You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

671 lines
18 KiB

#include <assert.h>
#include <ccan/array_size/array_size.h>
#include <ccan/crypto/ripemd160/ripemd160.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/mem/mem.h>
#include <common/node_id.h>
#include <common/onion.h>
#include <common/onionreply.h>
#include <common/sphinx.h>
#include <common/utils.h>
#include <err.h>
#include <secp256k1_ecdh.h>
#include <sodium/crypto_auth_hmacsha256.h>
#include <sodium/crypto_stream_chacha20.h>
#define BLINDING_FACTOR_SIZE 32
#define KEY_LEN 32
#define NUM_STREAM_BYTES (2*ROUTING_INFO_SIZE)
#define ONION_REPLY_SIZE 256
#define RHO_KEYTYPE "rho"
struct hop_params {
struct secret secret;
u8 blind[BLINDING_FACTOR_SIZE];
struct pubkey ephemeralkey;
};
struct keyset {
u8 pi[KEY_LEN];
u8 mu[KEY_LEN];
u8 rho[KEY_LEN];
u8 gamma[KEY_LEN];
};
/* Encapsulates the information about a given payment path for the the onion
* routing algorithm.
*/
struct sphinx_path {
/* The session_key used to generate the shared secrets along the
* path. This MUST be generated in a cryptographically secure manner,
* and is exposed solely for testing, i.e., it can be set to known
* values in unit tests. If unset it'll be generated during the packet
* generation. */
struct secret *session_key;
/* The associated data is appended to the packet when generating the
* HMAC, but is not passed along as part of the packet. It is used to
* ensure some external data (HTLC payment_hash) is not modified along
* the way. */
u8 *associated_data;
/* The individual hops on this route. */
struct sphinx_hop *hops;
};
struct sphinx_path *sphinx_path_new(const tal_t *ctx, const u8 *associated_data)
{
struct sphinx_path *sp = tal(ctx, struct sphinx_path);
sp->associated_data = tal_dup_talarr(sp, u8, associated_data);
sp->session_key = NULL;
sp->hops = tal_arr(sp, struct sphinx_hop, 0);
return sp;
}
struct sphinx_path *sphinx_path_new_with_key(const tal_t *ctx,
const u8 *associated_data,
const struct secret *session_key)
{
struct sphinx_path *sp = sphinx_path_new(ctx, associated_data);
sp->session_key = tal_dup(sp, struct secret, session_key);
return sp;
}
static size_t sphinx_hop_size(const struct sphinx_hop *hop)
{
return tal_bytelen(hop->raw_payload) + HMAC_SIZE;
}
size_t sphinx_path_payloads_size(const struct sphinx_path *path)
{
size_t size = 0;
for (size_t i=0; i<tal_count(path->hops); i++)
size += sphinx_hop_size(&path->hops[i]);
return size;
}
void sphinx_add_hop(struct sphinx_path *path, const struct pubkey *pubkey,
const u8 *payload TAKES)
{
struct sphinx_hop sp;
sp.raw_payload = tal_dup_talarr(path, u8, payload);
sp.pubkey = *pubkey;
tal_arr_expand(&path->hops, sp);
}
/* Small helper to append data to a buffer and update the position
* into the buffer
*/
static void write_buffer(u8 *dst, const void *src, const size_t len, int *pos)
{
memcpy(dst + *pos, src, len);
*pos += len;
}
/* Read len bytes from the source at position pos into dst and update
* the position pos accordingly.
*/
static void read_buffer(void *dst, const u8 *src, const size_t len, int *pos)
{
memcpy(dst, src + *pos, len);
*pos += len;
}
u8 *serialize_onionpacket(
const tal_t *ctx,
const struct onionpacket *m)
{
u8 *dst = tal_arr(ctx, u8, TOTAL_PACKET_SIZE);
u8 der[PUBKEY_CMPR_LEN];
int p = 0;
pubkey_to_der(der, &m->ephemeralkey);
write_buffer(dst, &m->version, 1, &p);
write_buffer(dst, der, sizeof(der), &p);
write_buffer(dst, m->routinginfo, ROUTING_INFO_SIZE, &p);
write_buffer(dst, m->mac, sizeof(m->mac), &p);
return dst;
}
enum onion_type parse_onionpacket(const u8 *src,
const size_t srclen,
struct onionpacket *dest)
{
int p = 0;
u8 rawEphemeralkey[PUBKEY_CMPR_LEN];
assert(srclen == TOTAL_PACKET_SIZE);
read_buffer(&dest->version, src, 1, &p);
if (dest->version != 0x00) {
// FIXME add logging
return WIRE_INVALID_ONION_VERSION;
}
read_buffer(rawEphemeralkey, src, sizeof(rawEphemeralkey), &p);
if (!pubkey_from_der(rawEphemeralkey, sizeof(rawEphemeralkey),
&dest->ephemeralkey)) {
return WIRE_INVALID_ONION_KEY;
}
read_buffer(&dest->routinginfo, src, ROUTING_INFO_SIZE, &p);
read_buffer(&dest->mac, src, HMAC_SIZE, &p);
return 0;
}
static void xorbytes(uint8_t *d, const uint8_t *a, const uint8_t *b, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
d[i] = a[i] ^ b[i];
}
/*
* Generate a pseudo-random byte stream of length `dstlen` from key `k` and
* store it in `dst`. `dst must be at least `dstlen` bytes long.
*/
static void generate_cipher_stream(void *dst, const u8 *k, size_t dstlen)
{
const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
crypto_stream_chacha20(dst, dstlen, nonce, k);
}
/* xor cipher stream into dst */
static void xor_cipher_stream(void *dst, const u8 *k, size_t dstlen)
{
const u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
crypto_stream_chacha20_xor(dst, dst, dstlen, nonce, k);
}
static bool compute_hmac(
void *dst,
const void *src,
size_t len,
const void *key,
size_t keylen)
{
crypto_auth_hmacsha256_state state;
crypto_auth_hmacsha256_init(&state, key, keylen);
crypto_auth_hmacsha256_update(&state, memcheck(src, len), len);
crypto_auth_hmacsha256_final(&state, dst);
return true;
}
static void compute_packet_hmac(const struct onionpacket *packet,
const u8 *assocdata, const size_t assocdatalen,
u8 *mukey, u8 *hmac)
{
u8 mactemp[ROUTING_INFO_SIZE + assocdatalen];
u8 mac[32];
int pos = 0;
write_buffer(mactemp, packet->routinginfo, ROUTING_INFO_SIZE, &pos);
write_buffer(mactemp, assocdata, assocdatalen, &pos);
compute_hmac(mac, mactemp, sizeof(mactemp), mukey, KEY_LEN);
memcpy(hmac, mac, HMAC_SIZE);
}
static bool generate_key(void *k, const char *t, u8 tlen,
const struct secret *s)
{
return compute_hmac(k, s->data, KEY_LEN, t, tlen);
}
static bool generate_header_padding(void *dst, size_t dstlen,
const struct sphinx_path *path,
struct hop_params *params)
{
u8 stream[2 * ROUTING_INFO_SIZE];
u8 key[KEY_LEN];
size_t fillerStart, fillerEnd, fillerSize;
memset(dst, 0, dstlen);
for (int i = 0; i < tal_count(path->hops) - 1; i++) {
if (!generate_key(&key, RHO_KEYTYPE, strlen(RHO_KEYTYPE),
&params[i].secret))
return false;
generate_cipher_stream(stream, key, sizeof(stream));
/* Sum up how many bytes have been used by previous hops,
* that gives us the start in the stream */
fillerSize = 0;
for (int j = 0; j < i; j++)
fillerSize += sphinx_hop_size(&path->hops[j]);
fillerStart = ROUTING_INFO_SIZE - fillerSize;
/* The filler will dangle off of the end by the current
* hop-size, we'll make sure to copy it into the correct
* position in the next step. */
fillerEnd = ROUTING_INFO_SIZE + sphinx_hop_size(&path->hops[i]);
/* Apply the cipher-stream to the part of the filler that'll
* be added by this hop */
xorbytes(dst, dst, stream + fillerStart,
fillerEnd - fillerStart);
}
return true;
}
static void compute_blinding_factor(const struct pubkey *key,
const struct secret *sharedsecret,
u8 res[BLINDING_FACTOR_SIZE])
{
struct sha256_ctx ctx;
u8 der[PUBKEY_CMPR_LEN];
struct sha256 temp;
pubkey_to_der(der, key);
sha256_init(&ctx);
sha256_update(&ctx, der, sizeof(der));
sha256_update(&ctx, sharedsecret->data, sizeof(sharedsecret->data));
sha256_done(&ctx, &temp);
memcpy(res, &temp, 32);
}
static bool blind_group_element(struct pubkey *blindedelement,
const struct pubkey *pubkey,
const u8 blind[BLINDING_FACTOR_SIZE])
{
/* tweak_mul is inplace so copy first. */
if (pubkey != blindedelement)
*blindedelement = *pubkey;
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx,
&blindedelement->pubkey, blind) != 1)
return false;
return true;
}
static bool create_shared_secret(struct secret *secret,
const struct pubkey *pubkey,
const struct secret *session_key)
{
if (secp256k1_ecdh(secp256k1_ctx, secret->data, &pubkey->pubkey,
session_key->data, NULL, NULL) != 1)
return false;
return true;
}
bool onion_shared_secret(
struct secret *secret,
const struct onionpacket *packet,
const struct privkey *privkey)
{
return create_shared_secret(secret, &packet->ephemeralkey,
&privkey->secret);
}
static void generate_key_set(const struct secret *secret,
struct keyset *keys)
{
generate_key(keys->rho, "rho", 3, secret);
generate_key(keys->pi, "pi", 2, secret);
generate_key(keys->mu, "mu", 2, secret);
generate_key(keys->gamma, "gamma", 5, secret);
}
static struct hop_params *generate_hop_params(
const tal_t *ctx,
const u8 *sessionkey,
struct sphinx_path *path)
{
int i, j, num_hops = tal_count(path->hops);
struct pubkey temp;
u8 blind[BLINDING_FACTOR_SIZE];
struct hop_params *params = tal_arr(ctx, struct hop_params, num_hops);
/* Initialize the first hop with the raw information */
if (secp256k1_ec_pubkey_create(secp256k1_ctx,
&params[0].ephemeralkey.pubkey,
path->session_key->data) != 1)
return NULL;
if (!create_shared_secret(&params[0].secret, &path->hops[0].pubkey,
path->session_key))
return NULL;
compute_blinding_factor(
&params[0].ephemeralkey, &params[0].secret,
params[0].blind);
/* Recursively compute all following ephemeral public keys,
* secrets and blinding factors
*/
for (i = 1; i < num_hops; i++) {
if (!blind_group_element(
&params[i].ephemeralkey,
&params[i - 1].ephemeralkey,
params[i - 1].blind))
return NULL;
/* Blind this hop's point with all previous blinding factors
* Order is indifferent, multiplication is commutative.
*/
memcpy(&blind, sessionkey, 32);
temp = path->hops[i].pubkey;
if (!blind_group_element(&temp, &temp, blind))
return NULL;
for (j = 0; j < i; j++)
if (!blind_group_element(
&temp,
&temp,
params[j].blind))
return NULL;
/* Now hash temp and store it. This requires us to
* DER-serialize first and then skip the sign byte.
*/
u8 der[PUBKEY_CMPR_LEN];
pubkey_to_der(der, &temp);
struct sha256 h;
sha256(&h, der, sizeof(der));
memcpy(&params[i].secret, &h, sizeof(h));
compute_blinding_factor(
&params[i].ephemeralkey,
&params[i].secret, params[i].blind);
}
return params;
}
static void sphinx_write_frame(u8 *dest, const struct sphinx_hop *hop)
{
memcpy(dest, hop->raw_payload, tal_bytelen(hop->raw_payload));
memcpy(dest + tal_bytelen(hop->raw_payload), hop->hmac, HMAC_SIZE);
}
struct onionpacket *create_onionpacket(
const tal_t *ctx,
struct sphinx_path *sp,
struct secret **path_secrets
)
{
struct onionpacket *packet = talz(ctx, struct onionpacket);
int i, num_hops = tal_count(sp->hops);
size_t fillerSize = sphinx_path_payloads_size(sp) -
sphinx_hop_size(&sp->hops[num_hops - 1]);
u8 filler[fillerSize];
struct keyset keys;
u8 padkey[KEY_LEN];
u8 nexthmac[HMAC_SIZE];
struct hop_params *params;
struct secret *secrets = tal_arr(ctx, struct secret, num_hops);
if (sphinx_path_payloads_size(sp) > ROUTING_INFO_SIZE) {
tal_free(packet);
tal_free(secrets);
return NULL;
}
if (sp->session_key == NULL) {
sp->session_key = tal(sp, struct secret);
randombytes_buf(sp->session_key, sizeof(struct secret));
}
params = generate_hop_params(ctx, sp->session_key->data, sp);
if (!params) {
tal_free(packet);
tal_free(secrets);
return NULL;
}
packet->version = 0;
memset(nexthmac, 0, HMAC_SIZE);
/* BOLT-e116441ee836447ac3f24cdca62bac1e0f223d5f #4:
*
* The packet is initialized with 1366 _random_ bytes derived from a
* CSPRNG.
*/
/* Note that this is just hop_payloads: the rest of the packet is
* overwritten below or above anyway. */
generate_key(padkey, "pad", 3, sp->session_key);
generate_cipher_stream(packet->routinginfo, padkey, ROUTING_INFO_SIZE);
generate_header_padding(filler, sizeof(filler), sp, params);
for (i = num_hops - 1; i >= 0; i--) {
memcpy(sp->hops[i].hmac, nexthmac, HMAC_SIZE);
generate_key_set(&params[i].secret, &keys);
/* Rightshift mix-header by FRAME_SIZE */
size_t shiftSize = sphinx_hop_size(&sp->hops[i]);
memmove(packet->routinginfo + shiftSize, packet->routinginfo,
ROUTING_INFO_SIZE-shiftSize);
sphinx_write_frame(packet->routinginfo, &sp->hops[i]);
xor_cipher_stream(packet->routinginfo, keys.rho,
ROUTING_INFO_SIZE);
if (i == num_hops - 1) {
memcpy(packet->routinginfo + ROUTING_INFO_SIZE - fillerSize, filler, fillerSize);
}
compute_packet_hmac(packet, sp->associated_data, tal_bytelen(sp->associated_data), keys.mu,
nexthmac);
}
memcpy(packet->mac, nexthmac, sizeof(nexthmac));
memcpy(&packet->ephemeralkey, &params[0].ephemeralkey, sizeof(secp256k1_pubkey));
for (i=0; i<num_hops; i++) {
secrets[i] = params[i].secret;
}
*path_secrets = secrets;
return packet;
}
#if DEVELOPER
bool dev_fail_process_onionpacket;
#endif
/*
* Given an onionpacket msg extract the information for the current
* node and unwrap the remainder so that the node can forward it.
*/
struct route_step *process_onionpacket(
const tal_t *ctx,
const struct onionpacket *msg,
const struct secret *shared_secret,
const u8 *assocdata,
const size_t assocdatalen
)
{
struct route_step *step = talz(ctx, struct route_step);
u8 hmac[HMAC_SIZE];
struct keyset keys;
u8 blind[BLINDING_FACTOR_SIZE];
u8 paddedheader[2*ROUTING_INFO_SIZE];
size_t payload_size;
bigsize_t shift_size;
bool valid;
step->next = talz(step, struct onionpacket);
step->next->version = msg->version;
generate_key_set(shared_secret, &keys);
compute_packet_hmac(msg, assocdata, assocdatalen, keys.mu, hmac);
if (memcmp(msg->mac, hmac, sizeof(hmac)) != 0
|| IFDEV(dev_fail_process_onionpacket, false)) {
/* Computed MAC does not match expected MAC, the message was modified. */
return tal_free(step);
}
//FIXME:store seen secrets to avoid replay attacks
memset(paddedheader, 0, sizeof(paddedheader));
memcpy(paddedheader, msg->routinginfo, ROUTING_INFO_SIZE);
xor_cipher_stream(paddedheader, keys.rho, sizeof(paddedheader));
compute_blinding_factor(&msg->ephemeralkey, shared_secret, blind);
if (!blind_group_element(&step->next->ephemeralkey, &msg->ephemeralkey, blind))
return tal_free(step);
payload_size = onion_payload_length(paddedheader, ROUTING_INFO_SIZE,
&valid, NULL);
/* Can't decode? Treat it as terminal. */
if (!valid) {
shift_size = payload_size;
memset(step->next->mac, 0, sizeof(step->next->mac));
} else {
assert(payload_size <= ROUTING_INFO_SIZE - HMAC_SIZE);
/* Copy hmac */
shift_size = payload_size + HMAC_SIZE;
memcpy(step->next->mac, paddedheader + payload_size, HMAC_SIZE);
}
step->raw_payload = tal_dup_arr(step, u8, paddedheader, payload_size, 0);
/* Left shift the current payload out and make the remainder the new onion */
memcpy(&step->next->routinginfo, paddedheader + shift_size,
ROUTING_INFO_SIZE);
if (memeqzero(step->next->mac, sizeof(step->next->mac))) {
step->nextcase = ONION_END;
} else {
step->nextcase = ONION_FORWARD;
}
return step;
}
struct onionreply *create_onionreply(const tal_t *ctx,
const struct secret *shared_secret,
const u8 *failure_msg)
{
size_t msglen = tal_count(failure_msg);
size_t padlen = ONION_REPLY_SIZE - msglen;
struct onionreply *reply = tal(ctx, struct onionreply);
u8 *payload = tal_arr(ctx, u8, 0);
u8 key[KEY_LEN];
u8 hmac[HMAC_SIZE];
/* BOLT #4:
*
* The node generating the error message (_erring node_) builds a return
* packet consisting of
* the following fields:
*
* 1. data:
* * [`32*byte`:`hmac`]
* * [`u16`:`failure_len`]
* * [`failure_len*byte`:`failuremsg`]
* * [`u16`:`pad_len`]
* * [`pad_len*byte`:`pad`]
*/
towire_u16(&payload, msglen);
towire(&payload, failure_msg, msglen);
towire_u16(&payload, padlen);
towire_pad(&payload, padlen);
/* BOLT #4:
*
* The _erring node_:
* - SHOULD set `pad` such that the `failure_len` plus `pad_len` is
* equal to 256.
* - Note: this value is 118 bytes longer than the longest
* currently-defined message.
*/
assert(tal_count(payload) == ONION_REPLY_SIZE + 4);
/* BOLT #4:
*
* Where `hmac` is an HMAC authenticating the remainder of the packet,
* with a key generated using the above process, with key type `um`
*/
generate_key(key, "um", 2, shared_secret);
compute_hmac(hmac, payload, tal_count(payload), key, KEY_LEN);
reply->contents = tal_arr(reply, u8, 0),
towire(&reply->contents, hmac, sizeof(hmac));
towire(&reply->contents, payload, tal_count(payload));
tal_free(payload);
return reply;
}
struct onionreply *wrap_onionreply(const tal_t *ctx,
const struct secret *shared_secret,
const struct onionreply *reply)
{
u8 key[KEY_LEN];
struct onionreply *result = tal(ctx, struct onionreply);
/* BOLT #4:
*
* The erring node then generates a new key, using the key type `ammag`.
* This key is then used to generate a pseudo-random stream, which is
* in turn applied to the packet using `XOR`.
*
* The obfuscation step is repeated by every hop along the return path.
*/
generate_key(key, "ammag", 5, shared_secret);
result->contents = tal_dup_talarr(result, u8, reply->contents);
xor_cipher_stream(result->contents, key, tal_bytelen(result->contents));
return result;
}
u8 *unwrap_onionreply(const tal_t *ctx,
const struct secret *shared_secrets,
const int numhops,
const struct onionreply *reply,
int *origin_index)
{
struct onionreply *r;
u8 key[KEY_LEN], hmac[HMAC_SIZE];
const u8 *cursor;
u8 *final;
size_t max;
u16 msglen;
if (tal_count(reply->contents) != ONION_REPLY_SIZE + sizeof(hmac) + 4) {
return NULL;
}
r = new_onionreply(tmpctx, reply->contents);
*origin_index = -1;
for (int i = 0; i < numhops; i++) {
/* Since the encryption is just XORing with the cipher
* stream encryption is identical to decryption */
r = wrap_onionreply(tmpctx, &shared_secrets[i], r);
/* Check if the HMAC matches, this means that this is
* the origin */
generate_key(key, "um", 2, &shared_secrets[i]);
compute_hmac(hmac, r->contents + sizeof(hmac),
tal_count(r->contents) - sizeof(hmac),
key, KEY_LEN);
if (memcmp(hmac, r->contents, sizeof(hmac)) == 0) {
*origin_index = i;
break;
}
}
if (*origin_index == -1) {
return NULL;
}
cursor = r->contents + sizeof(hmac);
max = tal_count(r->contents) - sizeof(hmac);
msglen = fromwire_u16(&cursor, &max);
if (msglen > ONION_REPLY_SIZE) {
return NULL;
}
final = tal_arr(ctx, u8, msglen);
if (!fromwire(&cursor, &max, final, msglen))
return tal_free(final);
return final;
}