|
|
|
// Copyright 2012 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#if defined(V8_TARGET_ARCH_ARM)
|
|
|
|
|
|
|
|
#include "codegen.h"
|
|
|
|
#include "macro-assembler.h"
|
|
|
|
#include "simulator-arm.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
|
|
|
|
UnaryMathFunction CreateTranscendentalFunction(TranscendentalCache::Type type) {
|
|
|
|
switch (type) {
|
|
|
|
case TranscendentalCache::SIN: return &sin;
|
|
|
|
case TranscendentalCache::COS: return &cos;
|
|
|
|
case TranscendentalCache::TAN: return &tan;
|
|
|
|
case TranscendentalCache::LOG: return &log;
|
|
|
|
default: UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#define __ masm.
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(USE_SIMULATOR)
|
|
|
|
byte* fast_exp_arm_machine_code = NULL;
|
|
|
|
double fast_exp_simulator(double x) {
|
|
|
|
return Simulator::current(Isolate::Current())->CallFP(
|
|
|
|
fast_exp_arm_machine_code, x, 0);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
UnaryMathFunction CreateExpFunction() {
|
|
|
|
if (!CpuFeatures::IsSupported(VFP2)) return &exp;
|
|
|
|
if (!FLAG_fast_math) return &exp;
|
|
|
|
size_t actual_size;
|
|
|
|
byte* buffer = static_cast<byte*>(OS::Allocate(1 * KB, &actual_size, true));
|
|
|
|
if (buffer == NULL) return &exp;
|
|
|
|
ExternalReference::InitializeMathExpData();
|
|
|
|
|
|
|
|
MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));
|
|
|
|
|
|
|
|
{
|
|
|
|
CpuFeatures::Scope use_vfp(VFP2);
|
|
|
|
DoubleRegister input = d0;
|
|
|
|
DoubleRegister result = d1;
|
|
|
|
DoubleRegister double_scratch1 = d2;
|
|
|
|
DoubleRegister double_scratch2 = d3;
|
|
|
|
Register temp1 = r4;
|
|
|
|
Register temp2 = r5;
|
|
|
|
Register temp3 = r6;
|
|
|
|
|
|
|
|
if (masm.use_eabi_hardfloat()) {
|
|
|
|
// Input value is in d0 anyway, nothing to do.
|
|
|
|
} else {
|
|
|
|
__ vmov(input, r0, r1);
|
|
|
|
}
|
|
|
|
__ Push(temp3, temp2, temp1);
|
|
|
|
MathExpGenerator::EmitMathExp(
|
|
|
|
&masm, input, result, double_scratch1, double_scratch2,
|
|
|
|
temp1, temp2, temp3);
|
|
|
|
__ Pop(temp3, temp2, temp1);
|
|
|
|
if (masm.use_eabi_hardfloat()) {
|
|
|
|
__ vmov(d0, result);
|
|
|
|
} else {
|
|
|
|
__ vmov(r0, r1, result);
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
CodeDesc desc;
|
|
|
|
masm.GetCode(&desc);
|
|
|
|
|
|
|
|
CPU::FlushICache(buffer, actual_size);
|
|
|
|
OS::ProtectCode(buffer, actual_size);
|
|
|
|
|
|
|
|
#if !defined(USE_SIMULATOR)
|
|
|
|
return FUNCTION_CAST<UnaryMathFunction>(buffer);
|
|
|
|
#else
|
|
|
|
fast_exp_arm_machine_code = buffer;
|
|
|
|
return &fast_exp_simulator;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#undef __
|
|
|
|
|
|
|
|
|
|
|
|
UnaryMathFunction CreateSqrtFunction() {
|
|
|
|
return &sqrt;
|
|
|
|
}
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Platform-specific RuntimeCallHelper functions.
|
|
|
|
|
|
|
|
void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
|
|
|
|
masm->EnterFrame(StackFrame::INTERNAL);
|
|
|
|
ASSERT(!masm->has_frame());
|
|
|
|
masm->set_has_frame(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
|
|
|
|
masm->LeaveFrame(StackFrame::INTERNAL);
|
|
|
|
ASSERT(masm->has_frame());
|
|
|
|
masm->set_has_frame(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Code generators
|
|
|
|
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
|
|
|
|
void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
|
|
|
|
MacroAssembler* masm) {
|
|
|
|
// ----------- S t a t e -------------
|
|
|
|
// -- r0 : value
|
|
|
|
// -- r1 : key
|
|
|
|
// -- r2 : receiver
|
|
|
|
// -- lr : return address
|
|
|
|
// -- r3 : target map, scratch for subsequent call
|
|
|
|
// -- r4 : scratch (elements)
|
|
|
|
// -----------------------------------
|
|
|
|
// Set transitioned map.
|
|
|
|
__ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
|
|
__ RecordWriteField(r2,
|
|
|
|
HeapObject::kMapOffset,
|
|
|
|
r3,
|
|
|
|
r9,
|
|
|
|
kLRHasNotBeenSaved,
|
|
|
|
kDontSaveFPRegs,
|
|
|
|
EMIT_REMEMBERED_SET,
|
|
|
|
OMIT_SMI_CHECK);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ElementsTransitionGenerator::GenerateSmiToDouble(
|
|
|
|
MacroAssembler* masm, Label* fail) {
|
|
|
|
// ----------- S t a t e -------------
|
|
|
|
// -- r0 : value
|
|
|
|
// -- r1 : key
|
|
|
|
// -- r2 : receiver
|
|
|
|
// -- lr : return address
|
|
|
|
// -- r3 : target map, scratch for subsequent call
|
|
|
|
// -- r4 : scratch (elements)
|
|
|
|
// -----------------------------------
|
|
|
|
Label loop, entry, convert_hole, gc_required, only_change_map, done;
|
|
|
|
bool vfp2_supported = CpuFeatures::IsSupported(VFP2);
|
|
|
|
|
|
|
|
// Check for empty arrays, which only require a map transition and no changes
|
|
|
|
// to the backing store.
|
|
|
|
__ ldr(r4, FieldMemOperand(r2, JSObject::kElementsOffset));
|
|
|
|
__ CompareRoot(r4, Heap::kEmptyFixedArrayRootIndex);
|
|
|
|
__ b(eq, &only_change_map);
|
|
|
|
|
|
|
|
__ push(lr);
|
|
|
|
__ ldr(r5, FieldMemOperand(r4, FixedArray::kLengthOffset));
|
|
|
|
// r4: source FixedArray
|
|
|
|
// r5: number of elements (smi-tagged)
|
|
|
|
|
|
|
|
// Allocate new FixedDoubleArray.
|
|
|
|
// Use lr as a temporary register.
|
|
|
|
__ mov(lr, Operand(r5, LSL, 2));
|
|
|
|
__ add(lr, lr, Operand(FixedDoubleArray::kHeaderSize + kPointerSize));
|
|
|
|
__ AllocateInNewSpace(lr, r6, r7, r9, &gc_required, NO_ALLOCATION_FLAGS);
|
|
|
|
// r6: destination FixedDoubleArray, not tagged as heap object.
|
|
|
|
|
|
|
|
// Align the array conveniently for doubles.
|
|
|
|
// Store a filler value in the unused memory.
|
|
|
|
Label aligned, aligned_done;
|
|
|
|
__ tst(r6, Operand(kDoubleAlignmentMask));
|
|
|
|
__ mov(ip, Operand(masm->isolate()->factory()->one_pointer_filler_map()));
|
|
|
|
__ b(eq, &aligned);
|
|
|
|
// Store at the beginning of the allocated memory and update the base pointer.
|
|
|
|
__ str(ip, MemOperand(r6, kPointerSize, PostIndex));
|
|
|
|
__ b(&aligned_done);
|
|
|
|
|
|
|
|
__ bind(&aligned);
|
|
|
|
// Store the filler at the end of the allocated memory.
|
|
|
|
__ sub(lr, lr, Operand(kPointerSize));
|
|
|
|
__ str(ip, MemOperand(r6, lr));
|
|
|
|
|
|
|
|
__ bind(&aligned_done);
|
|
|
|
|
|
|
|
// Set destination FixedDoubleArray's length and map.
|
|
|
|
__ LoadRoot(r9, Heap::kFixedDoubleArrayMapRootIndex);
|
|
|
|
__ str(r5, MemOperand(r6, FixedDoubleArray::kLengthOffset));
|
|
|
|
// Update receiver's map.
|
|
|
|
__ str(r9, MemOperand(r6, HeapObject::kMapOffset));
|
|
|
|
|
|
|
|
__ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
|
|
__ RecordWriteField(r2,
|
|
|
|
HeapObject::kMapOffset,
|
|
|
|
r3,
|
|
|
|
r9,
|
|
|
|
kLRHasBeenSaved,
|
|
|
|
kDontSaveFPRegs,
|
|
|
|
OMIT_REMEMBERED_SET,
|
|
|
|
OMIT_SMI_CHECK);
|
|
|
|
// Replace receiver's backing store with newly created FixedDoubleArray.
|
|
|
|
__ add(r3, r6, Operand(kHeapObjectTag));
|
|
|
|
__ str(r3, FieldMemOperand(r2, JSObject::kElementsOffset));
|
|
|
|
__ RecordWriteField(r2,
|
|
|
|
JSObject::kElementsOffset,
|
|
|
|
r3,
|
|
|
|
r9,
|
|
|
|
kLRHasBeenSaved,
|
|
|
|
kDontSaveFPRegs,
|
|
|
|
EMIT_REMEMBERED_SET,
|
|
|
|
OMIT_SMI_CHECK);
|
|
|
|
|
|
|
|
// Prepare for conversion loop.
|
|
|
|
__ add(r3, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ add(r7, r6, Operand(FixedDoubleArray::kHeaderSize));
|
|
|
|
__ add(r6, r7, Operand(r5, LSL, 2));
|
|
|
|
__ mov(r4, Operand(kHoleNanLower32));
|
|
|
|
__ mov(r5, Operand(kHoleNanUpper32));
|
|
|
|
// r3: begin of source FixedArray element fields, not tagged
|
|
|
|
// r4: kHoleNanLower32
|
|
|
|
// r5: kHoleNanUpper32
|
|
|
|
// r6: end of destination FixedDoubleArray, not tagged
|
|
|
|
// r7: begin of FixedDoubleArray element fields, not tagged
|
|
|
|
if (!vfp2_supported) __ Push(r1, r0);
|
|
|
|
|
|
|
|
__ b(&entry);
|
|
|
|
|
|
|
|
__ bind(&only_change_map);
|
|
|
|
__ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
|
|
__ RecordWriteField(r2,
|
|
|
|
HeapObject::kMapOffset,
|
|
|
|
r3,
|
|
|
|
r9,
|
|
|
|
kLRHasNotBeenSaved,
|
|
|
|
kDontSaveFPRegs,
|
|
|
|
OMIT_REMEMBERED_SET,
|
|
|
|
OMIT_SMI_CHECK);
|
|
|
|
__ b(&done);
|
|
|
|
|
|
|
|
// Call into runtime if GC is required.
|
|
|
|
__ bind(&gc_required);
|
|
|
|
__ pop(lr);
|
|
|
|
__ b(fail);
|
|
|
|
|
|
|
|
// Convert and copy elements.
|
|
|
|
__ bind(&loop);
|
|
|
|
__ ldr(r9, MemOperand(r3, 4, PostIndex));
|
|
|
|
// r9: current element
|
|
|
|
__ UntagAndJumpIfNotSmi(r9, r9, &convert_hole);
|
|
|
|
|
|
|
|
// Normal smi, convert to double and store.
|
|
|
|
if (vfp2_supported) {
|
|
|
|
CpuFeatures::Scope scope(VFP2);
|
|
|
|
__ vmov(s0, r9);
|
|
|
|
__ vcvt_f64_s32(d0, s0);
|
|
|
|
__ vstr(d0, r7, 0);
|
|
|
|
__ add(r7, r7, Operand(8));
|
|
|
|
} else {
|
|
|
|
FloatingPointHelper::ConvertIntToDouble(masm,
|
|
|
|
r9,
|
|
|
|
FloatingPointHelper::kCoreRegisters,
|
|
|
|
d0,
|
|
|
|
r0,
|
|
|
|
r1,
|
|
|
|
lr,
|
|
|
|
s0);
|
|
|
|
__ Strd(r0, r1, MemOperand(r7, 8, PostIndex));
|
|
|
|
}
|
|
|
|
__ b(&entry);
|
|
|
|
|
|
|
|
// Hole found, store the-hole NaN.
|
|
|
|
__ bind(&convert_hole);
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
// Restore a "smi-untagged" heap object.
|
|
|
|
__ SmiTag(r9);
|
|
|
|
__ orr(r9, r9, Operand(1));
|
|
|
|
__ CompareRoot(r9, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ Assert(eq, "object found in smi-only array");
|
|
|
|
}
|
|
|
|
__ Strd(r4, r5, MemOperand(r7, 8, PostIndex));
|
|
|
|
|
|
|
|
__ bind(&entry);
|
|
|
|
__ cmp(r7, r6);
|
|
|
|
__ b(lt, &loop);
|
|
|
|
|
|
|
|
if (!vfp2_supported) __ Pop(r1, r0);
|
|
|
|
__ pop(lr);
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ElementsTransitionGenerator::GenerateDoubleToObject(
|
|
|
|
MacroAssembler* masm, Label* fail) {
|
|
|
|
// ----------- S t a t e -------------
|
|
|
|
// -- r0 : value
|
|
|
|
// -- r1 : key
|
|
|
|
// -- r2 : receiver
|
|
|
|
// -- lr : return address
|
|
|
|
// -- r3 : target map, scratch for subsequent call
|
|
|
|
// -- r4 : scratch (elements)
|
|
|
|
// -----------------------------------
|
|
|
|
Label entry, loop, convert_hole, gc_required, only_change_map;
|
|
|
|
|
|
|
|
// Check for empty arrays, which only require a map transition and no changes
|
|
|
|
// to the backing store.
|
|
|
|
__ ldr(r4, FieldMemOperand(r2, JSObject::kElementsOffset));
|
|
|
|
__ CompareRoot(r4, Heap::kEmptyFixedArrayRootIndex);
|
|
|
|
__ b(eq, &only_change_map);
|
|
|
|
|
|
|
|
__ push(lr);
|
|
|
|
__ Push(r3, r2, r1, r0);
|
|
|
|
__ ldr(r5, FieldMemOperand(r4, FixedArray::kLengthOffset));
|
|
|
|
// r4: source FixedDoubleArray
|
|
|
|
// r5: number of elements (smi-tagged)
|
|
|
|
|
|
|
|
// Allocate new FixedArray.
|
|
|
|
__ mov(r0, Operand(FixedDoubleArray::kHeaderSize));
|
|
|
|
__ add(r0, r0, Operand(r5, LSL, 1));
|
|
|
|
__ AllocateInNewSpace(r0, r6, r7, r9, &gc_required, NO_ALLOCATION_FLAGS);
|
|
|
|
// r6: destination FixedArray, not tagged as heap object
|
|
|
|
// Set destination FixedDoubleArray's length and map.
|
|
|
|
__ LoadRoot(r9, Heap::kFixedArrayMapRootIndex);
|
|
|
|
__ str(r5, MemOperand(r6, FixedDoubleArray::kLengthOffset));
|
|
|
|
__ str(r9, MemOperand(r6, HeapObject::kMapOffset));
|
|
|
|
|
|
|
|
// Prepare for conversion loop.
|
|
|
|
__ add(r4, r4, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag + 4));
|
|
|
|
__ add(r3, r6, Operand(FixedArray::kHeaderSize));
|
|
|
|
__ add(r6, r6, Operand(kHeapObjectTag));
|
|
|
|
__ add(r5, r3, Operand(r5, LSL, 1));
|
|
|
|
__ LoadRoot(r7, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ LoadRoot(r9, Heap::kHeapNumberMapRootIndex);
|
|
|
|
// Using offsetted addresses in r4 to fully take advantage of post-indexing.
|
|
|
|
// r3: begin of destination FixedArray element fields, not tagged
|
|
|
|
// r4: begin of source FixedDoubleArray element fields, not tagged, +4
|
|
|
|
// r5: end of destination FixedArray, not tagged
|
|
|
|
// r6: destination FixedArray
|
|
|
|
// r7: the-hole pointer
|
|
|
|
// r9: heap number map
|
|
|
|
__ b(&entry);
|
|
|
|
|
|
|
|
// Call into runtime if GC is required.
|
|
|
|
__ bind(&gc_required);
|
|
|
|
__ Pop(r3, r2, r1, r0);
|
|
|
|
__ pop(lr);
|
|
|
|
__ b(fail);
|
|
|
|
|
|
|
|
__ bind(&loop);
|
|
|
|
__ ldr(r1, MemOperand(r4, 8, PostIndex));
|
|
|
|
// lr: current element's upper 32 bit
|
|
|
|
// r4: address of next element's upper 32 bit
|
|
|
|
__ cmp(r1, Operand(kHoleNanUpper32));
|
|
|
|
__ b(eq, &convert_hole);
|
|
|
|
|
|
|
|
// Non-hole double, copy value into a heap number.
|
|
|
|
__ AllocateHeapNumber(r2, r0, lr, r9, &gc_required);
|
|
|
|
// r2: new heap number
|
|
|
|
__ ldr(r0, MemOperand(r4, 12, NegOffset));
|
|
|
|
__ Strd(r0, r1, FieldMemOperand(r2, HeapNumber::kValueOffset));
|
|
|
|
__ mov(r0, r3);
|
|
|
|
__ str(r2, MemOperand(r3, 4, PostIndex));
|
|
|
|
__ RecordWrite(r6,
|
|
|
|
r0,
|
|
|
|
r2,
|
|
|
|
kLRHasBeenSaved,
|
|
|
|
kDontSaveFPRegs,
|
|
|
|
EMIT_REMEMBERED_SET,
|
|
|
|
OMIT_SMI_CHECK);
|
|
|
|
__ b(&entry);
|
|
|
|
|
|
|
|
// Replace the-hole NaN with the-hole pointer.
|
|
|
|
__ bind(&convert_hole);
|
|
|
|
__ str(r7, MemOperand(r3, 4, PostIndex));
|
|
|
|
|
|
|
|
__ bind(&entry);
|
|
|
|
__ cmp(r3, r5);
|
|
|
|
__ b(lt, &loop);
|
|
|
|
|
|
|
|
__ Pop(r3, r2, r1, r0);
|
|
|
|
// Replace receiver's backing store with newly created and filled FixedArray.
|
|
|
|
__ str(r6, FieldMemOperand(r2, JSObject::kElementsOffset));
|
|
|
|
__ RecordWriteField(r2,
|
|
|
|
JSObject::kElementsOffset,
|
|
|
|
r6,
|
|
|
|
r9,
|
|
|
|
kLRHasBeenSaved,
|
|
|
|
kDontSaveFPRegs,
|
|
|
|
EMIT_REMEMBERED_SET,
|
|
|
|
OMIT_SMI_CHECK);
|
|
|
|
__ pop(lr);
|
|
|
|
|
|
|
|
__ bind(&only_change_map);
|
|
|
|
// Update receiver's map.
|
|
|
|
__ str(r3, FieldMemOperand(r2, HeapObject::kMapOffset));
|
|
|
|
__ RecordWriteField(r2,
|
|
|
|
HeapObject::kMapOffset,
|
|
|
|
r3,
|
|
|
|
r9,
|
|
|
|
kLRHasNotBeenSaved,
|
|
|
|
kDontSaveFPRegs,
|
|
|
|
OMIT_REMEMBERED_SET,
|
|
|
|
OMIT_SMI_CHECK);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCharLoadGenerator::Generate(MacroAssembler* masm,
|
|
|
|
Register string,
|
|
|
|
Register index,
|
|
|
|
Register result,
|
|
|
|
Label* call_runtime) {
|
|
|
|
// Fetch the instance type of the receiver into result register.
|
|
|
|
__ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
|
|
|
__ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
|
|
|
|
|
|
|
// We need special handling for indirect strings.
|
|
|
|
Label check_sequential;
|
|
|
|
__ tst(result, Operand(kIsIndirectStringMask));
|
|
|
|
__ b(eq, &check_sequential);
|
|
|
|
|
|
|
|
// Dispatch on the indirect string shape: slice or cons.
|
|
|
|
Label cons_string;
|
|
|
|
__ tst(result, Operand(kSlicedNotConsMask));
|
|
|
|
__ b(eq, &cons_string);
|
|
|
|
|
|
|
|
// Handle slices.
|
|
|
|
Label indirect_string_loaded;
|
|
|
|
__ ldr(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
|
|
|
|
__ ldr(string, FieldMemOperand(string, SlicedString::kParentOffset));
|
|
|
|
__ add(index, index, Operand(result, ASR, kSmiTagSize));
|
|
|
|
__ jmp(&indirect_string_loaded);
|
|
|
|
|
|
|
|
// Handle cons strings.
|
|
|
|
// Check whether the right hand side is the empty string (i.e. if
|
|
|
|
// this is really a flat string in a cons string). If that is not
|
|
|
|
// the case we would rather go to the runtime system now to flatten
|
|
|
|
// the string.
|
|
|
|
__ bind(&cons_string);
|
|
|
|
__ ldr(result, FieldMemOperand(string, ConsString::kSecondOffset));
|
|
|
|
__ CompareRoot(result, Heap::kEmptyStringRootIndex);
|
|
|
|
__ b(ne, call_runtime);
|
|
|
|
// Get the first of the two strings and load its instance type.
|
|
|
|
__ ldr(string, FieldMemOperand(string, ConsString::kFirstOffset));
|
|
|
|
|
|
|
|
__ bind(&indirect_string_loaded);
|
|
|
|
__ ldr(result, FieldMemOperand(string, HeapObject::kMapOffset));
|
|
|
|
__ ldrb(result, FieldMemOperand(result, Map::kInstanceTypeOffset));
|
|
|
|
|
|
|
|
// Distinguish sequential and external strings. Only these two string
|
|
|
|
// representations can reach here (slices and flat cons strings have been
|
|
|
|
// reduced to the underlying sequential or external string).
|
|
|
|
Label external_string, check_encoding;
|
|
|
|
__ bind(&check_sequential);
|
|
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
|
|
__ tst(result, Operand(kStringRepresentationMask));
|
|
|
|
__ b(ne, &external_string);
|
|
|
|
|
|
|
|
// Prepare sequential strings
|
|
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
|
|
|
|
__ add(string,
|
|
|
|
string,
|
|
|
|
Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ jmp(&check_encoding);
|
|
|
|
|
|
|
|
// Handle external strings.
|
|
|
|
__ bind(&external_string);
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
// Assert that we do not have a cons or slice (indirect strings) here.
|
|
|
|
// Sequential strings have already been ruled out.
|
|
|
|
__ tst(result, Operand(kIsIndirectStringMask));
|
|
|
|
__ Assert(eq, "external string expected, but not found");
|
|
|
|
}
|
|
|
|
// Rule out short external strings.
|
|
|
|
STATIC_CHECK(kShortExternalStringTag != 0);
|
|
|
|
__ tst(result, Operand(kShortExternalStringMask));
|
|
|
|
__ b(ne, call_runtime);
|
|
|
|
__ ldr(string, FieldMemOperand(string, ExternalString::kResourceDataOffset));
|
|
|
|
|
|
|
|
Label ascii, done;
|
|
|
|
__ bind(&check_encoding);
|
|
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
|
|
__ tst(result, Operand(kStringEncodingMask));
|
|
|
|
__ b(ne, &ascii);
|
|
|
|
// Two-byte string.
|
|
|
|
__ ldrh(result, MemOperand(string, index, LSL, 1));
|
|
|
|
__ jmp(&done);
|
|
|
|
__ bind(&ascii);
|
|
|
|
// Ascii string.
|
|
|
|
__ ldrb(result, MemOperand(string, index));
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void SeqStringSetCharGenerator::Generate(MacroAssembler* masm,
|
|
|
|
String::Encoding encoding,
|
|
|
|
Register string,
|
|
|
|
Register index,
|
|
|
|
Register value) {
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ tst(index, Operand(kSmiTagMask));
|
|
|
|
__ Check(eq, "Non-smi index");
|
|
|
|
__ tst(value, Operand(kSmiTagMask));
|
|
|
|
__ Check(eq, "Non-smi value");
|
|
|
|
|
|
|
|
__ ldr(ip, FieldMemOperand(string, String::kLengthOffset));
|
|
|
|
__ cmp(index, ip);
|
|
|
|
__ Check(lt, "Index is too large");
|
|
|
|
|
|
|
|
__ cmp(index, Operand(Smi::FromInt(0)));
|
|
|
|
__ Check(ge, "Index is negative");
|
|
|
|
|
|
|
|
__ ldr(ip, FieldMemOperand(string, HeapObject::kMapOffset));
|
|
|
|
__ ldrb(ip, FieldMemOperand(ip, Map::kInstanceTypeOffset));
|
|
|
|
|
|
|
|
__ and_(ip, ip, Operand(kStringRepresentationMask | kStringEncodingMask));
|
|
|
|
static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
|
|
|
|
static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
|
|
|
|
__ cmp(ip, Operand(encoding == String::ONE_BYTE_ENCODING
|
|
|
|
? one_byte_seq_type : two_byte_seq_type));
|
|
|
|
__ Check(eq, "Unexpected string type");
|
|
|
|
}
|
|
|
|
|
|
|
|
__ add(ip,
|
|
|
|
string,
|
|
|
|
Operand(SeqString::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ SmiUntag(value, value);
|
|
|
|
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
|
|
|
|
if (encoding == String::ONE_BYTE_ENCODING) {
|
|
|
|
// Smis are tagged by left shift by 1, thus LSR by 1 to smi-untag inline.
|
|
|
|
__ strb(value, MemOperand(ip, index, LSR, 1));
|
|
|
|
} else {
|
|
|
|
// No need to untag a smi for two-byte addressing.
|
|
|
|
__ strh(value, MemOperand(ip, index));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static MemOperand ExpConstant(int index, Register base) {
|
|
|
|
return MemOperand(base, index * kDoubleSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void MathExpGenerator::EmitMathExp(MacroAssembler* masm,
|
|
|
|
DoubleRegister input,
|
|
|
|
DoubleRegister result,
|
|
|
|
DoubleRegister double_scratch1,
|
|
|
|
DoubleRegister double_scratch2,
|
|
|
|
Register temp1,
|
|
|
|
Register temp2,
|
|
|
|
Register temp3) {
|
|
|
|
ASSERT(!input.is(result));
|
|
|
|
ASSERT(!input.is(double_scratch1));
|
|
|
|
ASSERT(!input.is(double_scratch2));
|
|
|
|
ASSERT(!result.is(double_scratch1));
|
|
|
|
ASSERT(!result.is(double_scratch2));
|
|
|
|
ASSERT(!double_scratch1.is(double_scratch2));
|
|
|
|
ASSERT(!temp1.is(temp2));
|
|
|
|
ASSERT(!temp1.is(temp3));
|
|
|
|
ASSERT(!temp2.is(temp3));
|
|
|
|
ASSERT(ExternalReference::math_exp_constants(0).address() != NULL);
|
|
|
|
|
|
|
|
Label done;
|
|
|
|
|
|
|
|
__ mov(temp3, Operand(ExternalReference::math_exp_constants(0)));
|
|
|
|
|
|
|
|
__ vldr(double_scratch1, ExpConstant(0, temp3));
|
|
|
|
__ vmov(result, kDoubleRegZero);
|
|
|
|
__ VFPCompareAndSetFlags(double_scratch1, input);
|
|
|
|
__ b(ge, &done);
|
|
|
|
__ vldr(double_scratch2, ExpConstant(1, temp3));
|
|
|
|
__ VFPCompareAndSetFlags(input, double_scratch2);
|
|
|
|
__ vldr(result, ExpConstant(2, temp3));
|
|
|
|
__ b(ge, &done);
|
|
|
|
__ vldr(double_scratch1, ExpConstant(3, temp3));
|
|
|
|
__ vldr(result, ExpConstant(4, temp3));
|
|
|
|
__ vmul(double_scratch1, double_scratch1, input);
|
|
|
|
__ vadd(double_scratch1, double_scratch1, result);
|
|
|
|
__ vmov(temp2, temp1, double_scratch1);
|
|
|
|
__ vsub(double_scratch1, double_scratch1, result);
|
|
|
|
__ vldr(result, ExpConstant(6, temp3));
|
|
|
|
__ vldr(double_scratch2, ExpConstant(5, temp3));
|
|
|
|
__ vmul(double_scratch1, double_scratch1, double_scratch2);
|
|
|
|
__ vsub(double_scratch1, double_scratch1, input);
|
|
|
|
__ vsub(result, result, double_scratch1);
|
|
|
|
__ vmul(input, double_scratch1, double_scratch1);
|
|
|
|
__ vmul(result, result, input);
|
|
|
|
__ mov(temp1, Operand(temp2, LSR, 11));
|
|
|
|
__ vldr(double_scratch2, ExpConstant(7, temp3));
|
|
|
|
__ vmul(result, result, double_scratch2);
|
|
|
|
__ vsub(result, result, double_scratch1);
|
|
|
|
__ vldr(double_scratch2, ExpConstant(8, temp3));
|
|
|
|
__ vadd(result, result, double_scratch2);
|
|
|
|
__ movw(ip, 0x7ff);
|
|
|
|
__ and_(temp2, temp2, Operand(ip));
|
|
|
|
__ add(temp1, temp1, Operand(0x3ff));
|
|
|
|
__ mov(temp1, Operand(temp1, LSL, 20));
|
|
|
|
|
|
|
|
// Must not call ExpConstant() after overwriting temp3!
|
|
|
|
__ mov(temp3, Operand(ExternalReference::math_exp_log_table()));
|
|
|
|
__ ldr(ip, MemOperand(temp3, temp2, LSL, 3));
|
|
|
|
__ add(temp3, temp3, Operand(kPointerSize));
|
|
|
|
__ ldr(temp2, MemOperand(temp3, temp2, LSL, 3));
|
|
|
|
__ orr(temp1, temp1, temp2);
|
|
|
|
__ vmov(input, ip, temp1);
|
|
|
|
__ vmul(result, result, input);
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef __
|
|
|
|
|
|
|
|
// add(r0, pc, Operand(-8))
|
|
|
|
static const uint32_t kCodeAgePatchFirstInstruction = 0xe24f0008;
|
|
|
|
|
|
|
|
static byte* GetNoCodeAgeSequence(uint32_t* length) {
|
|
|
|
// The sequence of instructions that is patched out for aging code is the
|
|
|
|
// following boilerplate stack-building prologue that is found in FUNCTIONS
|
|
|
|
static bool initialized = false;
|
|
|
|
static uint32_t sequence[kNoCodeAgeSequenceLength];
|
|
|
|
byte* byte_sequence = reinterpret_cast<byte*>(sequence);
|
|
|
|
*length = kNoCodeAgeSequenceLength * Assembler::kInstrSize;
|
|
|
|
if (!initialized) {
|
|
|
|
CodePatcher patcher(byte_sequence, kNoCodeAgeSequenceLength);
|
|
|
|
PredictableCodeSizeScope scope(patcher.masm(), *length);
|
|
|
|
patcher.masm()->stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
|
|
|
|
patcher.masm()->LoadRoot(ip, Heap::kUndefinedValueRootIndex);
|
|
|
|
patcher.masm()->add(fp, sp, Operand(2 * kPointerSize));
|
|
|
|
initialized = true;
|
|
|
|
}
|
|
|
|
return byte_sequence;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool Code::IsYoungSequence(byte* sequence) {
|
|
|
|
uint32_t young_length;
|
|
|
|
byte* young_sequence = GetNoCodeAgeSequence(&young_length);
|
|
|
|
bool result = !memcmp(sequence, young_sequence, young_length);
|
|
|
|
ASSERT(result ||
|
|
|
|
Memory::uint32_at(sequence) == kCodeAgePatchFirstInstruction);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Code::GetCodeAgeAndParity(byte* sequence, Age* age,
|
|
|
|
MarkingParity* parity) {
|
|
|
|
if (IsYoungSequence(sequence)) {
|
|
|
|
*age = kNoAge;
|
|
|
|
*parity = NO_MARKING_PARITY;
|
|
|
|
} else {
|
|
|
|
Address target_address = Memory::Address_at(
|
|
|
|
sequence + Assembler::kInstrSize * (kNoCodeAgeSequenceLength - 1));
|
|
|
|
Code* stub = GetCodeFromTargetAddress(target_address);
|
|
|
|
GetCodeAgeAndParity(stub, age, parity);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void Code::PatchPlatformCodeAge(byte* sequence,
|
|
|
|
Code::Age age,
|
|
|
|
MarkingParity parity) {
|
|
|
|
uint32_t young_length;
|
|
|
|
byte* young_sequence = GetNoCodeAgeSequence(&young_length);
|
|
|
|
if (age == kNoAge) {
|
|
|
|
memcpy(sequence, young_sequence, young_length);
|
|
|
|
CPU::FlushICache(sequence, young_length);
|
|
|
|
} else {
|
|
|
|
Code* stub = GetCodeAgeStub(age, parity);
|
|
|
|
CodePatcher patcher(sequence, young_length / Assembler::kInstrSize);
|
|
|
|
patcher.masm()->add(r0, pc, Operand(-8));
|
|
|
|
patcher.masm()->ldr(pc, MemOperand(pc, -4));
|
|
|
|
patcher.masm()->dd(reinterpret_cast<uint32_t>(stub->instruction_start()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_TARGET_ARCH_ARM
|