You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

312 lines
10 KiB

// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ZONE_H_
#define V8_ZONE_H_
namespace v8 {
namespace internal {
// Zone scopes are in one of two modes. Either they delete the zone
// on exit or they do not.
enum ZoneScopeMode {
DELETE_ON_EXIT,
DONT_DELETE_ON_EXIT
};
// The Zone supports very fast allocation of small chunks of
// memory. The chunks cannot be deallocated individually, but instead
// the Zone supports deallocating all chunks in one fast
// operation. The Zone is used to hold temporary data structures like
// the abstract syntax tree, which is deallocated after compilation.
// Note: There is no need to initialize the Zone; the first time an
// allocation is attempted, a segment of memory will be requested
// through a call to malloc().
// Note: The implementation is inherently not thread safe. Do not use
// from multi-threaded code.
class Zone {
public:
// Allocate 'size' bytes of memory in the Zone; expands the Zone by
// allocating new segments of memory on demand using malloc().
static inline void* New(int size);
template <typename T>
static inline T* NewArray(int length);
// Delete all objects and free all memory allocated in the Zone.
static void DeleteAll();
// Returns true if more memory has been allocated in zones than
// the limit allows.
static inline bool excess_allocation();
static inline void adjust_segment_bytes_allocated(int delta);
private:
// All pointers returned from New() have this alignment.
static const int kAlignment = kPointerSize;
// Never allocate segments smaller than this size in bytes.
static const int kMinimumSegmentSize = 8 * KB;
// Never allocate segments larger than this size in bytes.
static const int kMaximumSegmentSize = 1 * MB;
// Never keep segments larger than this size in bytes around.
static const int kMaximumKeptSegmentSize = 64 * KB;
// Report zone excess when allocation exceeds this limit.
static int zone_excess_limit_;
// The number of bytes allocated in segments. Note that this number
// includes memory allocated from the OS but not yet allocated from
// the zone.
static int segment_bytes_allocated_;
// The Zone is intentionally a singleton; you should not try to
// allocate instances of the class.
Zone() { UNREACHABLE(); }
// Expand the Zone to hold at least 'size' more bytes and allocate
// the bytes. Returns the address of the newly allocated chunk of
// memory in the Zone. Should only be called if there isn't enough
// room in the Zone already.
static Address NewExpand(int size);
// The free region in the current (front) segment is represented as
// the half-open interval [position, limit). The 'position' variable
// is guaranteed to be aligned as dictated by kAlignment.
static Address position_;
static Address limit_;
};
// ZoneObject is an abstraction that helps define classes of objects
// allocated in the Zone. Use it as a base class; see ast.h.
class ZoneObject {
public:
// Allocate a new ZoneObject of 'size' bytes in the Zone.
void* operator new(size_t size) { return Zone::New(size); }
// Ideally, the delete operator should be private instead of
// public, but unfortunately the compiler sometimes synthesizes
// (unused) destructors for classes derived from ZoneObject, which
// require the operator to be visible. MSVC requires the delete
// operator to be public.
// ZoneObjects should never be deleted individually; use
// Zone::DeleteAll() to delete all zone objects in one go.
void operator delete(void*, size_t) { UNREACHABLE(); }
};
class AssertNoZoneAllocation {
public:
AssertNoZoneAllocation() : prev_(allow_allocation_) {
allow_allocation_ = false;
}
~AssertNoZoneAllocation() { allow_allocation_ = prev_; }
static bool allow_allocation() { return allow_allocation_; }
private:
bool prev_;
static bool allow_allocation_;
};
// The ZoneListAllocationPolicy is used to specialize the GenericList
// implementation to allocate ZoneLists and their elements in the
// Zone.
class ZoneListAllocationPolicy {
public:
// Allocate 'size' bytes of memory in the zone.
static void* New(int size) { return Zone::New(size); }
// De-allocation attempts are silently ignored.
static void Delete(void* p) { }
};
// ZoneLists are growable lists with constant-time access to the
// elements. The list itself and all its elements are allocated in the
// Zone. ZoneLists cannot be deleted individually; you can delete all
// objects in the Zone by calling Zone::DeleteAll().
template<typename T>
class ZoneList: public List<T, ZoneListAllocationPolicy> {
public:
// Construct a new ZoneList with the given capacity; the length is
// always zero. The capacity must be non-negative.
explicit ZoneList(int capacity)
: List<T, ZoneListAllocationPolicy>(capacity) { }
};
// ZoneScopes keep track of the current parsing and compilation
// nesting and cleans up generated ASTs in the Zone when exiting the
// outer-most scope.
class ZoneScope BASE_EMBEDDED {
public:
explicit ZoneScope(ZoneScopeMode mode) : mode_(mode) {
nesting_++;
}
virtual ~ZoneScope() {
if (ShouldDeleteOnExit()) Zone::DeleteAll();
--nesting_;
}
bool ShouldDeleteOnExit() {
return nesting_ == 1 && mode_ == DELETE_ON_EXIT;
}
// For ZoneScopes that do not delete on exit by default, call this
// method to request deletion on exit.
void DeleteOnExit() {
mode_ = DELETE_ON_EXIT;
}
static int nesting() { return nesting_; }
private:
ZoneScopeMode mode_;
static int nesting_;
};
template <typename Node, class Callback>
static void DoForEach(Node* node, Callback* callback);
// A zone splay tree. The config type parameter encapsulates the
// different configurations of a concrete splay tree:
//
// typedef Key: the key type
// typedef Value: the value type
// static const kNoKey: the dummy key used when no key is set
// static const kNoValue: the dummy value used to initialize nodes
// int (Compare)(Key& a, Key& b) -> {-1, 0, 1}: comparison function
//
template <typename Config>
class ZoneSplayTree : public ZoneObject {
public:
typedef typename Config::Key Key;
typedef typename Config::Value Value;
class Locator;
ZoneSplayTree() : root_(NULL) { }
// Inserts the given key in this tree with the given value. Returns
// true if a node was inserted, otherwise false. If found the locator
// is enabled and provides access to the mapping for the key.
bool Insert(const Key& key, Locator* locator);
// Looks up the key in this tree and returns true if it was found,
// otherwise false. If the node is found the locator is enabled and
// provides access to the mapping for the key.
bool Find(const Key& key, Locator* locator);
// Finds the mapping with the greatest key less than or equal to the
// given key.
bool FindGreatestLessThan(const Key& key, Locator* locator);
// Find the mapping with the greatest key in this tree.
bool FindGreatest(Locator* locator);
// Finds the mapping with the least key greater than or equal to the
// given key.
bool FindLeastGreaterThan(const Key& key, Locator* locator);
// Find the mapping with the least key in this tree.
bool FindLeast(Locator* locator);
// Remove the node with the given key from the tree.
bool Remove(const Key& key);
bool is_empty() { return root_ == NULL; }
// Perform the splay operation for the given key. Moves the node with
// the given key to the top of the tree. If no node has the given
// key, the last node on the search path is moved to the top of the
// tree.
void Splay(const Key& key);
class Node : public ZoneObject {
public:
Node(const Key& key, const Value& value)
: key_(key),
value_(value),
left_(NULL),
right_(NULL) { }
Key key() { return key_; }
Value value() { return value_; }
Node* left() { return left_; }
Node* right() { return right_; }
private:
friend class ZoneSplayTree;
friend class Locator;
Key key_;
Value value_;
Node* left_;
Node* right_;
};
// A locator provides access to a node in the tree without actually
// exposing the node.
class Locator {
public:
explicit Locator(Node* node) : node_(node) { }
Locator() : node_(NULL) { }
const Key& key() { return node_->key_; }
Value& value() { return node_->value_; }
void set_value(const Value& value) { node_->value_ = value; }
inline void bind(Node* node) { node_ = node; }
private:
Node* node_;
};
template <class Callback>
void ForEach(Callback* c) {
DoForEach<typename ZoneSplayTree<Config>::Node, Callback>(root_, c);
}
private:
Node* root_;
};
} } // namespace v8::internal
#endif // V8_ZONE_H_