You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1333 lines
36 KiB
1333 lines
36 KiB
#include <ccan/asort/asort.h>
|
|
#include <ccan/build_assert/build_assert.h>
|
|
#include <ccan/cast/cast.h>
|
|
#include <ccan/container_of/container_of.h>
|
|
#include <ccan/crypto/hkdf_sha256/hkdf_sha256.h>
|
|
#include <ccan/crypto/siphash24/siphash24.h>
|
|
#include <ccan/endian/endian.h>
|
|
#include <ccan/fdpass/fdpass.h>
|
|
#include <ccan/io/fdpass/fdpass.h>
|
|
#include <ccan/io/io.h>
|
|
#include <ccan/list/list.h>
|
|
#include <ccan/mem/mem.h>
|
|
#include <ccan/noerr/noerr.h>
|
|
#include <ccan/take/take.h>
|
|
#include <ccan/tal/str/str.h>
|
|
#include <ccan/timer/timer.h>
|
|
#include <common/bech32.h>
|
|
#include <common/bech32_util.h>
|
|
#include <common/cryptomsg.h>
|
|
#include <common/daemon_conn.h>
|
|
#include <common/decode_short_channel_ids.h>
|
|
#include <common/features.h>
|
|
#include <common/ping.h>
|
|
#include <common/pseudorand.h>
|
|
#include <common/status.h>
|
|
#include <common/subdaemon.h>
|
|
#include <common/timeout.h>
|
|
#include <common/type_to_string.h>
|
|
#include <common/utils.h>
|
|
#include <common/version.h>
|
|
#include <common/wire_error.h>
|
|
#include <common/wireaddr.h>
|
|
#include <connectd/connect.h>
|
|
#include <connectd/gen_connect_gossip_wire.h>
|
|
#include <connectd/gen_connect_wire.h>
|
|
#include <connectd/handshake.h>
|
|
#include <connectd/netaddress.h>
|
|
#include <connectd/tor.h>
|
|
#include <connectd/tor_autoservice.h>
|
|
#include <errno.h>
|
|
#include <gossipd/gen_gossip_wire.h>
|
|
#include <hsmd/client.h>
|
|
#include <hsmd/gen_hsm_client_wire.h>
|
|
#include <inttypes.h>
|
|
#include <lightningd/gossip_msg.h>
|
|
#include <netdb.h>
|
|
#include <netinet/in.h>
|
|
#include <secp256k1_ecdh.h>
|
|
#include <sodium/randombytes.h>
|
|
#include <stdarg.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <sys/un.h>
|
|
#include <unistd.h>
|
|
#include <wire/gen_peer_wire.h>
|
|
#include <wire/peer_wire.h>
|
|
#include <wire/wire_io.h>
|
|
#include <wire/wire_sync.h>
|
|
#include <zlib.h>
|
|
|
|
#define CONNECT_MAX_REACH_ATTEMPTS 10
|
|
|
|
#define HSM_FD 3
|
|
#define GOSSIPCTL_FD 4
|
|
|
|
#define INITIAL_WAIT_SECONDS 1
|
|
#define MAX_WAIT_SECONDS 300
|
|
|
|
struct listen_fd {
|
|
int fd;
|
|
/* If we bind() IPv6 then IPv4 to same port, we *may* fail to listen()
|
|
* on the IPv4 socket: under Linux, by default, the IPv6 listen()
|
|
* covers IPv4 too. Normally we'd consider failing to listen on a
|
|
* port to be fatal, so we note this when setting up addresses. */
|
|
bool mayfail;
|
|
};
|
|
|
|
static const struct pubkey *
|
|
pubkey_keyof(const struct pubkey *pk)
|
|
{
|
|
return pk;
|
|
}
|
|
|
|
static size_t pubkey_hash(const struct pubkey *id)
|
|
{
|
|
return siphash24(siphash_seed(), id, sizeof(*id));
|
|
}
|
|
|
|
HTABLE_DEFINE_TYPE(struct pubkey,
|
|
pubkey_keyof,
|
|
pubkey_hash,
|
|
pubkey_eq,
|
|
pubkey_set);
|
|
|
|
struct daemon {
|
|
/* Who am I? */
|
|
struct pubkey id;
|
|
|
|
/* Peers we know of */
|
|
struct pubkey_set peers;
|
|
|
|
/* Peers reconnecting now (waiting for current peer to die). */
|
|
struct list_head reconnecting;
|
|
|
|
/* Peers we are trying to reach */
|
|
struct list_head reaching;
|
|
|
|
/* Connection to main daemon. */
|
|
struct daemon_conn master;
|
|
|
|
struct timers timers;
|
|
|
|
/* Local and global features to offer to peers. */
|
|
u8 *localfeatures, *globalfeatures;
|
|
|
|
/* Allow localhost to be considered "public" */
|
|
bool dev_allow_localhost;
|
|
|
|
struct addrinfo *proxyaddr;
|
|
bool use_proxy_always;
|
|
|
|
/* @see lightningd.config.use_dns */
|
|
bool use_dns;
|
|
|
|
/* The address that the broken response returns instead of
|
|
* NXDOMAIN. NULL if we have not detected a broken resolver. */
|
|
struct sockaddr *broken_resolver_response;
|
|
|
|
/* File descriptors to listen on once we're activated. */
|
|
struct listen_fd *listen_fds;
|
|
};
|
|
|
|
/* Peers we're trying to reach. */
|
|
struct reaching {
|
|
struct daemon *daemon;
|
|
|
|
/* daemon->reaching */
|
|
struct list_node list;
|
|
|
|
/* The ID of the peer (not necessarily unique, in transit!) */
|
|
struct pubkey id;
|
|
|
|
/* We iterate through the tal_count(addrs) */
|
|
size_t addrnum;
|
|
struct wireaddr_internal *addrs;
|
|
|
|
/* NULL if there wasn't a hint. */
|
|
struct wireaddr_internal *addrhint;
|
|
|
|
/* How far did we get? */
|
|
const char *connstate;
|
|
|
|
/* Accumulated errors */
|
|
char *errors;
|
|
|
|
/* How many seconds did we wait this time? */
|
|
u32 seconds_waited;
|
|
};
|
|
|
|
/* This is a transitory structure: we hand off to the master daemon as soon
|
|
* as we've completed INIT read/write. */
|
|
struct peer {
|
|
struct daemon *daemon;
|
|
|
|
/* For reconnecting peers, this is in daemon->reconnecting. */
|
|
struct list_node list;
|
|
|
|
/* The ID of the peer */
|
|
struct pubkey id;
|
|
|
|
/* Where it's connected to. */
|
|
struct wireaddr_internal addr;
|
|
|
|
/* Feature bitmaps. */
|
|
u8 *gfeatures, *lfeatures;
|
|
|
|
/* Cryptostate */
|
|
struct peer_crypto_state pcs;
|
|
|
|
/* Our connection (and owner) */
|
|
struct io_conn *conn;
|
|
};
|
|
|
|
/* Mutual recursion */
|
|
static void try_reach_one_addr(struct reaching *reach);
|
|
|
|
static struct peer *find_reconnecting_peer(struct daemon *daemon,
|
|
const struct pubkey *id)
|
|
{
|
|
struct peer *peer;
|
|
|
|
list_for_each(&daemon->reconnecting, peer, list)
|
|
if (pubkey_eq(&peer->id, id))
|
|
return peer;
|
|
return NULL;
|
|
}
|
|
|
|
static void destroy_reconnecting_peer(struct peer *peer)
|
|
{
|
|
list_del_from(&peer->daemon->reconnecting, &peer->list);
|
|
/* This is safe even if we're being destroyed because of peer->conn,
|
|
* since tal_free protects against loops. */
|
|
io_close(peer->conn);
|
|
}
|
|
|
|
static void add_reconnecting_peer(struct daemon *daemon, struct peer *peer)
|
|
{
|
|
/* Drop any previous connecting peer */
|
|
tal_free(find_reconnecting_peer(peer->daemon, &peer->id));
|
|
|
|
list_add_tail(&daemon->reconnecting, &peer->list);
|
|
tal_add_destructor(peer, destroy_reconnecting_peer);
|
|
}
|
|
|
|
/**
|
|
* Some ISP resolvers will reply with a dummy IP to queries that would otherwise
|
|
* result in an NXDOMAIN reply. This just checks whether we have one such
|
|
* resolver upstream and remembers its reply so we can try to filter future
|
|
* dummies out.
|
|
*/
|
|
static bool broken_resolver(struct daemon *daemon)
|
|
{
|
|
struct addrinfo *addrinfo;
|
|
struct addrinfo hints;
|
|
char *hostname = "nxdomain-test.doesntexist";
|
|
int err;
|
|
memset(&hints, 0, sizeof(hints));
|
|
hints.ai_family = AF_UNSPEC;
|
|
hints.ai_socktype = SOCK_STREAM;
|
|
hints.ai_protocol = 0;
|
|
hints.ai_flags = AI_ADDRCONFIG;
|
|
err = getaddrinfo(hostname, tal_fmt(tmpctx, "%d", 42),
|
|
&hints, &addrinfo);
|
|
|
|
daemon->broken_resolver_response =
|
|
tal_free(daemon->broken_resolver_response);
|
|
|
|
if (err == 0) {
|
|
daemon->broken_resolver_response = tal_dup(daemon, struct sockaddr, addrinfo->ai_addr);
|
|
freeaddrinfo(addrinfo);
|
|
}
|
|
|
|
return daemon->broken_resolver_response != NULL;
|
|
}
|
|
|
|
static struct peer *new_peer(struct io_conn *conn,
|
|
struct daemon *daemon,
|
|
const struct pubkey *their_id,
|
|
const struct wireaddr_internal *addr,
|
|
const struct crypto_state *cs)
|
|
{
|
|
struct peer *peer = tal(conn, struct peer);
|
|
|
|
peer->conn = conn;
|
|
peer->id = *their_id;
|
|
peer->addr = *addr;
|
|
peer->daemon = daemon;
|
|
init_peer_crypto_state(peer, &peer->pcs);
|
|
peer->pcs.cs = *cs;
|
|
|
|
return peer;
|
|
}
|
|
|
|
static void destroy_reaching(struct reaching *reach)
|
|
{
|
|
list_del_from(&reach->daemon->reaching, &reach->list);
|
|
}
|
|
|
|
static struct reaching *find_reaching(struct daemon *daemon,
|
|
const struct pubkey *id)
|
|
{
|
|
struct reaching *r;
|
|
|
|
list_for_each(&daemon->reaching, r, list)
|
|
if (pubkey_eq(id, &r->id))
|
|
return r;
|
|
return NULL;
|
|
}
|
|
|
|
static void reached_peer(struct peer *peer, struct io_conn *conn)
|
|
{
|
|
/* OK, we've reached the peer successfully, tell everyone. */
|
|
struct reaching *r = find_reaching(peer->daemon, &peer->id);
|
|
|
|
if (!r)
|
|
return;
|
|
|
|
/* Don't call destroy_io_conn */
|
|
io_set_finish(conn, NULL, NULL);
|
|
|
|
/* Don't free conn with reach */
|
|
tal_steal(peer->daemon, conn);
|
|
tal_free(r);
|
|
}
|
|
|
|
static int get_gossipfd(struct peer *peer)
|
|
{
|
|
bool gossip_queries_feature, initial_routing_sync, success;
|
|
u8 *msg;
|
|
|
|
gossip_queries_feature
|
|
= feature_offered(peer->lfeatures, LOCAL_GOSSIP_QUERIES)
|
|
&& feature_offered(peer->daemon->localfeatures,
|
|
LOCAL_GOSSIP_QUERIES);
|
|
initial_routing_sync
|
|
= feature_offered(peer->lfeatures, LOCAL_INITIAL_ROUTING_SYNC);
|
|
|
|
/* We do this communication sync. */
|
|
msg = towire_gossip_new_peer(NULL, &peer->id, gossip_queries_feature,
|
|
initial_routing_sync);
|
|
if (!wire_sync_write(GOSSIPCTL_FD, take(msg)))
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Failed writing to gossipctl: %s",
|
|
strerror(errno));
|
|
|
|
msg = wire_sync_read(peer, GOSSIPCTL_FD);
|
|
if (!fromwire_gossip_new_peer_reply(msg, &success))
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Failed parsing msg gossipctl: %s",
|
|
tal_hex(tmpctx, msg));
|
|
if (!success) {
|
|
status_broken("Gossipd did not give us an fd: losing peer %s",
|
|
type_to_string(tmpctx, struct pubkey, &peer->id));
|
|
return -1;
|
|
}
|
|
return fdpass_recv(GOSSIPCTL_FD);
|
|
}
|
|
|
|
static struct io_plan *peer_close_after_error(struct io_conn *conn,
|
|
struct peer *peer)
|
|
{
|
|
status_trace("%s: we sent them a fatal error, closing",
|
|
type_to_string(tmpctx, struct pubkey, &peer->id));
|
|
return io_close(conn);
|
|
}
|
|
|
|
/* Mutual recursion */
|
|
static struct io_plan *peer_connected(struct io_conn *conn, struct peer *peer);
|
|
static struct io_plan *retry_peer_connected(struct io_conn *conn,
|
|
struct peer *peer)
|
|
{
|
|
status_trace("peer %s: processing now old peer gone",
|
|
type_to_string(tmpctx, struct pubkey, &peer->id));
|
|
|
|
/* Clean up reconnecting state, try again */
|
|
list_del_from(&peer->daemon->reconnecting, &peer->list);
|
|
tal_del_destructor(peer, destroy_reconnecting_peer);
|
|
|
|
return peer_connected(conn, peer);
|
|
}
|
|
|
|
static struct io_plan *peer_connected(struct io_conn *conn, struct peer *peer)
|
|
{
|
|
struct daemon *daemon = peer->daemon;
|
|
u8 *msg;
|
|
int gossip_fd;
|
|
|
|
/* FIXME: We could do this before exchanging init msgs. */
|
|
if (pubkey_set_get(&daemon->peers, &peer->id)) {
|
|
status_trace("peer %s: reconnect",
|
|
type_to_string(tmpctx, struct pubkey, &peer->id));
|
|
|
|
/* Tell master to kill it: will send peer_disconnect */
|
|
msg = towire_connect_reconnected(NULL, &peer->id);
|
|
daemon_conn_send(&daemon->master, take(msg));
|
|
add_reconnecting_peer(daemon, peer);
|
|
return io_wait(conn, peer, retry_peer_connected, peer);
|
|
}
|
|
|
|
reached_peer(peer, conn);
|
|
|
|
gossip_fd = get_gossipfd(peer);
|
|
if (gossip_fd < 0)
|
|
return io_close(conn);
|
|
|
|
msg = towire_connect_peer_connected(tmpctx, &peer->id, &peer->addr,
|
|
&peer->pcs.cs,
|
|
peer->gfeatures, peer->lfeatures);
|
|
daemon_conn_send(&daemon->master, msg);
|
|
daemon_conn_send_fd(&daemon->master, io_conn_fd(conn));
|
|
daemon_conn_send_fd(&daemon->master, gossip_fd);
|
|
|
|
pubkey_set_add(&daemon->peers,
|
|
tal_dup(daemon, struct pubkey, &peer->id));
|
|
|
|
/* This frees the peer. */
|
|
return io_close_taken_fd(conn);
|
|
}
|
|
|
|
static struct io_plan *peer_init_received(struct io_conn *conn,
|
|
struct peer *peer,
|
|
u8 *msg)
|
|
{
|
|
if (!fromwire_init(peer, msg, &peer->gfeatures, &peer->lfeatures)) {
|
|
status_trace("peer %s bad fromwire_init '%s', closing",
|
|
type_to_string(tmpctx, struct pubkey, &peer->id),
|
|
tal_hex(tmpctx, msg));
|
|
return io_close(conn);
|
|
}
|
|
|
|
if (!features_supported(peer->gfeatures, peer->lfeatures)) {
|
|
const u8 *global_features = get_offered_global_features(msg);
|
|
const u8 *local_features = get_offered_local_features(msg);
|
|
msg = towire_errorfmt(NULL, NULL, "Unsupported features %s/%s:"
|
|
" we only offer globalfeatures %s"
|
|
" and localfeatures %s",
|
|
tal_hex(msg, peer->gfeatures),
|
|
tal_hex(msg, peer->lfeatures),
|
|
tal_hexstr(msg,
|
|
global_features,
|
|
tal_count(global_features)),
|
|
tal_hexstr(msg,
|
|
local_features,
|
|
tal_count(local_features)));
|
|
return peer_write_message(conn, &peer->pcs, take(msg),
|
|
peer_close_after_error);
|
|
}
|
|
|
|
return peer_connected(conn, peer);
|
|
}
|
|
|
|
static struct io_plan *read_init(struct io_conn *conn, struct peer *peer)
|
|
{
|
|
/* BOLT #1:
|
|
*
|
|
* The receiving node:
|
|
* - MUST wait to receive `init` before sending any other messages.
|
|
*/
|
|
return peer_read_message(conn, &peer->pcs, peer_init_received);
|
|
}
|
|
|
|
/* This creates a temporary peer which is not in the list and is owner
|
|
* by the connection; it's placed in the list and owned by daemon once
|
|
* we have the features. */
|
|
static struct io_plan *init_new_peer(struct io_conn *conn,
|
|
const struct pubkey *their_id,
|
|
const struct wireaddr_internal *addr,
|
|
const struct crypto_state *cs,
|
|
struct daemon *daemon)
|
|
{
|
|
struct peer *peer = new_peer(conn, daemon, their_id, addr, cs);
|
|
u8 *initmsg;
|
|
|
|
/* BOLT #1:
|
|
*
|
|
* The sending node:
|
|
* - MUST send `init` as the first Lightning message for any
|
|
* connection.
|
|
*/
|
|
initmsg = towire_init(NULL,
|
|
daemon->globalfeatures, daemon->localfeatures);
|
|
return peer_write_message(conn, &peer->pcs, take(initmsg), read_init);
|
|
}
|
|
|
|
static int make_listen_fd(int domain, void *addr, socklen_t len, bool mayfail)
|
|
{
|
|
int fd = socket(domain, SOCK_STREAM, 0);
|
|
if (fd < 0) {
|
|
if (!mayfail)
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Failed to create %u socket: %s",
|
|
domain, strerror(errno));
|
|
status_trace("Failed to create %u socket: %s",
|
|
domain, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
if (addr) {
|
|
int on = 1;
|
|
|
|
/* Re-use, please.. */
|
|
if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)))
|
|
status_unusual("Failed setting socket reuse: %s",
|
|
strerror(errno));
|
|
|
|
if (bind(fd, addr, len) != 0) {
|
|
if (!mayfail)
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Failed to bind on %u socket: %s",
|
|
domain, strerror(errno));
|
|
status_trace("Failed to create %u socket: %s",
|
|
domain, strerror(errno));
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return fd;
|
|
|
|
fail:
|
|
close_noerr(fd);
|
|
return -1;
|
|
}
|
|
|
|
static struct io_plan *handshake_in_success(struct io_conn *conn,
|
|
const struct pubkey *id,
|
|
const struct wireaddr_internal *addr,
|
|
const struct crypto_state *cs,
|
|
struct daemon *daemon)
|
|
{
|
|
status_trace("Connect IN from %s",
|
|
type_to_string(tmpctx, struct pubkey, id));
|
|
return init_new_peer(conn, id, addr, cs, daemon);
|
|
}
|
|
|
|
static struct io_plan *connection_in(struct io_conn *conn, struct daemon *daemon)
|
|
{
|
|
struct wireaddr_internal addr;
|
|
struct sockaddr_storage s = {};
|
|
socklen_t len = sizeof(s);
|
|
|
|
if (getpeername(io_conn_fd(conn), (struct sockaddr *)&s, &len) != 0) {
|
|
status_trace("Failed to get peername for incoming conn: %s",
|
|
strerror(errno));
|
|
return io_close(conn);
|
|
}
|
|
|
|
if (s.ss_family == AF_INET6) {
|
|
struct sockaddr_in6 *s6 = (void *)&s;
|
|
addr.itype = ADDR_INTERNAL_WIREADDR;
|
|
wireaddr_from_ipv6(&addr.u.wireaddr,
|
|
&s6->sin6_addr, ntohs(s6->sin6_port));
|
|
} else if (s.ss_family == AF_INET) {
|
|
struct sockaddr_in *s4 = (void *)&s;
|
|
addr.itype = ADDR_INTERNAL_WIREADDR;
|
|
wireaddr_from_ipv4(&addr.u.wireaddr,
|
|
&s4->sin_addr, ntohs(s4->sin_port));
|
|
} else if (s.ss_family == AF_UNIX) {
|
|
struct sockaddr_un *sun = (void *)&s;
|
|
addr.itype = ADDR_INTERNAL_SOCKNAME;
|
|
memcpy(addr.u.sockname, sun->sun_path, sizeof(sun->sun_path));
|
|
} else {
|
|
status_broken("Unknown socket type %i for incoming conn",
|
|
s.ss_family);
|
|
return io_close(conn);
|
|
}
|
|
|
|
/* FIXME: Timeout */
|
|
return responder_handshake(conn, &daemon->id, &addr,
|
|
handshake_in_success, daemon);
|
|
}
|
|
|
|
static void add_listen_fd(struct daemon *daemon, int fd, bool mayfail)
|
|
{
|
|
size_t n = tal_count(daemon->listen_fds);
|
|
tal_resize(&daemon->listen_fds, n+1);
|
|
daemon->listen_fds[n].fd = fd;
|
|
daemon->listen_fds[n].mayfail = mayfail;
|
|
}
|
|
|
|
/* Return true if it created socket successfully. */
|
|
static bool handle_wireaddr_listen(struct daemon *daemon,
|
|
const struct wireaddr *wireaddr,
|
|
bool mayfail)
|
|
{
|
|
int fd;
|
|
struct sockaddr_in addr;
|
|
struct sockaddr_in6 addr6;
|
|
|
|
switch (wireaddr->type) {
|
|
case ADDR_TYPE_IPV4:
|
|
wireaddr_to_ipv4(wireaddr, &addr);
|
|
/* We might fail if IPv6 bound to port first */
|
|
fd = make_listen_fd(AF_INET, &addr, sizeof(addr), mayfail);
|
|
if (fd >= 0) {
|
|
status_trace("Created IPv4 listener on port %u",
|
|
wireaddr->port);
|
|
add_listen_fd(daemon, fd, mayfail);
|
|
return true;
|
|
}
|
|
return false;
|
|
case ADDR_TYPE_IPV6:
|
|
wireaddr_to_ipv6(wireaddr, &addr6);
|
|
fd = make_listen_fd(AF_INET6, &addr6, sizeof(addr6), mayfail);
|
|
if (fd >= 0) {
|
|
status_trace("Created IPv6 listener on port %u",
|
|
wireaddr->port);
|
|
add_listen_fd(daemon, fd, mayfail);
|
|
return true;
|
|
}
|
|
return false;
|
|
case ADDR_TYPE_PADDING:
|
|
case ADDR_TYPE_TOR_V2:
|
|
case ADDR_TYPE_TOR_V3:
|
|
break;
|
|
}
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Invalid listener wireaddress type %u", wireaddr->type);
|
|
}
|
|
|
|
/* If it's a wildcard, turns it into a real address pointing to internet */
|
|
static bool public_address(struct daemon *daemon, struct wireaddr *wireaddr)
|
|
{
|
|
if (wireaddr_is_wildcard(wireaddr)) {
|
|
if (!guess_address(wireaddr))
|
|
return false;
|
|
}
|
|
|
|
return address_routable(wireaddr, daemon->dev_allow_localhost);
|
|
}
|
|
|
|
static void add_announcable(struct wireaddr **announcable,
|
|
const struct wireaddr *addr)
|
|
{
|
|
size_t n = tal_count(*announcable);
|
|
tal_resize(announcable, n+1);
|
|
(*announcable)[n] = *addr;
|
|
}
|
|
|
|
static void add_binding(struct wireaddr_internal **binding,
|
|
const struct wireaddr_internal *addr)
|
|
{
|
|
size_t n = tal_count(*binding);
|
|
tal_resize(binding, n+1);
|
|
(*binding)[n] = *addr;
|
|
}
|
|
|
|
static int wireaddr_cmp_type(const struct wireaddr *a,
|
|
const struct wireaddr *b, void *unused)
|
|
{
|
|
return (int)a->type - (int)b->type;
|
|
}
|
|
|
|
static void finalize_announcable(struct wireaddr **announcable)
|
|
{
|
|
size_t n = tal_count(*announcable);
|
|
|
|
/* BOLT #7:
|
|
*
|
|
* The origin node:
|
|
*...
|
|
* - MUST place non-zero typed address descriptors in ascending order.
|
|
*...
|
|
* - MUST NOT include more than one `address descriptor` of the same
|
|
* type.
|
|
*/
|
|
asort(*announcable, n, wireaddr_cmp_type, NULL);
|
|
for (size_t i = 1; i < n; i++) {
|
|
/* Note we use > instead of !=: catches asort bugs too. */
|
|
if ((*announcable)[i].type > (*announcable)[i-1].type)
|
|
continue;
|
|
|
|
status_unusual("WARNING: Cannot announce address %s,"
|
|
" already announcing %s",
|
|
type_to_string(tmpctx, struct wireaddr,
|
|
&(*announcable)[i]),
|
|
type_to_string(tmpctx, struct wireaddr,
|
|
&(*announcable)[i-1]));
|
|
memmove(*announcable + i,
|
|
*announcable + i + 1,
|
|
(n - i - 1) * sizeof((*announcable)[0]));
|
|
tal_resize(announcable, --n);
|
|
--i;
|
|
}
|
|
}
|
|
|
|
/* Initializes daemon->announcable array, returns addresses we bound to. */
|
|
static struct wireaddr_internal *setup_listeners(const tal_t *ctx,
|
|
struct daemon *daemon,
|
|
const struct wireaddr_internal *proposed_wireaddr,
|
|
const enum addr_listen_announce *proposed_listen_announce,
|
|
const char *tor_password,
|
|
struct wireaddr **announcable)
|
|
{
|
|
struct sockaddr_un addrun;
|
|
int fd;
|
|
struct wireaddr_internal *binding;
|
|
|
|
binding = tal_arr(ctx, struct wireaddr_internal, 0);
|
|
*announcable = tal_arr(ctx, struct wireaddr, 0);
|
|
|
|
/* Add addresses we've explicitly been told to *first*: implicit
|
|
* addresses will be discarded then if we have multiple. */
|
|
for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
|
|
struct wireaddr_internal wa = proposed_wireaddr[i];
|
|
|
|
if (proposed_listen_announce[i] & ADDR_LISTEN)
|
|
continue;
|
|
|
|
assert(proposed_listen_announce[i] & ADDR_ANNOUNCE);
|
|
/* You can only announce wiretypes! */
|
|
assert(proposed_wireaddr[i].itype
|
|
== ADDR_INTERNAL_WIREADDR);
|
|
add_announcable(announcable, &wa.u.wireaddr);
|
|
}
|
|
|
|
/* Now look for listening addresses. */
|
|
for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
|
|
struct wireaddr_internal wa = proposed_wireaddr[i];
|
|
bool announce = (proposed_listen_announce[i] & ADDR_ANNOUNCE);
|
|
|
|
if (!(proposed_listen_announce[i] & ADDR_LISTEN))
|
|
continue;
|
|
|
|
switch (wa.itype) {
|
|
case ADDR_INTERNAL_SOCKNAME:
|
|
addrun.sun_family = AF_UNIX;
|
|
memcpy(addrun.sun_path, wa.u.sockname,
|
|
sizeof(addrun.sun_path));
|
|
fd = make_listen_fd(AF_INET, &addrun, sizeof(addrun),
|
|
false);
|
|
status_trace("Created socket listener on file %s",
|
|
addrun.sun_path);
|
|
add_listen_fd(daemon, fd, false);
|
|
/* We don't announce socket names */
|
|
assert(!announce);
|
|
add_binding(&binding, &wa);
|
|
continue;
|
|
case ADDR_INTERNAL_AUTOTOR:
|
|
/* We handle these after we have all bindings. */
|
|
continue;
|
|
case ADDR_INTERNAL_ALLPROTO: {
|
|
bool ipv6_ok;
|
|
|
|
wa.itype = ADDR_INTERNAL_WIREADDR;
|
|
wa.u.wireaddr.port = wa.u.port;
|
|
|
|
/* First, create wildcard IPv6 address. */
|
|
wa.u.wireaddr.type = ADDR_TYPE_IPV6;
|
|
wa.u.wireaddr.addrlen = 16;
|
|
memset(wa.u.wireaddr.addr, 0,
|
|
sizeof(wa.u.wireaddr.addr));
|
|
|
|
ipv6_ok = handle_wireaddr_listen(daemon, &wa.u.wireaddr,
|
|
true);
|
|
if (ipv6_ok) {
|
|
add_binding(&binding, &wa);
|
|
if (announce
|
|
&& public_address(daemon, &wa.u.wireaddr))
|
|
add_announcable(announcable,
|
|
&wa.u.wireaddr);
|
|
}
|
|
|
|
/* Now, create wildcard IPv4 address. */
|
|
wa.u.wireaddr.type = ADDR_TYPE_IPV4;
|
|
wa.u.wireaddr.addrlen = 4;
|
|
memset(wa.u.wireaddr.addr, 0,
|
|
sizeof(wa.u.wireaddr.addr));
|
|
/* OK if this fails, as long as one succeeds! */
|
|
if (handle_wireaddr_listen(daemon, &wa.u.wireaddr,
|
|
ipv6_ok)) {
|
|
add_binding(&binding, &wa);
|
|
if (announce
|
|
&& public_address(daemon, &wa.u.wireaddr))
|
|
add_announcable(announcable,
|
|
&wa.u.wireaddr);
|
|
}
|
|
continue;
|
|
}
|
|
case ADDR_INTERNAL_WIREADDR:
|
|
handle_wireaddr_listen(daemon, &wa.u.wireaddr, false);
|
|
add_binding(&binding, &wa);
|
|
if (announce && public_address(daemon, &wa.u.wireaddr))
|
|
add_announcable(announcable, &wa.u.wireaddr);
|
|
continue;
|
|
case ADDR_INTERNAL_FORPROXY:
|
|
break;
|
|
}
|
|
/* Shouldn't happen. */
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Invalid listener address type %u",
|
|
proposed_wireaddr[i].itype);
|
|
}
|
|
|
|
/* Now we have bindings, set up any Tor auto addresses */
|
|
for (size_t i = 0; i < tal_count(proposed_wireaddr); i++) {
|
|
if (!(proposed_listen_announce[i] & ADDR_LISTEN))
|
|
continue;
|
|
|
|
if (!(proposed_listen_announce[i] & ADDR_ANNOUNCE))
|
|
continue;
|
|
|
|
if (proposed_wireaddr[i].itype != ADDR_INTERNAL_AUTOTOR)
|
|
continue;
|
|
|
|
add_announcable(announcable,
|
|
tor_autoservice(tmpctx,
|
|
&proposed_wireaddr[i].u.torservice,
|
|
tor_password,
|
|
binding));
|
|
}
|
|
|
|
finalize_announcable(announcable);
|
|
|
|
return binding;
|
|
}
|
|
|
|
|
|
/* Parse an incoming connect init message and assign config variables
|
|
* to the daemon.
|
|
*/
|
|
static struct io_plan *connect_init(struct daemon_conn *master,
|
|
struct daemon *daemon,
|
|
const u8 *msg)
|
|
{
|
|
struct wireaddr *proxyaddr;
|
|
struct wireaddr_internal *binding;
|
|
struct wireaddr_internal *proposed_wireaddr;
|
|
enum addr_listen_announce *proposed_listen_announce;
|
|
struct wireaddr *announcable;
|
|
char *tor_password;
|
|
|
|
if (!fromwire_connectctl_init(
|
|
daemon, msg,
|
|
&daemon->id, &daemon->globalfeatures,
|
|
&daemon->localfeatures, &proposed_wireaddr,
|
|
&proposed_listen_announce,
|
|
&proxyaddr, &daemon->use_proxy_always,
|
|
&daemon->dev_allow_localhost, &daemon->use_dns,
|
|
&tor_password)) {
|
|
master_badmsg(WIRE_CONNECTCTL_INIT, msg);
|
|
}
|
|
|
|
/* Resolve Tor proxy address if any */
|
|
if (proxyaddr) {
|
|
status_trace("Proxy address: %s",
|
|
fmt_wireaddr(tmpctx, proxyaddr));
|
|
daemon->proxyaddr = wireaddr_to_addrinfo(daemon, proxyaddr);
|
|
} else
|
|
daemon->proxyaddr = NULL;
|
|
|
|
if (broken_resolver(daemon)) {
|
|
status_trace("Broken DNS resolver detected, will check for "
|
|
"dummy replies");
|
|
}
|
|
|
|
binding = setup_listeners(tmpctx, daemon,
|
|
proposed_wireaddr,
|
|
proposed_listen_announce,
|
|
tor_password,
|
|
&announcable);
|
|
|
|
daemon_conn_send(&daemon->master,
|
|
take(towire_connectctl_init_reply(NULL,
|
|
binding,
|
|
announcable)));
|
|
|
|
return daemon_conn_read_next(master->conn, master);
|
|
}
|
|
|
|
static struct io_plan *connect_activate(struct daemon_conn *master,
|
|
struct daemon *daemon,
|
|
const u8 *msg)
|
|
{
|
|
bool do_listen;
|
|
|
|
if (!fromwire_connectctl_activate(msg, &do_listen))
|
|
master_badmsg(WIRE_CONNECTCTL_ACTIVATE, msg);
|
|
|
|
if (do_listen) {
|
|
for (size_t i = 0; i < tal_count(daemon->listen_fds); i++) {
|
|
/* On Linux, at least, we may bind to all addresses
|
|
* for IPv4 and IPv6, but we'll fail to listen. */
|
|
if (listen(daemon->listen_fds[i].fd, 5) != 0) {
|
|
if (daemon->listen_fds[i].mayfail)
|
|
continue;
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Failed to listen on socket: %s",
|
|
strerror(errno));
|
|
}
|
|
io_new_listener(daemon, daemon->listen_fds[i].fd,
|
|
connection_in, daemon);
|
|
}
|
|
}
|
|
daemon->listen_fds = tal_free(daemon->listen_fds);
|
|
|
|
/* OK, we're ready! */
|
|
daemon_conn_send(&daemon->master,
|
|
take(towire_connectctl_activate_reply(NULL)));
|
|
return daemon_conn_read_next(master->conn, master);
|
|
}
|
|
|
|
static struct io_plan *handshake_out_success(struct io_conn *conn,
|
|
const struct pubkey *id,
|
|
const struct wireaddr_internal *addr,
|
|
const struct crypto_state *cs,
|
|
struct reaching *reach)
|
|
{
|
|
reach->connstate = "Exchanging init messages";
|
|
status_trace("Connect OUT to %s",
|
|
type_to_string(tmpctx, struct pubkey, id));
|
|
return init_new_peer(conn, id, addr, cs, reach->daemon);
|
|
}
|
|
|
|
struct io_plan *connection_out(struct io_conn *conn, struct reaching *reach)
|
|
{
|
|
/* FIXME: Timeout */
|
|
status_trace("Connected out for %s",
|
|
type_to_string(tmpctx, struct pubkey, &reach->id));
|
|
|
|
reach->connstate = "Cryptographic handshake";
|
|
return initiator_handshake(conn, &reach->daemon->id, &reach->id,
|
|
&reach->addrs[reach->addrnum],
|
|
handshake_out_success, reach);
|
|
}
|
|
|
|
static void PRINTF_FMT(5,6)
|
|
connect_failed(struct daemon *daemon,
|
|
const struct pubkey *id,
|
|
u32 seconds_waited,
|
|
const struct wireaddr_internal *addrhint,
|
|
const char *errfmt, ...)
|
|
{
|
|
u8 *msg;
|
|
va_list ap;
|
|
char *err;
|
|
u32 wait_seconds;
|
|
|
|
va_start(ap, errfmt);
|
|
err = tal_vfmt(tmpctx, errfmt, ap);
|
|
va_end(ap);
|
|
|
|
/* Wait twice as long to reconnect, between min and max. */
|
|
wait_seconds = seconds_waited * 2;
|
|
if (wait_seconds > MAX_WAIT_SECONDS)
|
|
wait_seconds = MAX_WAIT_SECONDS;
|
|
if (wait_seconds < INITIAL_WAIT_SECONDS)
|
|
wait_seconds = INITIAL_WAIT_SECONDS;
|
|
|
|
/* Tell any connect command what happened. */
|
|
msg = towire_connectctl_connect_failed(NULL, id, err, wait_seconds,
|
|
addrhint);
|
|
daemon_conn_send(&daemon->master, take(msg));
|
|
|
|
status_trace("Failed connected out for %s: %s",
|
|
type_to_string(tmpctx, struct pubkey, id),
|
|
err);
|
|
}
|
|
|
|
static void destroy_io_conn(struct io_conn *conn, struct reaching *reach)
|
|
{
|
|
tal_append_fmt(&reach->errors,
|
|
"%s: %s: %s. ",
|
|
type_to_string(tmpctx, struct wireaddr_internal,
|
|
&reach->addrs[reach->addrnum]),
|
|
reach->connstate, strerror(errno));
|
|
reach->addrnum++;
|
|
try_reach_one_addr(reach);
|
|
}
|
|
|
|
static struct io_plan *conn_init(struct io_conn *conn, struct reaching *reach)
|
|
{
|
|
struct addrinfo *ai = NULL;
|
|
const struct wireaddr_internal *addr = &reach->addrs[reach->addrnum];
|
|
|
|
switch (addr->itype) {
|
|
case ADDR_INTERNAL_SOCKNAME:
|
|
ai = wireaddr_internal_to_addrinfo(tmpctx, addr);
|
|
break;
|
|
case ADDR_INTERNAL_ALLPROTO:
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Can't reach to all protocols");
|
|
break;
|
|
case ADDR_INTERNAL_AUTOTOR:
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Can't reach to autotor address");
|
|
break;
|
|
case ADDR_INTERNAL_FORPROXY:
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Can't reach to forproxy address");
|
|
break;
|
|
case ADDR_INTERNAL_WIREADDR:
|
|
/* If it was a Tor address, we wouldn't be here. */
|
|
ai = wireaddr_to_addrinfo(tmpctx, &addr->u.wireaddr);
|
|
break;
|
|
}
|
|
assert(ai);
|
|
|
|
io_set_finish(conn, destroy_io_conn, reach);
|
|
return io_connect(conn, ai, connection_out, reach);
|
|
}
|
|
|
|
static struct io_plan *conn_proxy_init(struct io_conn *conn,
|
|
struct reaching *reach)
|
|
{
|
|
const char *host = NULL;
|
|
u16 port;
|
|
const struct wireaddr_internal *addr = &reach->addrs[reach->addrnum];
|
|
|
|
switch (addr->itype) {
|
|
case ADDR_INTERNAL_FORPROXY:
|
|
host = addr->u.unresolved.name;
|
|
port = addr->u.unresolved.port;
|
|
break;
|
|
case ADDR_INTERNAL_WIREADDR:
|
|
host = fmt_wireaddr_without_port(tmpctx, &addr->u.wireaddr);
|
|
port = addr->u.wireaddr.port;
|
|
break;
|
|
case ADDR_INTERNAL_SOCKNAME:
|
|
case ADDR_INTERNAL_ALLPROTO:
|
|
case ADDR_INTERNAL_AUTOTOR:
|
|
break;
|
|
}
|
|
|
|
if (!host)
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Can't reach to %u address", addr->itype);
|
|
|
|
io_set_finish(conn, destroy_io_conn, reach);
|
|
return io_tor_connect(conn, reach->daemon->proxyaddr, host, port, reach);
|
|
}
|
|
|
|
static void append_addr(struct wireaddr_internal **addrs,
|
|
const struct wireaddr_internal *addr)
|
|
{
|
|
size_t n = tal_count(*addrs);
|
|
tal_resize(addrs, n+1);
|
|
(*addrs)[n] = *addr;
|
|
}
|
|
|
|
static const char *seedname(const tal_t *ctx, const struct pubkey *id)
|
|
{
|
|
char bech32[100];
|
|
u8 der[PUBKEY_DER_LEN];
|
|
u5 *data = tal_arr(ctx, u5, 0);
|
|
|
|
pubkey_to_der(der, id);
|
|
bech32_push_bits(&data, der, PUBKEY_DER_LEN*8);
|
|
bech32_encode(bech32, "ln", data, tal_count(data), sizeof(bech32));
|
|
return tal_fmt(ctx, "%s.lseed.bitcoinstats.com", bech32);
|
|
}
|
|
|
|
static void add_seed_addrs(struct wireaddr_internal **addrs,
|
|
const struct pubkey *id,
|
|
struct sockaddr *broken_reply)
|
|
{
|
|
struct wireaddr_internal a;
|
|
const char *addr;
|
|
|
|
addr = seedname(tmpctx, id);
|
|
status_trace("Resolving %s", addr);
|
|
|
|
a.itype = ADDR_INTERNAL_WIREADDR;
|
|
/* FIXME: wireaddr_from_hostname should return multiple addresses. */
|
|
if (!wireaddr_from_hostname(&a.u.wireaddr, addr, DEFAULT_PORT, NULL,
|
|
broken_reply, NULL)) {
|
|
status_trace("Could not resolve %s", addr);
|
|
} else {
|
|
status_trace("Resolved %s to %s", addr,
|
|
type_to_string(tmpctx, struct wireaddr,
|
|
&a.u.wireaddr));
|
|
append_addr(addrs, &a);
|
|
}
|
|
}
|
|
|
|
static void add_gossip_addrs(struct wireaddr_internal **addrs,
|
|
const struct pubkey *id)
|
|
{
|
|
u8 *msg;
|
|
struct wireaddr *normal_addrs;
|
|
|
|
msg = towire_gossip_get_addrs(NULL, id);
|
|
if (!wire_sync_write(GOSSIPCTL_FD, take(msg)))
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Failed writing to gossipctl: %s",
|
|
strerror(errno));
|
|
|
|
msg = wire_sync_read(tmpctx, GOSSIPCTL_FD);
|
|
if (!fromwire_gossip_get_addrs_reply(tmpctx, msg, &normal_addrs))
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Failed parsing get_addrs_reply gossipctl: %s",
|
|
tal_hex(tmpctx, msg));
|
|
|
|
/* Wrap each one in a wireaddr_internal and add to addrs. */
|
|
for (size_t i = 0; i < tal_count(normal_addrs); i++) {
|
|
struct wireaddr_internal addr;
|
|
addr.itype = ADDR_INTERNAL_WIREADDR;
|
|
addr.u.wireaddr = normal_addrs[i];
|
|
append_addr(addrs, &addr);
|
|
}
|
|
}
|
|
|
|
static void try_reach_one_addr(struct reaching *reach)
|
|
{
|
|
int fd, af;
|
|
bool use_proxy = reach->daemon->use_proxy_always;
|
|
const struct wireaddr_internal *addr = &reach->addrs[reach->addrnum];
|
|
|
|
if (reach->addrnum == tal_count(reach->addrs)) {
|
|
connect_failed(reach->daemon, &reach->id, reach->seconds_waited,
|
|
reach->addrhint, "%s", reach->errors);
|
|
tal_free(reach);
|
|
return;
|
|
}
|
|
|
|
/* Might not even be able to create eg. IPv6 sockets */
|
|
af = -1;
|
|
|
|
switch (addr->itype) {
|
|
case ADDR_INTERNAL_SOCKNAME:
|
|
af = AF_LOCAL;
|
|
/* Local sockets don't use tor proxy */
|
|
use_proxy = false;
|
|
break;
|
|
case ADDR_INTERNAL_ALLPROTO:
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Can't reach ALLPROTO");
|
|
case ADDR_INTERNAL_AUTOTOR:
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"Can't reach AUTOTOR");
|
|
case ADDR_INTERNAL_FORPROXY:
|
|
use_proxy = true;
|
|
break;
|
|
case ADDR_INTERNAL_WIREADDR:
|
|
switch (addr->u.wireaddr.type) {
|
|
case ADDR_TYPE_TOR_V2:
|
|
case ADDR_TYPE_TOR_V3:
|
|
use_proxy = true;
|
|
break;
|
|
case ADDR_TYPE_IPV4:
|
|
af = AF_INET;
|
|
break;
|
|
case ADDR_TYPE_IPV6:
|
|
af = AF_INET6;
|
|
break;
|
|
case ADDR_TYPE_PADDING:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we have to use proxy but we don't have one, we fail. */
|
|
if (use_proxy) {
|
|
if (!reach->daemon->proxyaddr) {
|
|
status_debug("Need proxy");
|
|
af = -1;
|
|
} else
|
|
af = reach->daemon->proxyaddr->ai_family;
|
|
}
|
|
|
|
if (af == -1) {
|
|
fd = -1;
|
|
errno = EPROTONOSUPPORT;
|
|
} else
|
|
fd = socket(af, SOCK_STREAM, 0);
|
|
|
|
if (fd < 0) {
|
|
tal_append_fmt(&reach->errors,
|
|
"%s: opening %i socket gave %s. ",
|
|
type_to_string(tmpctx, struct wireaddr_internal,
|
|
addr),
|
|
af, strerror(errno));
|
|
reach->addrnum++;
|
|
try_reach_one_addr(reach);
|
|
return;
|
|
}
|
|
|
|
if (use_proxy)
|
|
io_new_conn(reach, fd, conn_proxy_init, reach);
|
|
else
|
|
io_new_conn(reach, fd, conn_init, reach);
|
|
}
|
|
|
|
/* Consumes addrhint if not NULL */
|
|
static void try_reach_peer(struct daemon *daemon,
|
|
const struct pubkey *id,
|
|
u32 seconds_waited,
|
|
struct wireaddr_internal *addrhint)
|
|
{
|
|
struct wireaddr_internal *addrs;
|
|
bool use_proxy = daemon->use_proxy_always;
|
|
struct reaching *reach;
|
|
|
|
/* Already done? May happen with timer. */
|
|
if (pubkey_set_get(&daemon->peers, id))
|
|
return;
|
|
|
|
/* If we're trying to reach it right now, that's OK. */
|
|
if (find_reaching(daemon, id))
|
|
return;
|
|
|
|
addrs = tal_arr(tmpctx, struct wireaddr_internal, 0);
|
|
if (addrhint)
|
|
append_addr(&addrs, addrhint);
|
|
|
|
add_gossip_addrs(&addrs, id);
|
|
|
|
if (tal_count(addrs) == 0) {
|
|
/* Don't resolve via DNS seed if we're supposed to use proxy. */
|
|
if (use_proxy) {
|
|
struct wireaddr_internal unresolved;
|
|
wireaddr_from_unresolved(&unresolved,
|
|
seedname(tmpctx, id),
|
|
DEFAULT_PORT);
|
|
append_addr(&addrs, &unresolved);
|
|
} else if (daemon->use_dns) {
|
|
add_seed_addrs(&addrs, id,
|
|
daemon->broken_resolver_response);
|
|
}
|
|
}
|
|
|
|
if (tal_count(addrs) == 0) {
|
|
connect_failed(daemon, id, seconds_waited, addrhint,
|
|
"No address known");
|
|
return;
|
|
}
|
|
|
|
/* Start connecting to it */
|
|
reach = tal(daemon, struct reaching);
|
|
reach->daemon = daemon;
|
|
reach->id = *id;
|
|
reach->addrs = tal_steal(reach, addrs);
|
|
reach->addrnum = 0;
|
|
reach->connstate = "Connection establishment";
|
|
reach->seconds_waited = seconds_waited;
|
|
reach->addrhint = tal_steal(reach, addrhint);
|
|
reach->errors = tal_strdup(reach, "");
|
|
list_add_tail(&daemon->reaching, &reach->list);
|
|
tal_add_destructor(reach, destroy_reaching);
|
|
|
|
try_reach_one_addr(reach);
|
|
}
|
|
|
|
static struct io_plan *connect_to_peer(struct io_conn *conn,
|
|
struct daemon *daemon, const u8 *msg)
|
|
{
|
|
struct pubkey id;
|
|
u32 seconds_waited;
|
|
struct wireaddr_internal *addrhint;
|
|
|
|
if (!fromwire_connectctl_connect_to_peer(tmpctx, msg,
|
|
&id, &seconds_waited,
|
|
&addrhint))
|
|
master_badmsg(WIRE_CONNECTCTL_CONNECT_TO_PEER, msg);
|
|
|
|
try_reach_peer(daemon, &id, seconds_waited, addrhint);
|
|
return daemon_conn_read_next(conn, &daemon->master);
|
|
}
|
|
|
|
static struct io_plan *peer_disconnected(struct io_conn *conn,
|
|
struct daemon *daemon, const u8 *msg)
|
|
{
|
|
struct pubkey id, *key;
|
|
struct peer *peer;
|
|
|
|
if (!fromwire_connectctl_peer_disconnected(msg, &id))
|
|
master_badmsg(WIRE_CONNECTCTL_PEER_DISCONNECTED, msg);
|
|
|
|
key = pubkey_set_get(&daemon->peers, &id);
|
|
if (!key)
|
|
status_failed(STATUS_FAIL_INTERNAL_ERROR,
|
|
"peer_disconnected unknown peer: %s",
|
|
type_to_string(tmpctx, struct pubkey, &id));
|
|
pubkey_set_del(&daemon->peers, key);
|
|
tal_free(key);
|
|
|
|
status_trace("Forgetting peer %s",
|
|
type_to_string(tmpctx, struct pubkey, &id));
|
|
|
|
/* If there was a connecting peer waiting, wake it now */
|
|
peer = find_reconnecting_peer(daemon, &id);
|
|
if (peer)
|
|
io_wake(peer);
|
|
|
|
return daemon_conn_read_next(conn, &daemon->master);
|
|
}
|
|
|
|
static struct io_plan *recv_req(struct io_conn *conn, struct daemon_conn *master)
|
|
{
|
|
struct daemon *daemon = container_of(master, struct daemon, master);
|
|
enum connect_wire_type t = fromwire_peektype(master->msg_in);
|
|
|
|
switch (t) {
|
|
case WIRE_CONNECTCTL_INIT:
|
|
return connect_init(master, daemon, master->msg_in);
|
|
|
|
case WIRE_CONNECTCTL_ACTIVATE:
|
|
return connect_activate(master, daemon, master->msg_in);
|
|
|
|
case WIRE_CONNECTCTL_CONNECT_TO_PEER:
|
|
return connect_to_peer(conn, daemon, master->msg_in);
|
|
|
|
case WIRE_CONNECTCTL_PEER_DISCONNECTED:
|
|
return peer_disconnected(conn, daemon, master->msg_in);
|
|
|
|
/* We send these, we don't receive them */
|
|
case WIRE_CONNECTCTL_INIT_REPLY:
|
|
case WIRE_CONNECTCTL_ACTIVATE_REPLY:
|
|
case WIRE_CONNECT_PEER_CONNECTED:
|
|
case WIRE_CONNECT_RECONNECTED:
|
|
case WIRE_CONNECTCTL_CONNECT_FAILED:
|
|
break;
|
|
}
|
|
|
|
/* Master shouldn't give bad requests. */
|
|
status_failed(STATUS_FAIL_MASTER_IO, "%i: %s",
|
|
t, tal_hex(tmpctx, master->msg_in));
|
|
}
|
|
|
|
#ifndef TESTING
|
|
static void master_gone(struct io_conn *unused UNUSED, struct daemon_conn *dc UNUSED)
|
|
{
|
|
/* Can't tell master, it's gone. */
|
|
exit(2);
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
setup_locale();
|
|
|
|
struct daemon *daemon;
|
|
|
|
subdaemon_setup(argc, argv);
|
|
|
|
daemon = tal(NULL, struct daemon);
|
|
pubkey_set_init(&daemon->peers);
|
|
list_head_init(&daemon->reconnecting);
|
|
list_head_init(&daemon->reaching);
|
|
timers_init(&daemon->timers, time_mono());
|
|
daemon->broken_resolver_response = NULL;
|
|
daemon->listen_fds = tal_arr(daemon, struct listen_fd, 0);
|
|
/* stdin == control */
|
|
daemon_conn_init(daemon, &daemon->master, STDIN_FILENO, recv_req,
|
|
master_gone);
|
|
status_setup_async(&daemon->master);
|
|
hsm_setup(HSM_FD);
|
|
|
|
/* When conn closes, everything is freed. */
|
|
tal_steal(daemon->master.conn, daemon);
|
|
|
|
for (;;) {
|
|
struct timer *expired = NULL;
|
|
io_loop(&daemon->timers, &expired);
|
|
|
|
if (!expired) {
|
|
break;
|
|
} else {
|
|
timer_expired(daemon, expired);
|
|
}
|
|
}
|
|
daemon_shutdown();
|
|
return 0;
|
|
}
|
|
#endif
|
|
|