pubkey *id,
struct log *log,
struct io_plan *(*cb)(struct io_conn *conn,
struct lightningd_state *dstate,
struct io_data *iod,
struct log *log,
const struct pubkey *id,
void *arg),
void *arg)
{
size_t outputlen;
secp256k1_pubkey sessionkey;
struct key_negotiate *neg;
/* FIXME-OLD #1:
*
* The 4-byte length for each message is encrypted separately
* (resulting in a 20 byte header when the authentication tag
* is appended) */
BUILD_ASSERT(sizeof(struct crypto_pkt) == 20);
/* We store negotiation state here. */
neg = tal(conn, struct key_negotiate);
neg->cb = cb;
neg->arg = arg;
neg->dstate = dstate;
neg->expected_id = id;
neg->log = log;
gen_sessionkey(neg->seckey, &sessionkey);
outputlen = sizeof(neg->our_sessionpubkey);
secp256k1_ec_pubkey_serialize(secp256k1_ctx,
neg->our_sessionpubkey, &outputlen,
&sessionkey,
SECP256K1_EC_COMPRESSED);
assert(outputlen == sizeof(neg->our_sessionpubkey));
neg->keylen = cpu_to_le32(sizeof(neg->our_sessionpubkey));
return io_write(conn, &neg->keylen, sizeof(neg->keylen),
write_sessionkey, neg);
}