// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Check that we can traverse very deep stacks of ConsStrings using
// StringCharacterStram. Check that Get(int) works on very deep stacks
// of ConsStrings. These operations may not be very fast, but they
// should be possible without getting errors due to too deep recursion.
# include <stdlib.h>
# include "v8.h"
# include "api.h"
# include "factory.h"
# include "objects.h"
# include "cctest.h"
# include "zone-inl.h"
// Adapted from http://en.wikipedia.org/wiki/Multiply-with-carry
class RandomNumberGenerator {
public :
RandomNumberGenerator ( ) {
init ( ) ;
}
void init ( uint32_t seed = 0x5688c73e ) {
static const uint32_t phi = 0x9e3779b9 ;
c = 362436 ;
i = kQSize - 1 ;
Q [ 0 ] = seed ;
Q [ 1 ] = seed + phi ;
Q [ 2 ] = seed + phi + phi ;
for ( unsigned j = 3 ; j < kQSize ; j + + ) {
Q [ j ] = Q [ j - 3 ] ^ Q [ j - 2 ] ^ phi ^ j ;
}
}
uint32_t next ( ) {
uint64_t a = 18782 ;
uint32_t r = 0xfffffffe ;
i = ( i + 1 ) & ( kQSize - 1 ) ;
uint64_t t = a * Q [ i ] + c ;
c = ( t > > 32 ) ;
uint32_t x = static_cast < uint32_t > ( t + c ) ;
if ( x < c ) {
x + + ;
c + + ;
}
return ( Q [ i ] = r - x ) ;
}
uint32_t next ( int max ) {
return next ( ) % max ;
}
bool next ( double threshold ) {
ASSERT ( threshold > = 0.0 & & threshold < = 1.0 ) ;
if ( threshold = = 1.0 ) return true ;
if ( threshold = = 0.0 ) return false ;
uint32_t value = next ( ) % 100000 ;
return threshold > static_cast < double > ( value ) / 100000.0 ;
}
private :
static const uint32_t kQSize = 4096 ;
uint32_t Q [ kQSize ] ;
uint32_t c ;
uint32_t i ;
} ;
using namespace v8 : : internal ;
static v8 : : Persistent < v8 : : Context > env ;
static void InitializeVM ( ) {
if ( env . IsEmpty ( ) ) {
const char * extensions [ ] = { " v8/print " } ;
v8 : : ExtensionConfiguration config ( 1 , extensions ) ;
env = v8 : : Context : : New ( & config ) ;
}
env - > Enter ( ) ;
}
static const int DEEP_DEPTH = 8 * 1024 ;
static const int SUPER_DEEP_DEPTH = 80 * 1024 ;
class Resource : public v8 : : String : : ExternalStringResource ,
public ZoneObject {
public :
explicit Resource ( Vector < const uc16 > string ) : data_ ( string . start ( ) ) {
length_ = string . length ( ) ;
}
virtual const uint16_t * data ( ) const { return data_ ; }
virtual size_t length ( ) const { return length_ ; }
private :
const uc16 * data_ ;
size_t length_ ;
} ;
class AsciiResource : public v8 : : String : : ExternalAsciiStringResource ,
public ZoneObject {
public :
explicit AsciiResource ( Vector < const char > string ) : data_ ( string . start ( ) ) {
length_ = string . length ( ) ;
}
virtual const char * data ( ) const { return data_ ; }
virtual size_t length ( ) const { return length_ ; }
private :
const char * data_ ;
size_t length_ ;
} ;
static void InitializeBuildingBlocks ( Handle < String > * building_blocks ,
int bb_length ,
bool long_blocks ,
RandomNumberGenerator * rng ) {
// A list of pointers that we don't have any interest in cleaning up.
// If they are reachable from a root then leak detection won't complain.
Zone * zone = Isolate : : Current ( ) - > runtime_zone ( ) ;
for ( int i = 0 ; i < bb_length ; i + + ) {
int len = rng - > next ( 16 ) ;
int slice_head_chars = 0 ;
int slice_tail_chars = 0 ;
int slice_depth = 0 ;
for ( int j = 0 ; j < 3 ; j + + ) {
if ( rng - > next ( 0.35 ) ) slice_depth + + ;
}
// Must truncate something for a slice string. Loop until
// at least one end will be sliced.
while ( slice_head_chars = = 0 & & slice_tail_chars = = 0 ) {
slice_head_chars = rng - > next ( 15 ) ;
slice_tail_chars = rng - > next ( 12 ) ;
}
if ( long_blocks ) {
// Generate building blocks which will never be merged
len + = ConsString : : kMinLength + 1 ;
} else if ( len > 14 ) {
len + = 1234 ;
}
// Don't slice 0 length strings.
if ( len = = 0 ) slice_depth = 0 ;
int slice_length = slice_depth * ( slice_head_chars + slice_tail_chars ) ;
len + = slice_length ;
switch ( rng - > next ( 4 ) ) {
case 0 : {
uc16 buf [ 2000 ] ;
for ( int j = 0 ; j < len ; j + + ) {
buf [ j ] = rng - > next ( 0x10000 ) ;
}
building_blocks [ i ] =
FACTORY - > NewStringFromTwoByte ( Vector < const uc16 > ( buf , len ) ) ;
for ( int j = 0 ; j < len ; j + + ) {
CHECK_EQ ( buf [ j ] , building_blocks [ i ] - > Get ( j ) ) ;
}
break ;
}
case 1 : {
char buf [ 2000 ] ;
for ( int j = 0 ; j < len ; j + + ) {
buf [ j ] = rng - > next ( 0x80 ) ;
}
building_blocks [ i ] =
FACTORY - > NewStringFromAscii ( Vector < const char > ( buf , len ) ) ;
for ( int j = 0 ; j < len ; j + + ) {
CHECK_EQ ( buf [ j ] , building_blocks [ i ] - > Get ( j ) ) ;
}
break ;
}
case 2 : {
uc16 * buf = zone - > NewArray < uc16 > ( len ) ;
for ( int j = 0 ; j < len ; j + + ) {
buf [ j ] = rng - > next ( 0x10000 ) ;
}
Resource * resource = new ( zone ) Resource ( Vector < const uc16 > ( buf , len ) ) ;
building_blocks [ i ] = FACTORY - > NewExternalStringFromTwoByte ( resource ) ;
for ( int j = 0 ; j < len ; j + + ) {
CHECK_EQ ( buf [ j ] , building_blocks [ i ] - > Get ( j ) ) ;
}
break ;
}
case 3 : {
char * buf = zone - > NewArray < char > ( len ) ;
for ( int j = 0 ; j < len ; j + + ) {
buf [ j ] = rng - > next ( 0x80 ) ;
}
AsciiResource * resource =
new ( zone ) AsciiResource ( Vector < const char > ( buf , len ) ) ;
building_blocks [ i ] = FACTORY - > NewExternalStringFromAscii ( resource ) ;
for ( int j = 0 ; j < len ; j + + ) {
CHECK_EQ ( buf [ j ] , building_blocks [ i ] - > Get ( j ) ) ;
}
break ;
}
}
for ( int j = slice_depth ; j > 0 ; j - - ) {
building_blocks [ i ] = FACTORY - > NewSubString (
building_blocks [ i ] ,
slice_head_chars ,
building_blocks [ i ] - > length ( ) - slice_tail_chars ) ;
}
CHECK ( len = = building_blocks [ i ] - > length ( ) + slice_length ) ;
}
}
class ConsStringStats {
public :
ConsStringStats ( ) {
Reset ( ) ;
}
void Reset ( ) ;
void VerifyEqual ( const ConsStringStats & that ) const ;
unsigned leaves_ ;
unsigned empty_leaves_ ;
unsigned chars_ ;
unsigned left_traversals_ ;
unsigned right_traversals_ ;
private :
DISALLOW_COPY_AND_ASSIGN ( ConsStringStats ) ;
} ;
void ConsStringStats : : Reset ( ) {
leaves_ = 0 ;
empty_leaves_ = 0 ;
chars_ = 0 ;
left_traversals_ = 0 ;
right_traversals_ = 0 ;
}
void ConsStringStats : : VerifyEqual ( const ConsStringStats & that ) const {
CHECK ( this - > leaves_ = = that . leaves_ ) ;
CHECK ( this - > empty_leaves_ = = that . empty_leaves_ ) ;
CHECK ( this - > chars_ = = that . chars_ ) ;
CHECK ( this - > left_traversals_ = = that . left_traversals_ ) ;
CHECK ( this - > right_traversals_ = = that . right_traversals_ ) ;
}
class ConsStringGenerationData {
public :
static const int kNumberOfBuildingBlocks = 256 ;
explicit ConsStringGenerationData ( bool long_blocks ) ;
void Reset ( ) ;
inline Handle < String > block ( int offset ) ;
inline Handle < String > block ( uint32_t offset ) ;
// Input variables.
double early_termination_threshold_ ;
double leftness_ ;
double rightness_ ;
double empty_leaf_threshold_ ;
unsigned max_leaves_ ;
// Cached data.
Handle < String > building_blocks_ [ kNumberOfBuildingBlocks ] ;
String * empty_string_ ;
RandomNumberGenerator rng_ ;
// Stats.
ConsStringStats stats_ ;
unsigned early_terminations_ ;
private :
DISALLOW_COPY_AND_ASSIGN ( ConsStringGenerationData ) ;
} ;
ConsStringGenerationData : : ConsStringGenerationData ( bool long_blocks ) {
rng_ . init ( ) ;
InitializeBuildingBlocks (
building_blocks_ , kNumberOfBuildingBlocks , long_blocks , & rng_ ) ;
empty_string_ = Isolate : : Current ( ) - > heap ( ) - > empty_string ( ) ;
Reset ( ) ;
}
Handle < String > ConsStringGenerationData : : block ( uint32_t offset ) {
return building_blocks_ [ offset % kNumberOfBuildingBlocks ] ;
}
Handle < String > ConsStringGenerationData : : block ( int offset ) {
CHECK_GE ( offset , 0 ) ;
return building_blocks_ [ offset % kNumberOfBuildingBlocks ] ;
}
void ConsStringGenerationData : : Reset ( ) {
early_termination_threshold_ = 0.01 ;
leftness_ = 0.75 ;
rightness_ = 0.75 ;
empty_leaf_threshold_ = 0.02 ;
max_leaves_ = 1000 ;
stats_ . Reset ( ) ;
early_terminations_ = 0 ;
rng_ . init ( ) ;
}
void AccumulateStats ( ConsString * cons_string , ConsStringStats * stats ) {
int left_length = cons_string - > first ( ) - > length ( ) ;
int right_length = cons_string - > second ( ) - > length ( ) ;
CHECK ( cons_string - > length ( ) = = left_length + right_length ) ;
// Check left side.
bool left_is_cons = cons_string - > first ( ) - > IsConsString ( ) ;
if ( left_is_cons ) {
stats - > left_traversals_ + + ;
AccumulateStats ( ConsString : : cast ( cons_string - > first ( ) ) , stats ) ;
} else {
CHECK_NE ( left_length , 0 ) ;
stats - > leaves_ + + ;
stats - > chars_ + = left_length ;
}
// Check right side.
if ( cons_string - > second ( ) - > IsConsString ( ) ) {
stats - > right_traversals_ + + ;
AccumulateStats ( ConsString : : cast ( cons_string - > second ( ) ) , stats ) ;
} else {
if ( right_length = = 0 ) {
stats - > empty_leaves_ + + ;
CHECK ( ! left_is_cons ) ;
}
stats - > leaves_ + + ;
stats - > chars_ + = right_length ;
}
}
void AccumulateStats ( Handle < String > cons_string , ConsStringStats * stats ) {
AssertNoAllocation no_alloc ;
if ( cons_string - > IsConsString ( ) ) {
return AccumulateStats ( ConsString : : cast ( * cons_string ) , stats ) ;
}
// This string got flattened by gc.
stats - > chars_ + = cons_string - > length ( ) ;
}
void AccumulateStatsWithOperator (
ConsString * cons_string , ConsStringStats * stats ) {
unsigned offset = 0 ;
int32_t type = cons_string - > map ( ) - > instance_type ( ) ;
unsigned length = static_cast < unsigned > ( cons_string - > length ( ) ) ;
ConsStringIteratorOp op ;
String * string = op . Operate ( cons_string , & offset , & type , & length ) ;
CHECK ( string ! = NULL ) ;
while ( true ) {
ASSERT ( ! string - > IsConsString ( ) ) ;
// Accumulate stats.
stats - > leaves_ + + ;
stats - > chars_ + = string - > length ( ) ;
// Check for completion.
bool keep_going_fast_check = op . HasMore ( ) ;
string = op . ContinueOperation ( & type , & length ) ;
if ( string = = NULL ) return ;
// Verify no false positives for fast check.
CHECK ( keep_going_fast_check ) ;
}
}
void VerifyConsString ( Handle < String > root , ConsStringGenerationData * data ) {
// Verify basic data.
CHECK ( root - > IsConsString ( ) ) ;
CHECK ( static_cast < unsigned > ( root - > length ( ) ) = = data - > stats_ . chars_ ) ;
// Recursive verify.
ConsStringStats stats ;
AccumulateStats ( ConsString : : cast ( * root ) , & stats ) ;
stats . VerifyEqual ( data - > stats_ ) ;
// Iteratively verify.
stats . Reset ( ) ;
AccumulateStatsWithOperator ( ConsString : : cast ( * root ) , & stats ) ;
// Don't see these. Must copy over.
stats . empty_leaves_ = data - > stats_ . empty_leaves_ ;
stats . left_traversals_ = data - > stats_ . left_traversals_ ;
stats . right_traversals_ = data - > stats_ . right_traversals_ ;
// Adjust total leaves to compensate.
stats . leaves_ + = stats . empty_leaves_ ;
stats . VerifyEqual ( data - > stats_ ) ;
}
static Handle < String > ConstructRandomString ( ConsStringGenerationData * data ,
unsigned max_recursion ) {
// Compute termination characteristics.
bool terminate = false ;
bool flat = data - > rng_ . next ( data - > empty_leaf_threshold_ ) ;
bool terminate_early = data - > rng_ . next ( data - > early_termination_threshold_ ) ;
if ( terminate_early ) data - > early_terminations_ + + ;
// The obvious condition.
terminate | = max_recursion = = 0 ;
// Flat cons string terminate by definition.
terminate | = flat ;
// Cap for max leaves.
terminate | = data - > stats_ . leaves_ > = data - > max_leaves_ ;
// Roll the dice.
terminate | = terminate_early ;
// Compute termination characteristics for each side.
bool terminate_left = terminate | | ! data - > rng_ . next ( data - > leftness_ ) ;
bool terminate_right = terminate | | ! data - > rng_ . next ( data - > rightness_ ) ;
// Generate left string.
Handle < String > left ;
if ( terminate_left ) {
left = data - > block ( data - > rng_ . next ( ) ) ;
data - > stats_ . leaves_ + + ;
data - > stats_ . chars_ + = left - > length ( ) ;
} else {
data - > stats_ . left_traversals_ + + ;
}
// Generate right string.
Handle < String > right ;
if ( terminate_right ) {
right = data - > block ( data - > rng_ . next ( ) ) ;
data - > stats_ . leaves_ + + ;
data - > stats_ . chars_ + = right - > length ( ) ;
} else {
data - > stats_ . right_traversals_ + + ;
}
// Generate the necessary sub-nodes recursively.
if ( ! terminate_right ) {
// Need to balance generation fairly.
if ( ! terminate_left & & data - > rng_ . next ( 0.5 ) ) {
left = ConstructRandomString ( data , max_recursion - 1 ) ;
}
right = ConstructRandomString ( data , max_recursion - 1 ) ;
}
if ( ! terminate_left & & left . is_null ( ) ) {
left = ConstructRandomString ( data , max_recursion - 1 ) ;
}
// Build the cons string.
Handle < String > root = FACTORY - > NewConsString ( left , right ) ;
CHECK ( root - > IsConsString ( ) & & ! root - > IsFlat ( ) ) ;
// Special work needed for flat string.
if ( flat ) {
data - > stats_ . empty_leaves_ + + ;
FlattenString ( root ) ;
CHECK ( root - > IsConsString ( ) & & root - > IsFlat ( ) ) ;
}
return root ;
}
static Handle < String > ConstructLeft (
ConsStringGenerationData * data ,
int depth ) {
Handle < String > answer = FACTORY - > NewStringFromAscii ( CStrVector ( " " ) ) ;
data - > stats_ . leaves_ + + ;
for ( int i = 0 ; i < depth ; i + + ) {
Handle < String > block = data - > block ( i ) ;
Handle < String > next = FACTORY - > NewConsString ( answer , block ) ;
if ( next - > IsConsString ( ) ) data - > stats_ . leaves_ + + ;
data - > stats_ . chars_ + = block - > length ( ) ;
answer = next ;
}
data - > stats_ . left_traversals_ = data - > stats_ . leaves_ - 2 ;
return answer ;
}
static Handle < String > ConstructRight (
ConsStringGenerationData * data ,
int depth ) {
Handle < String > answer = FACTORY - > NewStringFromAscii ( CStrVector ( " " ) ) ;
data - > stats_ . leaves_ + + ;
for ( int i = depth - 1 ; i > = 0 ; i - - ) {
Handle < String > block = data - > block ( i ) ;
Handle < String > next = FACTORY - > NewConsString ( block , answer ) ;
if ( next - > IsConsString ( ) ) data - > stats_ . leaves_ + + ;
data - > stats_ . chars_ + = block - > length ( ) ;
answer = next ;
}
data - > stats_ . right_traversals_ = data - > stats_ . leaves_ - 2 ;
return answer ;
}
static Handle < String > ConstructBalancedHelper (
ConsStringGenerationData * data ,
int from ,
int to ) {
CHECK ( to > from ) ;
if ( to - from = = 1 ) {
data - > stats_ . chars_ + = data - > block ( from ) - > length ( ) ;
return data - > block ( from ) ;
}
if ( to - from = = 2 ) {
data - > stats_ . chars_ + = data - > block ( from ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( from + 1 ) - > length ( ) ;
return FACTORY - > NewConsString ( data - > block ( from ) , data - > block ( from + 1 ) ) ;
}
Handle < String > part1 =
ConstructBalancedHelper ( data , from , from + ( ( to - from ) / 2 ) ) ;
Handle < String > part2 =
ConstructBalancedHelper ( data , from + ( ( to - from ) / 2 ) , to ) ;
if ( part1 - > IsConsString ( ) ) data - > stats_ . left_traversals_ + + ;
if ( part2 - > IsConsString ( ) ) data - > stats_ . right_traversals_ + + ;
return FACTORY - > NewConsString ( part1 , part2 ) ;
}
static Handle < String > ConstructBalanced (
ConsStringGenerationData * data , int depth = DEEP_DEPTH ) {
Handle < String > string = ConstructBalancedHelper ( data , 0 , depth ) ;
data - > stats_ . leaves_ =
data - > stats_ . left_traversals_ + data - > stats_ . right_traversals_ + 2 ;
return string ;
}
static ConsStringIteratorOp cons_string_iterator_op_1 ;
static ConsStringIteratorOp cons_string_iterator_op_2 ;
static void Traverse ( Handle < String > s1 , Handle < String > s2 ) {
int i = 0 ;
StringCharacterStream character_stream_1 ( * s1 , & cons_string_iterator_op_1 ) ;
StringCharacterStream character_stream_2 ( * s2 , & cons_string_iterator_op_2 ) ;
while ( character_stream_1 . HasMore ( ) ) {
CHECK ( character_stream_2 . HasMore ( ) ) ;
uint16_t c = character_stream_1 . GetNext ( ) ;
CHECK_EQ ( c , character_stream_2 . GetNext ( ) ) ;
i + + ;
}
CHECK ( ! character_stream_1 . HasMore ( ) ) ;
CHECK ( ! character_stream_2 . HasMore ( ) ) ;
CHECK_EQ ( s1 - > length ( ) , i ) ;
CHECK_EQ ( s2 - > length ( ) , i ) ;
}
static void TraverseFirst ( Handle < String > s1 , Handle < String > s2 , int chars ) {
int i = 0 ;
StringCharacterStream character_stream_1 ( * s1 , & cons_string_iterator_op_1 ) ;
StringCharacterStream character_stream_2 ( * s2 , & cons_string_iterator_op_2 ) ;
while ( character_stream_1 . HasMore ( ) & & i < chars ) {
CHECK ( character_stream_2 . HasMore ( ) ) ;
uint16_t c = character_stream_1 . GetNext ( ) ;
CHECK_EQ ( c , character_stream_2 . GetNext ( ) ) ;
i + + ;
}
s1 - > Get ( s1 - > length ( ) - 1 ) ;
s2 - > Get ( s2 - > length ( ) - 1 ) ;
}
TEST ( Traverse ) {
printf ( " TestTraverse \n " ) ;
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
ZoneScope zone ( Isolate : : Current ( ) - > runtime_zone ( ) , DELETE_ON_EXIT ) ;
ConsStringGenerationData data ( false ) ;
Handle < String > flat = ConstructBalanced ( & data ) ;
FlattenString ( flat ) ;
Handle < String > left_asymmetric = ConstructLeft ( & data , DEEP_DEPTH ) ;
Handle < String > right_asymmetric = ConstructRight ( & data , DEEP_DEPTH ) ;
Handle < String > symmetric = ConstructBalanced ( & data ) ;
printf ( " 1 \n " ) ;
Traverse ( flat , symmetric ) ;
printf ( " 2 \n " ) ;
Traverse ( flat , left_asymmetric ) ;
printf ( " 3 \n " ) ;
Traverse ( flat , right_asymmetric ) ;
printf ( " 4 \n " ) ;
Handle < String > left_deep_asymmetric =
ConstructLeft ( & data , SUPER_DEEP_DEPTH ) ;
Handle < String > right_deep_asymmetric =
ConstructRight ( & data , SUPER_DEEP_DEPTH ) ;
printf ( " 5 \n " ) ;
TraverseFirst ( left_asymmetric , left_deep_asymmetric , 1050 ) ;
printf ( " 6 \n " ) ;
TraverseFirst ( left_asymmetric , right_deep_asymmetric , 65536 ) ;
printf ( " 7 \n " ) ;
FlattenString ( left_asymmetric ) ;
printf ( " 10 \n " ) ;
Traverse ( flat , left_asymmetric ) ;
printf ( " 11 \n " ) ;
FlattenString ( right_asymmetric ) ;
printf ( " 12 \n " ) ;
Traverse ( flat , right_asymmetric ) ;
printf ( " 14 \n " ) ;
FlattenString ( symmetric ) ;
printf ( " 15 \n " ) ;
Traverse ( flat , symmetric ) ;
printf ( " 16 \n " ) ;
FlattenString ( left_deep_asymmetric ) ;
printf ( " 18 \n " ) ;
}
static void VerifyCharacterStream (
String * flat_string , String * cons_string ) {
// Do not want to test ConString traversal on flat string.
CHECK ( flat_string - > IsFlat ( ) & & ! flat_string - > IsConsString ( ) ) ;
CHECK ( cons_string - > IsConsString ( ) ) ;
// TODO(dcarney) Test stream reset as well.
int length = flat_string - > length ( ) ;
// Iterate start search in multiple places in the string.
int outer_iterations = length > 20 ? 20 : length ;
for ( int j = 0 ; j < = outer_iterations ; j + + ) {
int offset = length * j / outer_iterations ;
if ( offset < 0 ) offset = 0 ;
// Want to test the offset == length case.
if ( offset > length ) offset = length ;
StringCharacterStream flat_stream (
flat_string , & cons_string_iterator_op_1 , static_cast < unsigned > ( offset ) ) ;
StringCharacterStream cons_stream (
cons_string , & cons_string_iterator_op_2 , static_cast < unsigned > ( offset ) ) ;
for ( int i = offset ; i < length ; i + + ) {
uint16_t c = flat_string - > Get ( i ) ;
CHECK ( flat_stream . HasMore ( ) ) ;
CHECK ( cons_stream . HasMore ( ) ) ;
CHECK_EQ ( c , flat_stream . GetNext ( ) ) ;
CHECK_EQ ( c , cons_stream . GetNext ( ) ) ;
}
CHECK ( ! flat_stream . HasMore ( ) ) ;
CHECK ( ! cons_stream . HasMore ( ) ) ;
}
}
static inline void PrintStats ( const ConsStringGenerationData & data ) {
# ifdef DEBUG
printf (
" %s: [%d], %s: [%d], %s: [%d], %s: [%d], %s: [%d], %s: [%d] \n " ,
" leaves " , data . stats_ . leaves_ ,
" empty " , data . stats_ . empty_leaves_ ,
" chars " , data . stats_ . chars_ ,
" lefts " , data . stats_ . left_traversals_ ,
" rights " , data . stats_ . right_traversals_ ,
" early_terminations " , data . early_terminations_ ) ;
# endif
}
template < typename BuildString >
void TestStringCharacterStream ( BuildString build , int test_cases ) {
InitializeVM ( ) ;
Isolate * isolate = Isolate : : Current ( ) ;
HandleScope outer_scope ( isolate ) ;
ZoneScope zone ( Isolate : : Current ( ) - > runtime_zone ( ) , DELETE_ON_EXIT ) ;
ConsStringGenerationData data ( true ) ;
for ( int i = 0 ; i < test_cases ; i + + ) {
printf ( " %d \n " , i ) ;
HandleScope inner_scope ( isolate ) ;
AlwaysAllocateScope always_allocate ;
// Build flat version of cons string.
Handle < String > flat_string = build ( i , & data ) ;
ConsStringStats flat_string_stats ;
AccumulateStats ( flat_string , & flat_string_stats ) ;
// Flatten string.
FlattenString ( flat_string ) ;
// Build unflattened version of cons string to test.
Handle < String > cons_string = build ( i , & data ) ;
ConsStringStats cons_string_stats ;
AccumulateStats ( cons_string , & cons_string_stats ) ;
AssertNoAllocation no_alloc ;
PrintStats ( data ) ;
// Full verify of cons string.
cons_string_stats . VerifyEqual ( flat_string_stats ) ;
cons_string_stats . VerifyEqual ( data . stats_ ) ;
VerifyConsString ( cons_string , & data ) ;
String * flat_string_ptr =
flat_string - > IsConsString ( ) ?
ConsString : : cast ( * flat_string ) - > first ( ) :
* flat_string ;
VerifyCharacterStream ( flat_string_ptr , * cons_string ) ;
}
}
static const int kCharacterStreamNonRandomCases = 8 ;
static Handle < String > BuildEdgeCaseConsString (
int test_case , ConsStringGenerationData * data ) {
data - > Reset ( ) ;
switch ( test_case ) {
case 0 :
return ConstructBalanced ( data , 71 ) ;
case 1 :
return ConstructLeft ( data , 71 ) ;
case 2 :
return ConstructRight ( data , 71 ) ;
case 3 :
return ConstructLeft ( data , 10 ) ;
case 4 :
return ConstructRight ( data , 10 ) ;
case 5 :
// 2 element balanced tree.
data - > stats_ . chars_ + = data - > block ( 0 ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( 1 ) - > length ( ) ;
data - > stats_ . leaves_ + = 2 ;
return FACTORY - > NewConsString ( data - > block ( 0 ) , data - > block ( 1 ) ) ;
case 6 :
// Simple flattened tree.
data - > stats_ . chars_ + = data - > block ( 0 ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( 1 ) - > length ( ) ;
data - > stats_ . leaves_ + = 2 ;
data - > stats_ . empty_leaves_ + = 1 ;
{
Handle < String > string =
FACTORY - > NewConsString ( data - > block ( 0 ) , data - > block ( 1 ) ) ;
FlattenString ( string ) ;
return string ;
}
case 7 :
// Left node flattened.
data - > stats_ . chars_ + = data - > block ( 0 ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( 1 ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( 2 ) - > length ( ) ;
data - > stats_ . leaves_ + = 3 ;
data - > stats_ . empty_leaves_ + = 1 ;
data - > stats_ . left_traversals_ + = 1 ;
{
Handle < String > left =
FACTORY - > NewConsString ( data - > block ( 0 ) , data - > block ( 1 ) ) ;
FlattenString ( left ) ;
return FACTORY - > NewConsString ( left , data - > block ( 2 ) ) ;
}
case 8 :
// Left node and right node flattened.
data - > stats_ . chars_ + = data - > block ( 0 ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( 1 ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( 2 ) - > length ( ) ;
data - > stats_ . chars_ + = data - > block ( 3 ) - > length ( ) ;
data - > stats_ . leaves_ + = 4 ;
data - > stats_ . empty_leaves_ + = 2 ;
data - > stats_ . left_traversals_ + = 1 ;
data - > stats_ . right_traversals_ + = 1 ;
{
Handle < String > left =
FACTORY - > NewConsString ( data - > block ( 0 ) , data - > block ( 1 ) ) ;
FlattenString ( left ) ;
Handle < String > right =
FACTORY - > NewConsString ( data - > block ( 2 ) , data - > block ( 2 ) ) ;
FlattenString ( right ) ;
return FACTORY - > NewConsString ( left , right ) ;
}
}
UNREACHABLE ( ) ;
return Handle < String > ( ) ;
}
TEST ( StringCharacterStreamEdgeCases ) {
printf ( " TestStringCharacterStreamEdgeCases \n " ) ;
TestStringCharacterStream (
BuildEdgeCaseConsString , kCharacterStreamNonRandomCases ) ;
}
static const int kBalances = 3 ;
static const int kTreeLengths = 4 ;
static const int kEmptyLeaves = 4 ;
static const int kUniqueRandomParameters =
kBalances * kTreeLengths * kEmptyLeaves ;
static void InitializeGenerationData (
int test_case , ConsStringGenerationData * data ) {
// Clear the settings and reinit the rng.
data - > Reset ( ) ;
// Spin up the rng to a known location that is unique per test.
static const int kPerTestJump = 501 ;
for ( int j = 0 ; j < test_case * kPerTestJump ; j + + ) {
data - > rng_ . next ( ) ;
}
// Choose balanced, left or right heavy trees.
switch ( test_case % kBalances ) {
case 0 :
// Nothing to do. Already balanced.
break ;
case 1 :
// Left balanced.
data - > leftness_ = 0.90 ;
data - > rightness_ = 0.15 ;
break ;
case 2 :
// Right balanced.
data - > leftness_ = 0.15 ;
data - > rightness_ = 0.90 ;
break ;
default :
UNREACHABLE ( ) ;
break ;
}
// Must remove the influence of the above decision.
test_case / = kBalances ;
// Choose tree length.
switch ( test_case % kTreeLengths ) {
case 0 :
data - > max_leaves_ = 16 ;
data - > early_termination_threshold_ = 0.2 ;
break ;
case 1 :
data - > max_leaves_ = 50 ;
data - > early_termination_threshold_ = 0.05 ;
break ;
case 2 :
data - > max_leaves_ = 500 ;
data - > early_termination_threshold_ = 0.03 ;
break ;
case 3 :
data - > max_leaves_ = 5000 ;
data - > early_termination_threshold_ = 0.001 ;
break ;
default :
UNREACHABLE ( ) ;
break ;
}
// Must remove the influence of the above decision.
test_case / = kTreeLengths ;
// Choose how much we allow empty nodes, including not at all.
data - > empty_leaf_threshold_ =
0.03 * static_cast < double > ( test_case % kEmptyLeaves ) ;
}
static Handle < String > BuildRandomConsString (
int test_case , ConsStringGenerationData * data ) {
InitializeGenerationData ( test_case , data ) ;
return ConstructRandomString ( data , 200 ) ;
}
TEST ( StringCharacterStreamRandom ) {
printf ( " StringCharacterStreamRandom \n " ) ;
TestStringCharacterStream ( BuildRandomConsString , kUniqueRandomParameters * 7 ) ;
}
static const int DEEP_ASCII_DEPTH = 100000 ;
TEST ( DeepAscii ) {
printf ( " TestDeepAscii \n " ) ;
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
char * foo = NewArray < char > ( DEEP_ASCII_DEPTH ) ;
for ( int i = 0 ; i < DEEP_ASCII_DEPTH ; i + + ) {
foo [ i ] = " foo " [ i % 4 ] ;
}
Handle < String > string =
FACTORY - > NewStringFromAscii ( Vector < const char > ( foo , DEEP_ASCII_DEPTH ) ) ;
Handle < String > foo_string = FACTORY - > NewStringFromAscii ( CStrVector ( " foo " ) ) ;
for ( int i = 0 ; i < DEEP_ASCII_DEPTH ; i + = 10 ) {
string = FACTORY - > NewConsString ( string , foo_string ) ;
}
Handle < String > flat_string = FACTORY - > NewConsString ( string , foo_string ) ;
FlattenString ( flat_string ) ;
for ( int i = 0 ; i < 500 ; i + + ) {
TraverseFirst ( flat_string , string , DEEP_ASCII_DEPTH ) ;
}
DeleteArray < char > ( foo ) ;
}
TEST ( Utf8Conversion ) {
// Smoke test for converting strings to utf-8.
InitializeVM ( ) ;
v8 : : HandleScope handle_scope ( env - > GetIsolate ( ) ) ;
// A simple ascii string
const char * ascii_string = " abcdef12345 " ;
int len =
v8 : : String : : New ( ascii_string ,
StrLength ( ascii_string ) ) - > Utf8Length ( ) ;
CHECK_EQ ( StrLength ( ascii_string ) , len ) ;
// A mixed ascii and non-ascii string
// U+02E4 -> CB A4
// U+0064 -> 64
// U+12E4 -> E1 8B A4
// U+0030 -> 30
// U+3045 -> E3 81 85
const uint16_t mixed_string [ ] = { 0x02E4 , 0x0064 , 0x12E4 , 0x0030 , 0x3045 } ;
// The characters we expect to be output
const unsigned char as_utf8 [ 11 ] = { 0xCB , 0xA4 , 0x64 , 0xE1 , 0x8B , 0xA4 , 0x30 ,
0xE3 , 0x81 , 0x85 , 0x00 } ;
// The number of bytes expected to be written for each length
const int lengths [ 12 ] = { 0 , 0 , 2 , 3 , 3 , 3 , 6 , 7 , 7 , 7 , 10 , 11 } ;
const int char_lengths [ 12 ] = { 0 , 0 , 1 , 2 , 2 , 2 , 3 , 4 , 4 , 4 , 5 , 5 } ;
v8 : : Handle < v8 : : String > mixed = v8 : : String : : New ( mixed_string , 5 ) ;
CHECK_EQ ( 10 , mixed - > Utf8Length ( ) ) ;
// Try encoding the string with all capacities
char buffer [ 11 ] ;
const char kNoChar = static_cast < char > ( - 1 ) ;
for ( int i = 0 ; i < = 11 ; i + + ) {
// Clear the buffer before reusing it
for ( int j = 0 ; j < 11 ; j + + )
buffer [ j ] = kNoChar ;
int chars_written ;
int written = mixed - > WriteUtf8 ( buffer , i , & chars_written ) ;
CHECK_EQ ( lengths [ i ] , written ) ;
CHECK_EQ ( char_lengths [ i ] , chars_written ) ;
// Check that the contents are correct
for ( int j = 0 ; j < lengths [ i ] ; j + + )
CHECK_EQ ( as_utf8 [ j ] , static_cast < unsigned char > ( buffer [ j ] ) ) ;
// Check that the rest of the buffer hasn't been touched
for ( int j = lengths [ i ] ; j < 11 ; j + + )
CHECK_EQ ( kNoChar , buffer [ j ] ) ;
}
}
TEST ( ExternalShortStringAdd ) {
ZoneScope zonescope ( Isolate : : Current ( ) - > runtime_zone ( ) , DELETE_ON_EXIT ) ;
InitializeVM ( ) ;
v8 : : HandleScope handle_scope ( env - > GetIsolate ( ) ) ;
Zone * zone = Isolate : : Current ( ) - > runtime_zone ( ) ;
// Make sure we cover all always-flat lengths and at least one above.
static const int kMaxLength = 20 ;
CHECK_GT ( kMaxLength , i : : ConsString : : kMinLength ) ;
// Allocate two JavaScript arrays for holding short strings.
v8 : : Handle < v8 : : Array > ascii_external_strings =
v8 : : Array : : New ( kMaxLength + 1 ) ;
v8 : : Handle < v8 : : Array > non_ascii_external_strings =
v8 : : Array : : New ( kMaxLength + 1 ) ;
// Generate short ascii and non-ascii external strings.
for ( int i = 0 ; i < = kMaxLength ; i + + ) {
char * ascii = zone - > NewArray < char > ( i + 1 ) ;
for ( int j = 0 ; j < i ; j + + ) {
ascii [ j ] = ' a ' ;
}
// Terminating '\0' is left out on purpose. It is not required for external
// string data.
AsciiResource * ascii_resource =
new ( zone ) AsciiResource ( Vector < const char > ( ascii , i ) ) ;
v8 : : Local < v8 : : String > ascii_external_string =
v8 : : String : : NewExternal ( ascii_resource ) ;
ascii_external_strings - > Set ( v8 : : Integer : : New ( i ) , ascii_external_string ) ;
uc16 * non_ascii = zone - > NewArray < uc16 > ( i + 1 ) ;
for ( int j = 0 ; j < i ; j + + ) {
non_ascii [ j ] = 0x1234 ;
}
// Terminating '\0' is left out on purpose. It is not required for external
// string data.
Resource * resource = new ( zone ) Resource ( Vector < const uc16 > ( non_ascii , i ) ) ;
v8 : : Local < v8 : : String > non_ascii_external_string =
v8 : : String : : NewExternal ( resource ) ;
non_ascii_external_strings - > Set ( v8 : : Integer : : New ( i ) ,
non_ascii_external_string ) ;
}
// Add the arrays with the short external strings in the global object.
v8 : : Handle < v8 : : Object > global = env - > Global ( ) ;
global - > Set ( v8_str ( " external_ascii " ) , ascii_external_strings ) ;
global - > Set ( v8_str ( " external_non_ascii " ) , non_ascii_external_strings ) ;
global - > Set ( v8_str ( " max_length " ) , v8 : : Integer : : New ( kMaxLength ) ) ;
// Add short external ascii and non-ascii strings checking the result.
static const char * source =
" function test() { "
" var ascii_chars = 'aaaaaaaaaaaaaaaaaaaa'; "
" var non_ascii_chars = ' \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234 \\ u1234'; " //NOLINT
" if (ascii_chars.length != max_length) return 1; "
" if (non_ascii_chars.length != max_length) return 2; "
" var ascii = Array(max_length + 1); "
" var non_ascii = Array(max_length + 1); "
" for (var i = 0; i <= max_length; i++) { "
" ascii[i] = ascii_chars.substring(0, i); "
" non_ascii[i] = non_ascii_chars.substring(0, i); "
" }; "
" for (var i = 0; i <= max_length; i++) { "
" if (ascii[i] != external_ascii[i]) return 3; "
" if (non_ascii[i] != external_non_ascii[i]) return 4; "
" for (var j = 0; j < i; j++) { "
" if (external_ascii[i] != "
" (external_ascii[j] + external_ascii[i - j])) return 5; "
" if (external_non_ascii[i] != "
" (external_non_ascii[j] + external_non_ascii[i - j])) return 6; "
" if (non_ascii[i] != (non_ascii[j] + non_ascii[i - j])) return 7; "
" if (ascii[i] != (ascii[j] + ascii[i - j])) return 8; "
" if (ascii[i] != (external_ascii[j] + ascii[i - j])) return 9; "
" if (ascii[i] != (ascii[j] + external_ascii[i - j])) return 10; "
" if (non_ascii[i] != "
" (external_non_ascii[j] + non_ascii[i - j])) return 11; "
" if (non_ascii[i] != "
" (non_ascii[j] + external_non_ascii[i - j])) return 12; "
" } "
" } "
" return 0; "
" }; "
" test() " ;
CHECK_EQ ( 0 , CompileRun ( source ) - > Int32Value ( ) ) ;
}
TEST ( CachedHashOverflow ) {
// We incorrectly allowed strings to be tagged as array indices even if their
// values didn't fit in the hash field.
// See http://code.google.com/p/v8/issues/detail?id=728
Isolate * isolate = Isolate : : Current ( ) ;
ZoneScope zone ( isolate - > runtime_zone ( ) , DELETE_ON_EXIT ) ;
InitializeVM ( ) ;
v8 : : HandleScope handle_scope ( env - > GetIsolate ( ) ) ;
// Lines must be executed sequentially. Combining them into one script
// makes the bug go away.
const char * lines [ ] = {
" var x = []; " ,
" x[4] = 42; " ,
" var s = \" 1073741828 \" ; " ,
" x[s]; " ,
" x[s] = 37; " ,
" x[4]; " ,
" x[s]; " ,
NULL
} ;
Handle < Smi > fortytwo ( Smi : : FromInt ( 42 ) , isolate ) ;
Handle < Smi > thirtyseven ( Smi : : FromInt ( 37 ) , isolate ) ;
Handle < Object > results [ ] = { isolate - > factory ( ) - > undefined_value ( ) ,
fortytwo ,
isolate - > factory ( ) - > undefined_value ( ) ,
isolate - > factory ( ) - > undefined_value ( ) ,
thirtyseven ,
fortytwo ,
thirtyseven // Bug yielded 42 here.
} ;
const char * line ;
for ( int i = 0 ; ( line = lines [ i ] ) ; i + + ) {
printf ( " %s \n " , line ) ;
v8 : : Local < v8 : : Value > result =
v8 : : Script : : Compile ( v8 : : String : : New ( line ) ) - > Run ( ) ;
CHECK_EQ ( results [ i ] - > IsUndefined ( ) , result - > IsUndefined ( ) ) ;
CHECK_EQ ( results [ i ] - > IsNumber ( ) , result - > IsNumber ( ) ) ;
if ( result - > IsNumber ( ) ) {
CHECK_EQ ( Smi : : cast ( results [ i ] - > ToSmi ( ) - > ToObjectChecked ( ) ) - > value ( ) ,
result - > ToInt32 ( ) - > Value ( ) ) ;
}
}
}
TEST ( SliceFromCons ) {
FLAG_string_slices = true ;
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
Handle < String > string =
FACTORY - > NewStringFromAscii ( CStrVector ( " parentparentparent " ) ) ;
Handle < String > parent = FACTORY - > NewConsString ( string , string ) ;
CHECK ( parent - > IsConsString ( ) ) ;
CHECK ( ! parent - > IsFlat ( ) ) ;
Handle < String > slice = FACTORY - > NewSubString ( parent , 1 , 25 ) ;
// After slicing, the original string becomes a flat cons.
CHECK ( parent - > IsFlat ( ) ) ;
CHECK ( slice - > IsSlicedString ( ) ) ;
CHECK_EQ ( SlicedString : : cast ( * slice ) - > parent ( ) ,
// Parent could have been short-circuited.
parent - > IsConsString ( ) ? ConsString : : cast ( * parent ) - > first ( )
: * parent ) ;
CHECK ( SlicedString : : cast ( * slice ) - > parent ( ) - > IsSeqString ( ) ) ;
CHECK ( slice - > IsFlat ( ) ) ;
}
class AsciiVectorResource : public v8 : : String : : ExternalAsciiStringResource {
public :
explicit AsciiVectorResource ( i : : Vector < const char > vector )
: data_ ( vector ) { }
virtual ~ AsciiVectorResource ( ) { }
virtual size_t length ( ) const { return data_ . length ( ) ; }
virtual const char * data ( ) const { return data_ . start ( ) ; }
private :
i : : Vector < const char > data_ ;
} ;
TEST ( SliceFromExternal ) {
FLAG_string_slices = true ;
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
AsciiVectorResource resource (
i : : Vector < const char > ( " abcdefghijklmnopqrstuvwxyz " , 26 ) ) ;
Handle < String > string = FACTORY - > NewExternalStringFromAscii ( & resource ) ;
CHECK ( string - > IsExternalString ( ) ) ;
Handle < String > slice = FACTORY - > NewSubString ( string , 1 , 25 ) ;
CHECK ( slice - > IsSlicedString ( ) ) ;
CHECK ( string - > IsExternalString ( ) ) ;
CHECK_EQ ( SlicedString : : cast ( * slice ) - > parent ( ) , * string ) ;
CHECK ( SlicedString : : cast ( * slice ) - > parent ( ) - > IsExternalString ( ) ) ;
CHECK ( slice - > IsFlat ( ) ) ;
}
TEST ( TrivialSlice ) {
// This tests whether a slice that contains the entire parent string
// actually creates a new string (it should not).
FLAG_string_slices = true ;
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
v8 : : Local < v8 : : Value > result ;
Handle < String > string ;
const char * init = " var str = 'abcdefghijklmnopqrstuvwxyz'; " ;
const char * check = " str.slice(0,26) " ;
const char * crosscheck = " str.slice(1,25) " ;
CompileRun ( init ) ;
result = CompileRun ( check ) ;
CHECK ( result - > IsString ( ) ) ;
string = v8 : : Utils : : OpenHandle ( v8 : : String : : Cast ( * result ) ) ;
CHECK ( ! string - > IsSlicedString ( ) ) ;
string = FACTORY - > NewSubString ( string , 0 , 26 ) ;
CHECK ( ! string - > IsSlicedString ( ) ) ;
result = CompileRun ( crosscheck ) ;
CHECK ( result - > IsString ( ) ) ;
string = v8 : : Utils : : OpenHandle ( v8 : : String : : Cast ( * result ) ) ;
CHECK ( string - > IsSlicedString ( ) ) ;
CHECK_EQ ( " bcdefghijklmnopqrstuvwxy " , * ( string - > ToCString ( ) ) ) ;
}
TEST ( SliceFromSlice ) {
// This tests whether a slice that contains the entire parent string
// actually creates a new string (it should not).
FLAG_string_slices = true ;
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
v8 : : Local < v8 : : Value > result ;
Handle < String > string ;
const char * init = " var str = 'abcdefghijklmnopqrstuvwxyz'; " ;
const char * slice = " var slice = str.slice(1,-1); slice " ;
const char * slice_from_slice = " slice.slice(1,-1); " ;
CompileRun ( init ) ;
result = CompileRun ( slice ) ;
CHECK ( result - > IsString ( ) ) ;
string = v8 : : Utils : : OpenHandle ( v8 : : String : : Cast ( * result ) ) ;
CHECK ( string - > IsSlicedString ( ) ) ;
CHECK ( SlicedString : : cast ( * string ) - > parent ( ) - > IsSeqString ( ) ) ;
CHECK_EQ ( " bcdefghijklmnopqrstuvwxy " , * ( string - > ToCString ( ) ) ) ;
result = CompileRun ( slice_from_slice ) ;
CHECK ( result - > IsString ( ) ) ;
string = v8 : : Utils : : OpenHandle ( v8 : : String : : Cast ( * result ) ) ;
CHECK ( string - > IsSlicedString ( ) ) ;
CHECK ( SlicedString : : cast ( * string ) - > parent ( ) - > IsSeqString ( ) ) ;
CHECK_EQ ( " cdefghijklmnopqrstuvwx " , * ( string - > ToCString ( ) ) ) ;
}
TEST ( AsciiArrayJoin ) {
// Set heap limits.
static const int K = 1024 ;
v8 : : ResourceConstraints constraints ;
constraints . set_max_young_space_size ( 256 * K ) ;
constraints . set_max_old_space_size ( 4 * K * K ) ;
v8 : : SetResourceConstraints ( & constraints ) ;
// String s is made of 2^17 = 131072 'c' characters and a is an array
// starting with 'bad', followed by 2^14 times the string s. That means the
// total length of the concatenated strings is 2^31 + 3. So on 32bit systems
// summing the lengths of the strings (as Smis) overflows and wraps.
static const char * join_causing_out_of_memory =
" var two_14 = Math.pow(2, 14); "
" var two_17 = Math.pow(2, 17); "
" var s = Array(two_17 + 1).join('c'); "
" var a = ['bad']; "
" for (var i = 1; i <= two_14; i++) a.push(s); "
" a.join( " " ); " ;
v8 : : HandleScope scope ( v8 : : Isolate : : GetCurrent ( ) ) ;
LocalContext context ;
v8 : : V8 : : IgnoreOutOfMemoryException ( ) ;
v8 : : Local < v8 : : Script > script =
v8 : : Script : : Compile ( v8 : : String : : New ( join_causing_out_of_memory ) ) ;
v8 : : Local < v8 : : Value > result = script - > Run ( ) ;
// Check for out of memory state.
CHECK ( result . IsEmpty ( ) ) ;
CHECK ( context - > HasOutOfMemoryException ( ) ) ;
}
static void CheckException ( const char * source ) {
// An empty handle is returned upon exception.
CHECK ( CompileRun ( source ) . IsEmpty ( ) ) ;
}
TEST ( RobustSubStringStub ) {
// This tests whether the SubStringStub can handle unsafe arguments.
// If not recognized, those unsafe arguments lead to out-of-bounds reads.
FLAG_allow_natives_syntax = true ;
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
v8 : : Local < v8 : : Value > result ;
Handle < String > string ;
CompileRun ( " var short = 'abcdef'; " ) ;
// Invalid indices.
CheckException ( " %_SubString(short, 0, 10000); " ) ;
CheckException ( " %_SubString(short, -1234, 5); " ) ;
CheckException ( " %_SubString(short, 5, 2); " ) ;
// Special HeapNumbers.
CheckException ( " %_SubString(short, 1, Infinity); " ) ;
CheckException ( " %_SubString(short, NaN, 5); " ) ;
// String arguments.
CheckException ( " %_SubString(short, '2', '5'); " ) ;
// Ordinary HeapNumbers can be handled (in runtime).
result = CompileRun ( " %_SubString(short, Math.sqrt(4), 5.1); " ) ;
string = v8 : : Utils : : OpenHandle ( v8 : : String : : Cast ( * result ) ) ;
CHECK_EQ ( " cde " , * ( string - > ToCString ( ) ) ) ;
CompileRun ( " var long = 'abcdefghijklmnopqrstuvwxyz'; " ) ;
// Invalid indices.
CheckException ( " %_SubString(long, 0, 10000); " ) ;
CheckException ( " %_SubString(long, -1234, 17); " ) ;
CheckException ( " %_SubString(long, 17, 2); " ) ;
// Special HeapNumbers.
CheckException ( " %_SubString(long, 1, Infinity); " ) ;
CheckException ( " %_SubString(long, NaN, 17); " ) ;
// String arguments.
CheckException ( " %_SubString(long, '2', '17'); " ) ;
// Ordinary HeapNumbers within bounds can be handled (in runtime).
result = CompileRun ( " %_SubString(long, Math.sqrt(4), 17.1); " ) ;
string = v8 : : Utils : : OpenHandle ( v8 : : String : : Cast ( * result ) ) ;
CHECK_EQ ( " cdefghijklmnopq " , * ( string - > ToCString ( ) ) ) ;
// Test that out-of-bounds substring of a slice fails when the indices
// would have been valid for the underlying string.
CompileRun ( " var slice = long.slice(1, 15); " ) ;
CheckException ( " %_SubString(slice, 0, 17); " ) ;
}
TEST ( RegExpOverflow ) {
// Result string has the length 2^32, causing a 32-bit integer overflow.
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
LocalContext context ;
v8 : : V8 : : IgnoreOutOfMemoryException ( ) ;
v8 : : Local < v8 : : Value > result = CompileRun (
" var a = 'a'; "
" for (var i = 0; i < 16; i++) { "
" a += a; "
" } "
" a.replace(/a/g, a); " ) ;
CHECK ( result . IsEmpty ( ) ) ;
CHECK ( context - > HasOutOfMemoryException ( ) ) ;
}
TEST ( StringReplaceAtomTwoByteResult ) {
InitializeVM ( ) ;
v8 : : HandleScope scope ( env - > GetIsolate ( ) ) ;
LocalContext context ;
v8 : : Local < v8 : : Value > result = CompileRun (
" var subject = 'ascii~only~string~'; "
" var replace = ' \x80 '; "
" subject.replace(/~/g, replace); " ) ;
CHECK ( result - > IsString ( ) ) ;
Handle < String > string = v8 : : Utils : : OpenHandle ( v8 : : String : : Cast ( * result ) ) ;
CHECK ( string - > IsSeqTwoByteString ( ) ) ;
v8 : : Local < v8 : : String > expected = v8_str ( " ascii \x80 only \x80 string \x80 " ) ;
CHECK ( expected - > Equals ( result ) ) ;
}
TEST ( IsAscii ) {
CHECK ( String : : IsAscii ( static_cast < char * > ( NULL ) , 0 ) ) ;
CHECK ( String : : IsOneByte ( static_cast < uc16 * > ( NULL ) , 0 ) ) ;
}
template < typename Op , bool return_first >
static uint16_t ConvertLatin1 ( uint16_t c ) {
uint32_t result [ Op : : kMaxWidth ] ;
int chars ;
chars = Op : : Convert ( c , 0 , result , NULL ) ;
if ( chars = = 0 ) return 0 ;
CHECK_LE ( chars , static_cast < int > ( sizeof ( result ) ) ) ;
if ( ! return_first & & chars > 1 ) {
return 0 ;
}
return result [ 0 ] ;
}
static void CheckCanonicalEquivalence ( uint16_t c , uint16_t test ) {
uint16_t expect = ConvertLatin1 < unibrow : : Ecma262UnCanonicalize , true > ( c ) ;
if ( expect > unibrow : : Latin1 : : kMaxChar ) expect = 0 ;
CHECK_EQ ( expect , test ) ;
}
TEST ( Latin1IgnoreCase ) {
using namespace unibrow ;
for ( uint16_t c = Latin1 : : kMaxChar + 1 ; c ! = 0 ; c + + ) {
uint16_t lower = ConvertLatin1 < ToLowercase , false > ( c ) ;
uint16_t upper = ConvertLatin1 < ToUppercase , false > ( c ) ;
uint16_t test = Latin1 : : ConvertNonLatin1ToLatin1 ( c ) ;
// Filter out all character whose upper is not their lower or vice versa.
if ( lower = = 0 & & upper = = 0 ) {
CheckCanonicalEquivalence ( c , test ) ;
continue ;
}
if ( lower > Latin1 : : kMaxChar & & upper > Latin1 : : kMaxChar ) {
CheckCanonicalEquivalence ( c , test ) ;
continue ;
}
if ( lower = = 0 & & upper ! = 0 ) {
lower = ConvertLatin1 < ToLowercase , false > ( upper ) ;
}
if ( upper = = 0 & & lower ! = c ) {
upper = ConvertLatin1 < ToUppercase , false > ( lower ) ;
}
if ( lower > Latin1 : : kMaxChar & & upper > Latin1 : : kMaxChar ) {
CheckCanonicalEquivalence ( c , test ) ;
continue ;
}
if ( upper ! = c & & lower ! = c ) {
CheckCanonicalEquivalence ( c , test ) ;
continue ;
}
CHECK_EQ ( Min ( upper , lower ) , test ) ;
}
}