You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1546 lines
50 KiB
1546 lines
50 KiB
/*~ Welcome to the opening daemon: gateway to channels!
|
|
*
|
|
* This daemon handles a single peer. It's happy to trade gossip with the
|
|
* peer until either lightningd asks it to fund a channel, or the peer itself
|
|
* asks to fund a channel. Then it goes through with the channel opening
|
|
* negotiations. It's important to note that until this negotiation is complete,
|
|
* there's nothing permanent about the channel: lightningd will only have to
|
|
* commit to the database once openingd succeeds.
|
|
*/
|
|
#include <bitcoin/block.h>
|
|
#include <bitcoin/chainparams.h>
|
|
#include <bitcoin/privkey.h>
|
|
#include <bitcoin/script.h>
|
|
#include <ccan/array_size/array_size.h>
|
|
#include <ccan/breakpoint/breakpoint.h>
|
|
#include <ccan/cast/cast.h>
|
|
#include <ccan/fdpass/fdpass.h>
|
|
#include <ccan/tal/str/str.h>
|
|
#include <common/crypto_sync.h>
|
|
#include <common/derive_basepoints.h>
|
|
#include <common/features.h>
|
|
#include <common/funding_tx.h>
|
|
#include <common/gen_peer_status_wire.h>
|
|
#include <common/gossip_rcvd_filter.h>
|
|
#include <common/gossip_store.h>
|
|
#include <common/initial_channel.h>
|
|
#include <common/key_derive.h>
|
|
#include <common/memleak.h>
|
|
#include <common/overflows.h>
|
|
#include <common/peer_billboard.h>
|
|
#include <common/peer_failed.h>
|
|
#include <common/pseudorand.h>
|
|
#include <common/read_peer_msg.h>
|
|
#include <common/status.h>
|
|
#include <common/subdaemon.h>
|
|
#include <common/type_to_string.h>
|
|
#include <common/version.h>
|
|
#include <common/wire_error.h>
|
|
#include <errno.h>
|
|
#include <gossipd/gen_gossip_peerd_wire.h>
|
|
#include <hsmd/gen_hsm_wire.h>
|
|
#include <inttypes.h>
|
|
#include <openingd/gen_opening_wire.h>
|
|
#include <poll.h>
|
|
#include <secp256k1.h>
|
|
#include <stdio.h>
|
|
#include <wally_bip32.h>
|
|
#include <wire/gen_peer_wire.h>
|
|
#include <wire/peer_wire.h>
|
|
#include <wire/wire.h>
|
|
#include <wire/wire_sync.h>
|
|
|
|
/* stdin == lightningd, 3 == peer, 4 == gossipd, 5 = gossip_store, 6 = hsmd */
|
|
#define REQ_FD STDIN_FILENO
|
|
#define HSM_FD 6
|
|
|
|
/* Global state structure. This is only for the one specific peer and channel */
|
|
struct state {
|
|
struct per_peer_state *pps;
|
|
|
|
/* Features they offered */
|
|
u8 *localfeatures;
|
|
|
|
/* Constraints on a channel they open. */
|
|
u32 minimum_depth;
|
|
u32 min_feerate, max_feerate;
|
|
struct amount_msat min_effective_htlc_capacity;
|
|
|
|
/* Limits on what remote config we accept. */
|
|
u32 max_to_self_delay;
|
|
|
|
/* These are the points lightningd told us to use when accepting or
|
|
* opening a channel. */
|
|
struct basepoints our_points;
|
|
struct pubkey our_funding_pubkey;
|
|
|
|
/* Information we need between funding_start and funding_complete */
|
|
struct basepoints their_points;
|
|
struct pubkey their_funding_pubkey;
|
|
|
|
/* hsmd gives us our first per-commitment point, and peer tells us
|
|
* theirs */
|
|
struct pubkey first_per_commitment_point[NUM_SIDES];
|
|
|
|
/* Initially temporary, then final channel id. */
|
|
struct channel_id channel_id;
|
|
|
|
/* Funding and feerate: set by opening peer. */
|
|
struct amount_sat funding;
|
|
struct amount_msat push_msat;
|
|
u32 feerate_per_kw;
|
|
struct bitcoin_txid funding_txid;
|
|
u16 funding_txout;
|
|
/* If set, this is the scriptpubkey they *must* close with */
|
|
u8 *remote_upfront_shutdown_script;
|
|
|
|
/* This is a cluster of fields in open_channel and accept_channel which
|
|
* indicate the restrictions each side places on the channel. */
|
|
struct channel_config localconf, remoteconf;
|
|
|
|
/* The channel structure, as defined in common/initial_channel.h. While
|
|
* the structure has room for HTLCs, those routines are channeld-specific
|
|
* as initial channels never have HTLCs. */
|
|
struct channel *channel;
|
|
|
|
/* Which chain we're on, so we can check/set `chain_hash` fields */
|
|
const struct chainparams *chainparams;
|
|
bool option_static_remotekey;
|
|
};
|
|
|
|
static const u8 *dev_upfront_shutdown_script(const tal_t *ctx)
|
|
{
|
|
#if DEVELOPER
|
|
/* This is a hack, for feature testing */
|
|
const char *e = getenv("DEV_OPENINGD_UPFRONT_SHUTDOWN_SCRIPT");
|
|
if (e)
|
|
return tal_hexdata(ctx, e, strlen(e));
|
|
#endif
|
|
return NULL;
|
|
}
|
|
|
|
/*~ If we can't agree on parameters, we fail to open the channel. If we're
|
|
* the funder, we need to tell lightningd, otherwise it never really notices. */
|
|
static void negotiation_aborted(struct state *state, bool am_funder,
|
|
const char *why)
|
|
{
|
|
status_debug("aborted opening negotiation: %s", why);
|
|
/*~ The "billboard" (exposed as "status" in the JSON listpeers RPC
|
|
* call) is a transient per-channel area which indicates important
|
|
* information about what is happening. It has a "permanent" area for
|
|
* each state, which can be used to indicate what went wrong in that
|
|
* state (such as here), and a single transient area for current
|
|
* status. */
|
|
peer_billboard(true, why);
|
|
|
|
/* If necessary, tell master that funding failed. */
|
|
if (am_funder) {
|
|
u8 *msg = towire_opening_funder_failed(NULL, why);
|
|
wire_sync_write(REQ_FD, take(msg));
|
|
}
|
|
|
|
/*~ Reset state. We keep gossipping with them, even though this open
|
|
* failed. */
|
|
memset(&state->channel_id, 0, sizeof(state->channel_id));
|
|
state->channel = tal_free(state->channel);
|
|
}
|
|
|
|
/*~ For negotiation failures: we tell them the parameter we didn't like. */
|
|
static void negotiation_failed(struct state *state, bool am_funder,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
const char *errmsg;
|
|
u8 *msg;
|
|
|
|
va_start(ap, fmt);
|
|
errmsg = tal_vfmt(tmpctx, fmt, ap);
|
|
va_end(ap);
|
|
|
|
msg = towire_errorfmt(NULL, &state->channel_id,
|
|
"You gave bad parameters: %s", errmsg);
|
|
sync_crypto_write(state->pps, take(msg));
|
|
|
|
negotiation_aborted(state, am_funder, errmsg);
|
|
}
|
|
|
|
/*~ This is the key function that checks that their configuration is reasonable:
|
|
* it applied for both the case where they're trying to open a channel, and when
|
|
* they've accepted our open. */
|
|
static bool check_config_bounds(struct state *state,
|
|
const struct channel_config *remoteconf,
|
|
bool am_funder)
|
|
{
|
|
struct amount_sat capacity;
|
|
struct amount_sat reserve;
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
*...
|
|
* - `to_self_delay` is unreasonably large.
|
|
*/
|
|
if (remoteconf->to_self_delay > state->max_to_self_delay) {
|
|
negotiation_failed(state, am_funder,
|
|
"to_self_delay %u larger than %u",
|
|
remoteconf->to_self_delay,
|
|
state->max_to_self_delay);
|
|
return false;
|
|
}
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MAY fail the channel if:
|
|
*...
|
|
* - `funding_satoshis` is too small.
|
|
* - it considers `htlc_minimum_msat` too large.
|
|
* - it considers `max_htlc_value_in_flight_msat` too small.
|
|
* - it considers `channel_reserve_satoshis` too large.
|
|
* - it considers `max_accepted_htlcs` too small.
|
|
*/
|
|
/* We accumulate this into an effective bandwidth minimum. */
|
|
|
|
/* Add both reserves to deduct from capacity. */
|
|
if (!amount_sat_add(&reserve,
|
|
remoteconf->channel_reserve,
|
|
state->localconf.channel_reserve)) {
|
|
negotiation_failed(state, am_funder,
|
|
"channel_reserve_satoshis %s"
|
|
" too large",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&remoteconf->channel_reserve));
|
|
return false;
|
|
}
|
|
|
|
/* If reserves are larger than total sat, we fail. */
|
|
if (!amount_sat_sub(&capacity, state->funding, reserve)) {
|
|
negotiation_failed(state, am_funder,
|
|
"channel_reserve_satoshis %s"
|
|
" and %s too large for funding %s",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&remoteconf->channel_reserve),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->localconf.channel_reserve),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->funding));
|
|
return false;
|
|
}
|
|
|
|
/* If they set the max HTLC value to less than that number, it caps
|
|
* the channel capacity. */
|
|
if (amount_sat_greater(capacity,
|
|
amount_msat_to_sat_round_down(remoteconf->max_htlc_value_in_flight)))
|
|
capacity = amount_msat_to_sat_round_down(remoteconf->max_htlc_value_in_flight);
|
|
|
|
/* If the minimum htlc is greater than the capacity, the channel is
|
|
* useless. */
|
|
if (amount_msat_greater_sat(remoteconf->htlc_minimum, capacity)) {
|
|
negotiation_failed(state, am_funder,
|
|
"htlc_minimum_msat %s"
|
|
" too large for funding %s"
|
|
" capacity_msat %s",
|
|
type_to_string(tmpctx, struct amount_msat,
|
|
&remoteconf->htlc_minimum),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->funding),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&capacity));
|
|
return false;
|
|
}
|
|
|
|
/* If the resulting channel doesn't meet our minimum "effective capacity"
|
|
* set by lightningd, don't bother opening it. */
|
|
if (amount_msat_greater_sat(state->min_effective_htlc_capacity,
|
|
capacity)) {
|
|
negotiation_failed(state, am_funder,
|
|
"channel capacity with funding %s,"
|
|
" reserves %s/%s,"
|
|
" max_htlc_value_in_flight_msat is %s,"
|
|
" channel capacity is %s, which is below %s",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->funding),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&remoteconf->channel_reserve),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->localconf.channel_reserve),
|
|
type_to_string(tmpctx, struct amount_msat,
|
|
&remoteconf->max_htlc_value_in_flight),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&capacity),
|
|
type_to_string(tmpctx, struct amount_msat,
|
|
&state->min_effective_htlc_capacity));
|
|
return false;
|
|
}
|
|
|
|
/* We don't worry about how many HTLCs they accept, as long as > 0! */
|
|
if (remoteconf->max_accepted_htlcs == 0) {
|
|
negotiation_failed(state, am_funder,
|
|
"max_accepted_htlcs %u invalid",
|
|
remoteconf->max_accepted_htlcs);
|
|
return false;
|
|
}
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
*...
|
|
* - `max_accepted_htlcs` is greater than 483.
|
|
*/
|
|
if (remoteconf->max_accepted_htlcs > 483) {
|
|
negotiation_failed(state, am_funder,
|
|
"max_accepted_htlcs %u too large",
|
|
remoteconf->max_accepted_htlcs);
|
|
return false;
|
|
}
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
*...
|
|
* - `dust_limit_satoshis` is greater than `channel_reserve_satoshis`.
|
|
*/
|
|
if (amount_sat_greater(remoteconf->dust_limit,
|
|
remoteconf->channel_reserve)) {
|
|
negotiation_failed(state, am_funder,
|
|
"dust_limit_satoshis %s"
|
|
" too large for channel_reserve_satoshis %s",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&remoteconf->dust_limit),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&remoteconf->channel_reserve));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* We always set channel_reserve_satoshis to 1%, rounded down. */
|
|
static void set_reserve(struct state *state)
|
|
{
|
|
state->localconf.channel_reserve.satoshis /* Raw: rounding. */
|
|
= state->funding.satoshis / 100; /* Raw: rounding. */
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The sending node:
|
|
*...
|
|
* - MUST set `channel_reserve_satoshis` greater than or equal to
|
|
* `dust_limit_satoshis`.
|
|
*/
|
|
if (amount_sat_greater(state->localconf.dust_limit,
|
|
state->localconf.channel_reserve))
|
|
state->localconf.channel_reserve
|
|
= state->localconf.dust_limit;
|
|
}
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The sending node:
|
|
*...
|
|
* - MUST ensure `temporary_channel_id` is unique from any other channel ID
|
|
* with the same peer.
|
|
*/
|
|
static void temporary_channel_id(struct channel_id *channel_id)
|
|
{
|
|
size_t i;
|
|
|
|
/* Randomness FTW. */
|
|
for (i = 0; i < sizeof(*channel_id); i++)
|
|
channel_id->id[i] = pseudorand(256);
|
|
}
|
|
|
|
/*~ Handle random messages we might get during opening negotiation, (eg. gossip)
|
|
* returning the first non-handled one, or NULL if we aborted negotiation. */
|
|
static u8 *opening_negotiate_msg(const tal_t *ctx, struct state *state,
|
|
bool am_funder)
|
|
{
|
|
/* This is an event loop of its own. That's generally considered poor
|
|
* form, but we use it in a very limited way. */
|
|
for (;;) {
|
|
u8 *msg;
|
|
bool from_gossipd;
|
|
char *err;
|
|
bool all_channels;
|
|
struct channel_id actual;
|
|
|
|
/* The event loop is responsible for freeing tmpctx, so our
|
|
* temporary allocations don't grow unbounded. */
|
|
clean_tmpctx();
|
|
|
|
/* This helper routine polls both the peer and gossipd. */
|
|
msg = peer_or_gossip_sync_read(ctx, state->pps, &from_gossipd);
|
|
|
|
/* Use standard helper for gossip msgs (forwards, if it's an
|
|
* error, exits). */
|
|
if (from_gossipd) {
|
|
handle_gossip_msg(state->pps, take(msg));
|
|
continue;
|
|
}
|
|
|
|
/* Some messages go straight to gossipd. */
|
|
if (is_msg_for_gossipd(msg)) {
|
|
gossip_rcvd_filter_add(state->pps->grf, msg);
|
|
wire_sync_write(state->pps->gossip_fd, take(msg));
|
|
continue;
|
|
}
|
|
|
|
/* BOLT #1:
|
|
*
|
|
* A receiving node:
|
|
* - upon receiving a message of _odd_, unknown type:
|
|
* - MUST ignore the received message.
|
|
*/
|
|
if (is_unknown_msg_discardable(msg))
|
|
continue;
|
|
|
|
/* Might be a timestamp filter request: handle. */
|
|
if (handle_timestamp_filter(state->pps, msg))
|
|
continue;
|
|
|
|
/* A helper which decodes an error. */
|
|
if (is_peer_error(tmpctx, msg, &state->channel_id,
|
|
&err, &all_channels)) {
|
|
/* BOLT #1:
|
|
*
|
|
* - if no existing channel is referred to by the
|
|
* message:
|
|
* - MUST ignore the message.
|
|
*/
|
|
/* In this case, is_peer_error returns true, but sets
|
|
* err to NULL */
|
|
if (!err) {
|
|
tal_free(msg);
|
|
continue;
|
|
}
|
|
/* Close connection on all_channels error. */
|
|
if (all_channels) {
|
|
if (am_funder) {
|
|
msg = towire_opening_funder_failed(NULL,
|
|
err);
|
|
wire_sync_write(REQ_FD, take(msg));
|
|
}
|
|
peer_failed_received_errmsg(state->pps, err,
|
|
NULL);
|
|
}
|
|
negotiation_aborted(state, am_funder,
|
|
tal_fmt(tmpctx, "They sent error %s",
|
|
err));
|
|
/* Return NULL so caller knows to stop negotiating. */
|
|
return NULL;
|
|
}
|
|
|
|
/*~ We do not support multiple "live" channels, though the
|
|
* protocol has a "channel_id" field in all non-gossip messages
|
|
* so it's possible. Our one-process-one-channel mechanism
|
|
* keeps things simple: if we wanted to change this, we would
|
|
* probably be best with another daemon to de-multiplex them;
|
|
* this could be connectd itself, in fact. */
|
|
if (is_wrong_channel(msg, &state->channel_id, &actual)) {
|
|
status_debug("Rejecting %s for unknown channel_id %s",
|
|
wire_type_name(fromwire_peektype(msg)),
|
|
type_to_string(tmpctx, struct channel_id,
|
|
&actual));
|
|
sync_crypto_write(state->pps,
|
|
take(towire_errorfmt(NULL, &actual,
|
|
"Multiple channels"
|
|
" unsupported")));
|
|
tal_free(msg);
|
|
continue;
|
|
}
|
|
|
|
/* If we get here, it's an interesting message. */
|
|
return msg;
|
|
}
|
|
}
|
|
|
|
static bool setup_channel_funder(struct state *state)
|
|
{
|
|
/*~ For symmetry, we calculate our own reserve even though lightningd
|
|
* could do it for the we-are-funding case. */
|
|
set_reserve(state);
|
|
|
|
/*~ Grab a random ID until the funding tx is created (we can't do that
|
|
* until we know their funding_pubkey) */
|
|
temporary_channel_id(&state->channel_id);
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The sending node:
|
|
*...
|
|
* - MUST set `funding_satoshis` to less than 2^24 satoshi.
|
|
*/
|
|
if (amount_sat_greater(state->funding, state->chainparams->max_funding)) {
|
|
status_failed(STATUS_FAIL_MASTER_IO,
|
|
"funding_satoshis must be < %s, not %s",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->chainparams->max_funding),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->funding));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* We start the 'fund a channel' negotation with the supplied peer, but
|
|
* stop when we get to the part where we need the funding txid */
|
|
static u8 *funder_channel_start(struct state *state,
|
|
u8 channel_flags)
|
|
{
|
|
u8 *msg;
|
|
u8 *funding_output_script;
|
|
struct channel_id id_in;
|
|
|
|
if (!setup_channel_funder(state))
|
|
return NULL;
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* - if both nodes advertised the `option_upfront_shutdown_script`
|
|
* feature:
|
|
* - MUST include either a valid `shutdown_scriptpubkey` as required
|
|
* by `shutdown` `scriptpubkey`, or a zero-length
|
|
* `shutdown_scriptpubkey`.
|
|
* - otherwise:
|
|
* - MAY include a`shutdown_scriptpubkey`.
|
|
*/
|
|
/* We don't use shutdown_scriptpubkey (at least for now), so leave it
|
|
* NULL. */
|
|
msg = towire_open_channel_option_upfront_shutdown_script(NULL,
|
|
&state->chainparams->genesis_blockhash,
|
|
&state->channel_id,
|
|
state->funding,
|
|
state->push_msat,
|
|
state->localconf.dust_limit,
|
|
state->localconf.max_htlc_value_in_flight,
|
|
state->localconf.channel_reserve,
|
|
state->localconf.htlc_minimum,
|
|
state->feerate_per_kw,
|
|
state->localconf.to_self_delay,
|
|
state->localconf.max_accepted_htlcs,
|
|
&state->our_funding_pubkey,
|
|
&state->our_points.revocation,
|
|
&state->our_points.payment,
|
|
&state->our_points.delayed_payment,
|
|
&state->our_points.htlc,
|
|
&state->first_per_commitment_point[LOCAL],
|
|
channel_flags,
|
|
dev_upfront_shutdown_script(tmpctx));
|
|
sync_crypto_write(state->pps, take(msg));
|
|
|
|
/* This is usually a very transient state... */
|
|
peer_billboard(false,
|
|
"Funding channel start: offered, now waiting for accept_channel");
|
|
|
|
/* ... since their reply should be immediate. */
|
|
msg = opening_negotiate_msg(tmpctx, state, true);
|
|
if (!msg)
|
|
return NULL;
|
|
|
|
/* Default is no shutdown_scriptpubkey: free any leftover one. */
|
|
state->remote_upfront_shutdown_script
|
|
= tal_free(state->remote_upfront_shutdown_script);
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
*...
|
|
* - `funding_pubkey`, `revocation_basepoint`, `htlc_basepoint`,
|
|
* `payment_basepoint`, or `delayed_payment_basepoint` are not
|
|
* valid DER-encoded compressed secp256k1 pubkeys.
|
|
*/
|
|
if (local_feature_negotiated(state->localfeatures,
|
|
LOCAL_UPFRONT_SHUTDOWN_SCRIPT)) {
|
|
if (!fromwire_accept_channel_option_upfront_shutdown_script(state,
|
|
msg, &id_in,
|
|
&state->remoteconf.dust_limit,
|
|
&state->remoteconf.max_htlc_value_in_flight,
|
|
&state->remoteconf.channel_reserve,
|
|
&state->remoteconf.htlc_minimum,
|
|
&state->minimum_depth,
|
|
&state->remoteconf.to_self_delay,
|
|
&state->remoteconf.max_accepted_htlcs,
|
|
&state->their_funding_pubkey,
|
|
&state->their_points.revocation,
|
|
&state->their_points.payment,
|
|
&state->their_points.delayed_payment,
|
|
&state->their_points.htlc,
|
|
&state->first_per_commitment_point[REMOTE],
|
|
&state->remote_upfront_shutdown_script))
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Parsing accept_channel with option_upfront_shutdown_script %s", tal_hex(msg, msg));
|
|
} else if (!fromwire_accept_channel(msg, &id_in,
|
|
&state->remoteconf.dust_limit,
|
|
&state->remoteconf.max_htlc_value_in_flight,
|
|
&state->remoteconf.channel_reserve,
|
|
&state->remoteconf.htlc_minimum,
|
|
&state->minimum_depth,
|
|
&state->remoteconf.to_self_delay,
|
|
&state->remoteconf.max_accepted_htlcs,
|
|
&state->their_funding_pubkey,
|
|
&state->their_points.revocation,
|
|
&state->their_points.payment,
|
|
&state->their_points.delayed_payment,
|
|
&state->their_points.htlc,
|
|
&state->first_per_commitment_point[REMOTE]))
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Parsing accept_channel %s", tal_hex(msg, msg));
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The `temporary_channel_id` MUST be the same as the
|
|
* `temporary_channel_id` in the `open_channel` message. */
|
|
if (!channel_id_eq(&id_in, &state->channel_id))
|
|
/* In this case we exit, since we don't know what's going on. */
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"accept_channel ids don't match: sent %s got %s",
|
|
type_to_string(msg, struct channel_id, &id_in),
|
|
type_to_string(msg, struct channel_id,
|
|
&state->channel_id));
|
|
|
|
if (amount_sat_greater(state->remoteconf.dust_limit,
|
|
state->localconf.channel_reserve)) {
|
|
negotiation_failed(state, true,
|
|
"dust limit %s"
|
|
" would be above our reserve %s",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->remoteconf.dust_limit),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->localconf.channel_reserve));
|
|
return NULL;
|
|
}
|
|
|
|
if (!check_config_bounds(state, &state->remoteconf, true))
|
|
return NULL;
|
|
|
|
funding_output_script =
|
|
scriptpubkey_p2wsh(tmpctx,
|
|
bitcoin_redeem_2of2(tmpctx,
|
|
&state->our_funding_pubkey,
|
|
&state->their_funding_pubkey));
|
|
|
|
/* Update the billboard with our infos */
|
|
peer_billboard(false,
|
|
"Funding channel start: awaiting funding_txid with output to %s",
|
|
tal_hex(tmpctx, funding_output_script));
|
|
return towire_opening_funder_start_reply(state, funding_output_script);
|
|
}
|
|
|
|
static bool funder_finalize_channel_setup(struct state *state,
|
|
struct amount_msat local_msat,
|
|
struct bitcoin_signature *sig,
|
|
struct bitcoin_tx **tx)
|
|
{
|
|
u8 *msg;
|
|
struct channel_id id_in;
|
|
const u8 *wscript;
|
|
char *err_reason;
|
|
|
|
/*~ Now we can initialize the `struct channel`. This represents
|
|
* the current channel state and is how we can generate the current
|
|
* commitment transaction.
|
|
*
|
|
* The routines to support `struct channel` are split into a common
|
|
* part (common/initial_channel) which doesn't support HTLCs and is
|
|
* enough for us here, and the complete channel support required by
|
|
* `channeld` which lives in channeld/full_channel. */
|
|
state->channel = new_initial_channel(state,
|
|
&state->chainparams->genesis_blockhash,
|
|
&state->funding_txid,
|
|
state->funding_txout,
|
|
state->minimum_depth,
|
|
state->funding,
|
|
local_msat,
|
|
state->feerate_per_kw,
|
|
&state->localconf,
|
|
&state->remoteconf,
|
|
&state->our_points,
|
|
&state->their_points,
|
|
&state->our_funding_pubkey,
|
|
&state->their_funding_pubkey,
|
|
state->option_static_remotekey,
|
|
/* Opener is local */
|
|
LOCAL);
|
|
/* We were supposed to do enough checks above, but just in case,
|
|
* new_initial_channel will fail to create absurd channels */
|
|
if (!state->channel)
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"could not create channel with given config");
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* ### The `funding_created` Message
|
|
*
|
|
* This message describes the outpoint which the funder has created
|
|
* for the initial commitment transactions. After receiving the
|
|
* peer's signature, via `funding_signed`, it will broadcast the funding
|
|
* transaction.
|
|
*/
|
|
/* This gives us their first commitment transaction. */
|
|
*tx = initial_channel_tx(state, &wscript, state->channel,
|
|
&state->first_per_commitment_point[REMOTE],
|
|
REMOTE, &err_reason);
|
|
if (!*tx) {
|
|
/* This should not happen: we should never create channels we
|
|
* can't afford the fees for after reserve. */
|
|
negotiation_failed(state, true,
|
|
"Could not meet their fees and reserve: %s", err_reason);
|
|
goto fail;
|
|
}
|
|
|
|
/* We ask the HSM to sign their commitment transaction for us: it knows
|
|
* our funding key, it just needs the remote funding key to create the
|
|
* witness script. It also needs the amount of the funding output,
|
|
* as segwit signatures commit to that as well, even though it doesn't
|
|
* explicitly appear in the transaction itself. */
|
|
msg = towire_hsm_sign_remote_commitment_tx(NULL,
|
|
*tx,
|
|
&state->channel->funding_pubkey[REMOTE],
|
|
state->channel->funding);
|
|
|
|
wire_sync_write(HSM_FD, take(msg));
|
|
msg = wire_sync_read(tmpctx, HSM_FD);
|
|
if (!fromwire_hsm_sign_tx_reply(msg, sig))
|
|
status_failed(STATUS_FAIL_HSM_IO, "Bad sign_tx_reply %s",
|
|
tal_hex(tmpctx, msg));
|
|
|
|
/* You can tell this has been a problem before, since there's a debug
|
|
* message here: */
|
|
status_debug("signature %s on tx %s using key %s",
|
|
type_to_string(tmpctx, struct bitcoin_signature, sig),
|
|
type_to_string(tmpctx, struct bitcoin_tx, *tx),
|
|
type_to_string(tmpctx, struct pubkey,
|
|
&state->our_funding_pubkey));
|
|
|
|
/* Now we give our peer the signature for their first commitment
|
|
* transaction. */
|
|
msg = towire_funding_created(state, &state->channel_id,
|
|
&state->funding_txid,
|
|
state->funding_txout,
|
|
&sig->s);
|
|
sync_crypto_write(state->pps, msg);
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* ### The `funding_signed` Message
|
|
*
|
|
* This message gives the funder the signature it needs for the first
|
|
* commitment transaction, so it can broadcast the transaction knowing
|
|
* that funds can be redeemed, if need be.
|
|
*/
|
|
peer_billboard(false,
|
|
"Funding channel: create first tx, now waiting for their signature");
|
|
|
|
/* Now they send us their signature for that first commitment
|
|
* transaction. */
|
|
msg = opening_negotiate_msg(tmpctx, state, true);
|
|
if (!msg)
|
|
goto fail;
|
|
|
|
sig->sighash_type = SIGHASH_ALL;
|
|
if (!fromwire_funding_signed(msg, &id_in, &sig->s))
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Parsing funding_signed: %s", tal_hex(msg, msg));
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* This message introduces the `channel_id` to identify the channel.
|
|
* It's derived from the funding transaction by combining the
|
|
* `funding_txid` and the `funding_output_index`, using big-endian
|
|
* exclusive-OR (i.e. `funding_output_index` alters the last 2
|
|
* bytes).
|
|
*/
|
|
|
|
/*~ Back in Milan, we chose to allow multiple channels between peers in
|
|
* the protocol. I insisted that we multiplex these over the same
|
|
* socket, and (even though I didn't plan on implementing it anytime
|
|
* soon) that we put it into the first version of the protocol
|
|
* because it would be painful to add in later.
|
|
*
|
|
* My logic seemed sound: we treat new connections as an implication
|
|
* that the old connection has disconnected, which happens more often
|
|
* than you'd hope on modern networks. However, supporting multiple
|
|
* channels via multiple connections would be far easier for us to
|
|
* support with our (introduced-since) separate daemon model.
|
|
*
|
|
* Let this be a lesson: beware premature specification, even if you
|
|
* suspect "we'll need it later!". */
|
|
derive_channel_id(&state->channel_id,
|
|
&state->funding_txid, state->funding_txout);
|
|
|
|
if (!channel_id_eq(&id_in, &state->channel_id))
|
|
peer_failed(state->pps, &id_in,
|
|
"funding_signed ids don't match: expected %s got %s",
|
|
type_to_string(msg, struct channel_id,
|
|
&state->channel_id),
|
|
type_to_string(msg, struct channel_id, &id_in));
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The recipient:
|
|
* - if `signature` is incorrect:
|
|
* - MUST fail the channel.
|
|
*/
|
|
/* So we create *our* initial commitment transaction, and check the
|
|
* signature they sent against that. */
|
|
*tx = initial_channel_tx(state, &wscript, state->channel,
|
|
&state->first_per_commitment_point[LOCAL],
|
|
LOCAL, &err_reason);
|
|
if (!*tx) {
|
|
negotiation_failed(state, true,
|
|
"Could not meet our fees and reserve: %s", err_reason);
|
|
goto fail;
|
|
}
|
|
|
|
if (!check_tx_sig(*tx, 0, NULL, wscript, &state->their_funding_pubkey, sig)) {
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Bad signature %s on tx %s using key %s",
|
|
type_to_string(tmpctx, struct bitcoin_signature,
|
|
sig),
|
|
type_to_string(tmpctx, struct bitcoin_tx, *tx),
|
|
type_to_string(tmpctx, struct pubkey,
|
|
&state->their_funding_pubkey));
|
|
}
|
|
|
|
peer_billboard(false, "Funding channel: opening negotiation succeeded");
|
|
|
|
return true;
|
|
|
|
fail:
|
|
tal_free(wscript);
|
|
return false;
|
|
}
|
|
|
|
static u8 *funder_channel_complete(struct state *state)
|
|
{
|
|
struct bitcoin_tx *tx;
|
|
struct bitcoin_signature sig;
|
|
struct amount_msat local_msat;
|
|
|
|
/* Update the billboard about what we're doing*/
|
|
peer_billboard(false,
|
|
"Funding channel con't: continuing with funding_txid %s",
|
|
type_to_string(tmpctx, struct bitcoin_txid, &state->funding_txid));
|
|
|
|
/* We recalculate the local_msat from cached values; should
|
|
* succeed because we checked it earlier */
|
|
assert(amount_sat_sub_msat(&local_msat, state->funding, state->push_msat));
|
|
|
|
if (!funder_finalize_channel_setup(state, local_msat, &sig, &tx))
|
|
return NULL;
|
|
|
|
return towire_opening_funder_reply(state,
|
|
&state->remoteconf,
|
|
tx,
|
|
&sig,
|
|
state->pps,
|
|
&state->their_points.revocation,
|
|
&state->their_points.payment,
|
|
&state->their_points.htlc,
|
|
&state->their_points.delayed_payment,
|
|
&state->first_per_commitment_point[REMOTE],
|
|
state->minimum_depth,
|
|
&state->their_funding_pubkey,
|
|
&state->funding_txid,
|
|
state->funding_txout,
|
|
state->feerate_per_kw,
|
|
state->localconf.channel_reserve,
|
|
state->remote_upfront_shutdown_script);
|
|
}
|
|
|
|
/*~ The peer sent us an `open_channel`, that means we're the fundee. */
|
|
static u8 *fundee_channel(struct state *state, const u8 *open_channel_msg)
|
|
{
|
|
struct channel_id id_in;
|
|
struct basepoints theirs;
|
|
struct pubkey their_funding_pubkey;
|
|
struct bitcoin_signature theirsig, sig;
|
|
struct bitcoin_tx *local_commit, *remote_commit;
|
|
struct bitcoin_blkid chain_hash;
|
|
u8 *msg;
|
|
const u8 *wscript;
|
|
u8 channel_flags;
|
|
char* err_reason;
|
|
|
|
/* Default is no shutdown_scriptpubkey: free any leftover one. */
|
|
state->remote_upfront_shutdown_script
|
|
= tal_free(state->remote_upfront_shutdown_script);
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
*...
|
|
* - `funding_pubkey`, `revocation_basepoint`, `htlc_basepoint`,
|
|
* `payment_basepoint`, or `delayed_payment_basepoint` are not valid
|
|
* DER-encoded compressed secp256k1 pubkeys.
|
|
*/
|
|
if (local_feature_negotiated(state->localfeatures,
|
|
LOCAL_UPFRONT_SHUTDOWN_SCRIPT)) {
|
|
if (!fromwire_open_channel_option_upfront_shutdown_script(state,
|
|
open_channel_msg, &chain_hash,
|
|
&state->channel_id,
|
|
&state->funding,
|
|
&state->push_msat,
|
|
&state->remoteconf.dust_limit,
|
|
&state->remoteconf.max_htlc_value_in_flight,
|
|
&state->remoteconf.channel_reserve,
|
|
&state->remoteconf.htlc_minimum,
|
|
&state->feerate_per_kw,
|
|
&state->remoteconf.to_self_delay,
|
|
&state->remoteconf.max_accepted_htlcs,
|
|
&their_funding_pubkey,
|
|
&theirs.revocation,
|
|
&theirs.payment,
|
|
&theirs.delayed_payment,
|
|
&theirs.htlc,
|
|
&state->first_per_commitment_point[REMOTE],
|
|
&channel_flags,
|
|
&state->remote_upfront_shutdown_script))
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Parsing open_channel with option_upfront_shutdown_script %s", tal_hex(tmpctx, open_channel_msg));
|
|
} else if (!fromwire_open_channel(open_channel_msg, &chain_hash,
|
|
&state->channel_id,
|
|
&state->funding,
|
|
&state->push_msat,
|
|
&state->remoteconf.dust_limit,
|
|
&state->remoteconf.max_htlc_value_in_flight,
|
|
&state->remoteconf.channel_reserve,
|
|
&state->remoteconf.htlc_minimum,
|
|
&state->feerate_per_kw,
|
|
&state->remoteconf.to_self_delay,
|
|
&state->remoteconf.max_accepted_htlcs,
|
|
&their_funding_pubkey,
|
|
&theirs.revocation,
|
|
&theirs.payment,
|
|
&theirs.delayed_payment,
|
|
&theirs.htlc,
|
|
&state->first_per_commitment_point[REMOTE],
|
|
&channel_flags))
|
|
peer_failed(state->pps, NULL,
|
|
"Bad open_channel %s",
|
|
tal_hex(open_channel_msg, open_channel_msg));
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
* - the `chain_hash` value is set to a hash of a chain
|
|
* that is unknown to the receiver.
|
|
*/
|
|
if (!bitcoin_blkid_eq(&chain_hash,
|
|
&state->chainparams->genesis_blockhash)) {
|
|
negotiation_failed(state, false,
|
|
"Unknown chain-hash %s",
|
|
type_to_string(tmpctx,
|
|
struct bitcoin_blkid,
|
|
&chain_hash));
|
|
return NULL;
|
|
}
|
|
|
|
/* BOLT #2 FIXME:
|
|
*
|
|
* The receiving node ... MUST fail the channel if `funding-satoshis`
|
|
* is greater than or equal to 2^24 */
|
|
if (amount_sat_greater(state->funding, state->chainparams->max_funding)) {
|
|
negotiation_failed(state, false,
|
|
"funding_satoshis %s too large",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->funding));
|
|
return NULL;
|
|
}
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
* ...
|
|
* - `push_msat` is greater than `funding_satoshis` * 1000.
|
|
*/
|
|
if (amount_msat_greater_sat(state->push_msat, state->funding)) {
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Their push_msat %s"
|
|
" would be too large for funding_satoshis %s",
|
|
type_to_string(tmpctx, struct amount_msat,
|
|
&state->push_msat),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->funding));
|
|
return NULL;
|
|
}
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The receiving node MUST fail the channel if:
|
|
*...
|
|
* - it considers `feerate_per_kw` too small for timely processing or
|
|
* unreasonably large.
|
|
*/
|
|
if (state->feerate_per_kw < state->min_feerate) {
|
|
negotiation_failed(state, false,
|
|
"feerate_per_kw %u below minimum %u",
|
|
state->feerate_per_kw, state->min_feerate);
|
|
return NULL;
|
|
}
|
|
|
|
if (state->feerate_per_kw > state->max_feerate) {
|
|
negotiation_failed(state, false,
|
|
"feerate_per_kw %u above maximum %u",
|
|
state->feerate_per_kw, state->max_feerate);
|
|
return NULL;
|
|
}
|
|
|
|
/* This reserves 1% of the channel (rounded up) */
|
|
set_reserve(state);
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The sender:
|
|
*...
|
|
* - MUST set `channel_reserve_satoshis` greater than or equal to
|
|
* `dust_limit_satoshis` from the `open_channel` message.
|
|
* - MUST set `dust_limit_satoshis` less than or equal to
|
|
* `channel_reserve_satoshis` from the `open_channel` message.
|
|
*/
|
|
if (amount_sat_greater(state->remoteconf.dust_limit,
|
|
state->localconf.channel_reserve)) {
|
|
negotiation_failed(state, false,
|
|
"Our channel reserve %s"
|
|
" would be below their dust %s",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->localconf.channel_reserve),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->remoteconf.dust_limit));
|
|
return NULL;
|
|
}
|
|
if (amount_sat_greater(state->localconf.dust_limit,
|
|
state->remoteconf.channel_reserve)) {
|
|
negotiation_failed(state, false,
|
|
"Our dust limit %s"
|
|
" would be above their reserve %s",
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->localconf.dust_limit),
|
|
type_to_string(tmpctx, struct amount_sat,
|
|
&state->remoteconf.channel_reserve));
|
|
return NULL;
|
|
}
|
|
|
|
/* These checks are the same whether we're funder or fundee... */
|
|
if (!check_config_bounds(state, &state->remoteconf, false))
|
|
return NULL;
|
|
|
|
/* Check with lightningd that we can accept this? In particular,
|
|
* if we have an existing channel, we don't support it. */
|
|
msg = towire_opening_got_offer(NULL,
|
|
state->funding,
|
|
state->push_msat,
|
|
state->remoteconf.dust_limit,
|
|
state->remoteconf.max_htlc_value_in_flight,
|
|
state->remoteconf.channel_reserve,
|
|
state->remoteconf.htlc_minimum,
|
|
state->feerate_per_kw,
|
|
state->remoteconf.to_self_delay,
|
|
state->remoteconf.max_accepted_htlcs,
|
|
channel_flags,
|
|
state->remote_upfront_shutdown_script);
|
|
wire_sync_write(REQ_FD, take(msg));
|
|
msg = wire_sync_read(tmpctx, REQ_FD);
|
|
|
|
if (!fromwire_opening_got_offer_reply(tmpctx, msg, &err_reason))
|
|
master_badmsg(WIRE_OPENING_GOT_OFFER_REPLY, msg);
|
|
|
|
/* If they give us a reason to reject, do so. */
|
|
if (err_reason) {
|
|
u8 *errmsg = towire_errorfmt(NULL, &state->channel_id,
|
|
"%s", err_reason);
|
|
sync_crypto_write(state->pps, take(errmsg));
|
|
return NULL;
|
|
}
|
|
|
|
/* OK, we accept! */
|
|
msg = towire_accept_channel_option_upfront_shutdown_script(NULL, &state->channel_id,
|
|
state->localconf.dust_limit,
|
|
state->localconf.max_htlc_value_in_flight,
|
|
state->localconf.channel_reserve,
|
|
state->localconf.htlc_minimum,
|
|
state->minimum_depth,
|
|
state->localconf.to_self_delay,
|
|
state->localconf.max_accepted_htlcs,
|
|
&state->our_funding_pubkey,
|
|
&state->our_points.revocation,
|
|
&state->our_points.payment,
|
|
&state->our_points.delayed_payment,
|
|
&state->our_points.htlc,
|
|
&state->first_per_commitment_point[LOCAL],
|
|
dev_upfront_shutdown_script(tmpctx));
|
|
|
|
sync_crypto_write(state->pps, take(msg));
|
|
|
|
peer_billboard(false,
|
|
"Incoming channel: accepted, now waiting for them to create funding tx");
|
|
|
|
/* This is a loop which handles gossip until we get a non-gossip msg */
|
|
msg = opening_negotiate_msg(tmpctx, state, false);
|
|
if (!msg)
|
|
return NULL;
|
|
|
|
/* The message should be "funding_created" which tells us what funding
|
|
* tx they generated; the sighash type is implied, so we set it here. */
|
|
theirsig.sighash_type = SIGHASH_ALL;
|
|
if (!fromwire_funding_created(msg, &id_in,
|
|
&state->funding_txid,
|
|
&state->funding_txout,
|
|
&theirsig.s))
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Parsing funding_created");
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The `temporary_channel_id` MUST be the same as the
|
|
* `temporary_channel_id` in the `open_channel` message.
|
|
*/
|
|
if (!channel_id_eq(&id_in, &state->channel_id))
|
|
peer_failed(state->pps, &id_in,
|
|
"funding_created ids don't match: sent %s got %s",
|
|
type_to_string(msg, struct channel_id,
|
|
&state->channel_id),
|
|
type_to_string(msg, struct channel_id, &id_in));
|
|
|
|
/* Now we can create the channel structure. */
|
|
state->channel = new_initial_channel(state,
|
|
&chain_hash,
|
|
&state->funding_txid,
|
|
state->funding_txout,
|
|
state->minimum_depth,
|
|
state->funding,
|
|
state->push_msat,
|
|
state->feerate_per_kw,
|
|
&state->localconf,
|
|
&state->remoteconf,
|
|
&state->our_points, &theirs,
|
|
&state->our_funding_pubkey,
|
|
&their_funding_pubkey,
|
|
state->option_static_remotekey,
|
|
REMOTE);
|
|
/* We don't expect this to fail, but it does do some additional
|
|
* internal sanity checks. */
|
|
if (!state->channel)
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"We could not create channel with given config");
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* The recipient:
|
|
* - if `signature` is incorrect:
|
|
* - MUST fail the channel.
|
|
*/
|
|
local_commit = initial_channel_tx(state, &wscript, state->channel,
|
|
&state->first_per_commitment_point[LOCAL],
|
|
LOCAL, &err_reason);
|
|
/* This shouldn't happen either, AFAICT. */
|
|
if (!local_commit) {
|
|
negotiation_failed(state, false,
|
|
"Could not meet our fees and reserve: %s", err_reason);
|
|
return NULL;
|
|
}
|
|
|
|
if (!check_tx_sig(local_commit, 0, NULL, wscript, &their_funding_pubkey,
|
|
&theirsig)) {
|
|
/* BOLT #1:
|
|
*
|
|
* ### The `error` Message
|
|
*...
|
|
* - when failure was caused by an invalid signature check:
|
|
* - SHOULD include the raw, hex-encoded transaction in reply
|
|
* to a `funding_created`, `funding_signed`,
|
|
* `closing_signed`, or `commitment_signed` message.
|
|
*/
|
|
/*~ This verbosity is not only useful for our own testing, but
|
|
* a courtesy to other implementaters whose brains may be so
|
|
* twisted by coding in Go, Scala and Rust that they can no
|
|
* longer read C code. */
|
|
peer_failed(state->pps,
|
|
&state->channel_id,
|
|
"Bad signature %s on tx %s using key %s",
|
|
type_to_string(tmpctx, struct bitcoin_signature,
|
|
&theirsig),
|
|
type_to_string(tmpctx, struct bitcoin_tx, local_commit),
|
|
type_to_string(tmpctx, struct pubkey,
|
|
&their_funding_pubkey));
|
|
}
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* This message introduces the `channel_id` to identify the
|
|
* channel. It's derived from the funding transaction by combining the
|
|
* `funding_txid` and the `funding_output_index`, using big-endian
|
|
* exclusive-OR (i.e. `funding_output_index` alters the last 2 bytes).
|
|
*/
|
|
derive_channel_id(&state->channel_id,
|
|
&state->funding_txid, state->funding_txout);
|
|
|
|
/*~ We generate the `funding_signed` message here, since we have all
|
|
* the data and it's only applicable in the fundee case.
|
|
*
|
|
* FIXME: Perhaps we should have channeld generate this, so we
|
|
* can't possibly send before channel committed to disk?
|
|
*/
|
|
|
|
/* BOLT #2:
|
|
*
|
|
* ### The `funding_signed` Message
|
|
*
|
|
* This message gives the funder the signature it needs for the first
|
|
* commitment transaction, so it can broadcast the transaction knowing
|
|
* that funds can be redeemed, if need be.
|
|
*/
|
|
remote_commit = initial_channel_tx(state, &wscript, state->channel,
|
|
&state->first_per_commitment_point[REMOTE],
|
|
REMOTE, &err_reason);
|
|
if (!remote_commit) {
|
|
negotiation_failed(state, false,
|
|
"Could not meet their fees and reserve: %s", err_reason);
|
|
return NULL;
|
|
}
|
|
|
|
/* Make HSM sign it */
|
|
msg = towire_hsm_sign_remote_commitment_tx(NULL,
|
|
remote_commit,
|
|
&state->channel->funding_pubkey[REMOTE],
|
|
state->channel->funding);
|
|
|
|
wire_sync_write(HSM_FD, take(msg));
|
|
msg = wire_sync_read(tmpctx, HSM_FD);
|
|
if (!fromwire_hsm_sign_tx_reply(msg, &sig))
|
|
status_failed(STATUS_FAIL_HSM_IO,
|
|
"Bad sign_tx_reply %s", tal_hex(tmpctx, msg));
|
|
|
|
/* We don't send this ourselves: channeld does, because master needs
|
|
* to save state to disk before doing so. */
|
|
assert(sig.sighash_type == SIGHASH_ALL);
|
|
msg = towire_funding_signed(state, &state->channel_id, &sig.s);
|
|
|
|
return towire_opening_fundee(state,
|
|
&state->remoteconf,
|
|
local_commit,
|
|
&theirsig,
|
|
state->pps,
|
|
&theirs.revocation,
|
|
&theirs.payment,
|
|
&theirs.htlc,
|
|
&theirs.delayed_payment,
|
|
&state->first_per_commitment_point[REMOTE],
|
|
&their_funding_pubkey,
|
|
&state->funding_txid,
|
|
state->funding_txout,
|
|
state->funding,
|
|
state->push_msat,
|
|
channel_flags,
|
|
state->feerate_per_kw,
|
|
msg,
|
|
state->localconf.channel_reserve,
|
|
state->remote_upfront_shutdown_script);
|
|
}
|
|
|
|
/*~ Standard "peer sent a message, handle it" demuxer. Though it really only
|
|
* handles one message, we use the standard form as principle of least
|
|
* surprise. */
|
|
static u8 *handle_peer_in(struct state *state)
|
|
{
|
|
u8 *msg = sync_crypto_read(tmpctx, state->pps);
|
|
enum wire_type t = fromwire_peektype(msg);
|
|
struct channel_id channel_id;
|
|
|
|
if (t == WIRE_OPEN_CHANNEL)
|
|
return fundee_channel(state, msg);
|
|
|
|
/* Handles standard cases, and legal unknown ones. */
|
|
if (handle_peer_gossip_or_error(state->pps,
|
|
&state->channel_id, msg))
|
|
return NULL;
|
|
|
|
sync_crypto_write(state->pps,
|
|
take(towire_errorfmt(NULL,
|
|
extract_channel_id(msg, &channel_id) ? &channel_id : NULL,
|
|
"Unexpected message %s: %s",
|
|
wire_type_name(t),
|
|
tal_hex(tmpctx, msg))));
|
|
|
|
/* FIXME: We don't actually want master to try to send an
|
|
* error, since peer is transient. This is a hack.
|
|
*/
|
|
status_broken("Unexpected message %s", wire_type_name(t));
|
|
peer_failed_connection_lost();
|
|
}
|
|
|
|
/*~ If we see the gossip_fd readable, we read a whole message. Sure, we might
|
|
* block, but we trust gossipd. */
|
|
static void handle_gossip_in(struct state *state)
|
|
{
|
|
u8 *msg = wire_sync_read(NULL, state->pps->gossip_fd);
|
|
|
|
if (!msg)
|
|
status_failed(STATUS_FAIL_GOSSIP_IO,
|
|
"Reading gossip: %s", strerror(errno));
|
|
|
|
handle_gossip_msg(state->pps, take(msg));
|
|
}
|
|
|
|
/*~ Is this message of type `error` with the special zero-id
|
|
* "fail-everything"? If lightningd asked us to send such a thing, we're
|
|
* done. */
|
|
static void fail_if_all_error(const u8 *inner)
|
|
{
|
|
struct channel_id channel_id;
|
|
u8 *data;
|
|
|
|
if (!fromwire_error(tmpctx, inner, &channel_id, &data)
|
|
|| !channel_id_is_all(&channel_id)) {
|
|
return;
|
|
}
|
|
|
|
status_info("Master said send err: %s",
|
|
sanitize_error(tmpctx, inner, NULL));
|
|
exit(0);
|
|
}
|
|
|
|
/* Memory leak detection is DEVELOPER-only because we go to great lengths to
|
|
* record the backtrace when allocations occur: without that, the leak
|
|
* detection tends to be useless for diagnosing where the leak came from, but
|
|
* it has significant overhead. */
|
|
#if DEVELOPER
|
|
static void handle_dev_memleak(struct state *state, const u8 *msg)
|
|
{
|
|
struct htable *memtable;
|
|
bool found_leak;
|
|
|
|
/* Populate a hash table with all our allocations (except msg, which
|
|
* is in use right now). */
|
|
memtable = memleak_enter_allocations(tmpctx, msg, msg);
|
|
|
|
/* Now delete state and things it has pointers to. */
|
|
memleak_remove_referenced(memtable, state);
|
|
|
|
/* If there's anything left, dump it to logs, and return true. */
|
|
found_leak = dump_memleak(memtable);
|
|
wire_sync_write(REQ_FD,
|
|
take(towire_opening_dev_memleak_reply(NULL,
|
|
found_leak)));
|
|
}
|
|
#endif /* DEVELOPER */
|
|
|
|
/* Standard lightningd-fd-is-ready-to-read demux code. Again, we could hang
|
|
* here, but if we can't trust our parent, who can we trust? */
|
|
static u8 *handle_master_in(struct state *state)
|
|
{
|
|
u8 *msg = wire_sync_read(tmpctx, REQ_FD);
|
|
enum opening_wire_type t = fromwire_peektype(msg);
|
|
u8 channel_flags;
|
|
struct bitcoin_txid funding_txid;
|
|
u16 funding_txout;
|
|
|
|
switch (t) {
|
|
case WIRE_OPENING_FUNDER_START:
|
|
if (!fromwire_opening_funder_start(msg, &state->funding,
|
|
&state->push_msat,
|
|
&state->feerate_per_kw,
|
|
&channel_flags))
|
|
master_badmsg(WIRE_OPENING_FUNDER_START, msg);
|
|
msg = funder_channel_start(state, channel_flags);
|
|
|
|
/* We want to keep openingd alive, since we're not done yet */
|
|
if (msg)
|
|
wire_sync_write(REQ_FD, take(msg));
|
|
return NULL;
|
|
case WIRE_OPENING_FUNDER_COMPLETE:
|
|
if (!fromwire_opening_funder_complete(msg,
|
|
&funding_txid,
|
|
&funding_txout))
|
|
master_badmsg(WIRE_OPENING_FUNDER_COMPLETE, msg);
|
|
state->funding_txid = funding_txid;
|
|
state->funding_txout = funding_txout;
|
|
return funder_channel_complete(state);
|
|
case WIRE_OPENING_FUNDER_CANCEL:
|
|
/* We're aborting this, simple */
|
|
if (!fromwire_opening_funder_cancel(msg))
|
|
master_badmsg(WIRE_OPENING_FUNDER_CANCEL, msg);
|
|
|
|
msg = towire_errorfmt(NULL, &state->channel_id, "Channel open canceled by us");
|
|
sync_crypto_write(state->pps, take(msg));
|
|
negotiation_aborted(state, true, "Channel open canceled by RPC");
|
|
return NULL;
|
|
case WIRE_OPENING_DEV_MEMLEAK:
|
|
#if DEVELOPER
|
|
handle_dev_memleak(state, msg);
|
|
return NULL;
|
|
#endif
|
|
case WIRE_OPENING_DEV_MEMLEAK_REPLY:
|
|
case WIRE_OPENING_INIT:
|
|
case WIRE_OPENING_FUNDER_REPLY:
|
|
case WIRE_OPENING_FUNDER_START_REPLY:
|
|
case WIRE_OPENING_FUNDEE:
|
|
case WIRE_OPENING_FUNDER_FAILED:
|
|
case WIRE_OPENING_GOT_OFFER:
|
|
case WIRE_OPENING_GOT_OFFER_REPLY:
|
|
break;
|
|
}
|
|
|
|
status_failed(STATUS_FAIL_MASTER_IO,
|
|
"Unknown msg %s", tal_hex(tmpctx, msg));
|
|
}
|
|
|
|
static void try_read_gossip_store(struct state *state)
|
|
{
|
|
u8 *msg = gossip_store_next(tmpctx, state->pps);
|
|
|
|
if (msg)
|
|
sync_crypto_write(state->pps, take(msg));
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
setup_locale();
|
|
|
|
u8 *msg, *inner;
|
|
struct pollfd pollfd[3];
|
|
struct state *state = tal(NULL, struct state);
|
|
struct secret *none;
|
|
|
|
subdaemon_setup(argc, argv);
|
|
|
|
/*~ This makes status_failed, status_debug etc work synchronously by
|
|
* writing to REQ_FD */
|
|
status_setup_sync(REQ_FD);
|
|
|
|
/*~ The very first thing we read from lightningd is our init msg */
|
|
msg = wire_sync_read(tmpctx, REQ_FD);
|
|
if (!fromwire_opening_init(state, msg,
|
|
&chainparams,
|
|
&state->localconf,
|
|
&state->max_to_self_delay,
|
|
&state->min_effective_htlc_capacity,
|
|
&state->pps,
|
|
&state->our_points,
|
|
&state->our_funding_pubkey,
|
|
&state->minimum_depth,
|
|
&state->min_feerate, &state->max_feerate,
|
|
&state->localfeatures,
|
|
&state->option_static_remotekey,
|
|
&inner,
|
|
&dev_fast_gossip))
|
|
master_badmsg(WIRE_OPENING_INIT, msg);
|
|
|
|
/* 3 == peer, 4 == gossipd, 5 = gossip_store, 6 = hsmd */
|
|
per_peer_state_set_fds(state->pps, 3, 4, 5);
|
|
|
|
/*~ If lightningd wanted us to send a msg, do so before we waste time
|
|
* doing work. If it's a global error, we'll close immediately. */
|
|
if (inner != NULL) {
|
|
sync_crypto_write(state->pps, inner);
|
|
fail_if_all_error(inner);
|
|
tal_free(inner);
|
|
}
|
|
|
|
/*~ Even though I only care about bitcoin, there's still testnet and
|
|
* regtest modes, so we have a general "parameters for this chain"
|
|
* function. */
|
|
state->chainparams = chainparams;
|
|
|
|
/*~ Initially we're not associated with a channel, but
|
|
* handle_peer_gossip_or_error compares this. */
|
|
memset(&state->channel_id, 0, sizeof(state->channel_id));
|
|
state->channel = NULL;
|
|
|
|
/*~ We set this to NULL, meaning no requirements on shutdown */
|
|
state->remote_upfront_shutdown_script = NULL;
|
|
|
|
/*~ We need an initial per-commitment point whether we're funding or
|
|
* they are, and lightningd has reserved a unique dbid for us already,
|
|
* so we might as well get the hsm daemon to generate it now. */
|
|
wire_sync_write(HSM_FD,
|
|
take(towire_hsm_get_per_commitment_point(NULL, 0)));
|
|
msg = wire_sync_read(tmpctx, HSM_FD);
|
|
if (!fromwire_hsm_get_per_commitment_point_reply(tmpctx, msg,
|
|
&state->first_per_commitment_point[LOCAL],
|
|
&none))
|
|
status_failed(STATUS_FAIL_HSM_IO,
|
|
"Bad get_per_commitment_point_reply %s",
|
|
tal_hex(tmpctx, msg));
|
|
/*~ The HSM gives us the N-2'th per-commitment secret when we get the
|
|
* N'th per-commitment point. But since N=0, it won't give us one. */
|
|
assert(none == NULL);
|
|
|
|
/*~ Turns out this is useful for testing, to make sure we're ready. */
|
|
status_debug("Handed peer, entering loop");
|
|
|
|
/*~ We manually run a little poll() loop here. With only three fds */
|
|
pollfd[0].fd = REQ_FD;
|
|
pollfd[0].events = POLLIN;
|
|
pollfd[1].fd = state->pps->gossip_fd;
|
|
pollfd[1].events = POLLIN;
|
|
pollfd[2].fd = state->pps->peer_fd;
|
|
pollfd[2].events = POLLIN;
|
|
|
|
/* We exit when we get a conclusion to write to lightningd: either
|
|
* opening_funder_reply or opening_fundee. */
|
|
msg = NULL;
|
|
while (!msg) {
|
|
int t;
|
|
struct timerel trel;
|
|
if (time_to_next_gossip(state->pps, &trel))
|
|
t = time_to_msec(trel);
|
|
else
|
|
t = -1;
|
|
|
|
/*~ If we get a signal which aborts the poll() call, valgrind
|
|
* complains about revents being uninitialized. I'm not sure
|
|
* that's correct, but it's easy to be sure. */
|
|
pollfd[0].revents = pollfd[1].revents = pollfd[2].revents = 0;
|
|
|
|
poll(pollfd, ARRAY_SIZE(pollfd), t);
|
|
/* Subtle: handle_master_in can do its own poll loop, so
|
|
* don't try to service more than one fd per loop. */
|
|
/* First priority: messages from lightningd. */
|
|
if (pollfd[0].revents & POLLIN)
|
|
msg = handle_master_in(state);
|
|
/* Second priority: messages from peer. */
|
|
else if (pollfd[2].revents & POLLIN)
|
|
msg = handle_peer_in(state);
|
|
/* Last priority: chit-chat from gossipd. */
|
|
else if (pollfd[1].revents & POLLIN)
|
|
handle_gossip_in(state);
|
|
else
|
|
try_read_gossip_store(state);
|
|
|
|
/* Since we're the top-level event loop, we clean up */
|
|
clean_tmpctx();
|
|
}
|
|
|
|
/*~ Write message and hand back the peer fd and gossipd fd. This also
|
|
* means that if the peer or gossipd wrote us any messages we didn't
|
|
* read yet, it will simply be read by the next daemon. */
|
|
wire_sync_write(REQ_FD, msg);
|
|
per_peer_state_fdpass_send(REQ_FD, state->pps);
|
|
status_debug("Sent %s with fds",
|
|
opening_wire_type_name(fromwire_peektype(msg)));
|
|
|
|
/* This frees the entire tal tree. */
|
|
tal_free(state);
|
|
|
|
/* This frees up everything else. */
|
|
daemon_shutdown();
|
|
return 0;
|
|
}
|
|
|
|
/*~ Note that there are no other source files in openingd: it really is a fairly
|
|
* straight-line daemon.
|
|
*
|
|
* From here the channel is established: lightningd hands the peer off to
|
|
* channeld/channeld.c which runs the normal channel routine for this peer.
|
|
*/
|
|
|