mirror of https://github.com/lukechilds/node.git
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5551 lines
177 KiB
5551 lines
177 KiB
14 years ago
|
// Copyright 2010 the V8 project authors. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are
|
||
|
// met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above
|
||
|
// copyright notice, this list of conditions and the following
|
||
|
// disclaimer in the documentation and/or other materials provided
|
||
|
// with the distribution.
|
||
|
// * Neither the name of Google Inc. nor the names of its
|
||
|
// contributors may be used to endorse or promote products derived
|
||
|
// from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
#include "hydrogen.h"
|
||
|
|
||
|
#include "codegen.h"
|
||
|
#include "data-flow.h"
|
||
|
#include "full-codegen.h"
|
||
|
#include "hashmap.h"
|
||
|
#include "lithium-allocator.h"
|
||
|
#include "parser.h"
|
||
|
#include "scopes.h"
|
||
|
|
||
|
#if V8_TARGET_ARCH_IA32
|
||
|
#include "ia32/lithium-codegen-ia32.h"
|
||
|
#elif V8_TARGET_ARCH_X64
|
||
|
#include "x64/lithium-codegen-x64.h"
|
||
|
#elif V8_TARGET_ARCH_ARM
|
||
|
#include "arm/lithium-codegen-arm.h"
|
||
|
#else
|
||
|
#error Unsupported target architecture.
|
||
|
#endif
|
||
|
|
||
|
namespace v8 {
|
||
|
namespace internal {
|
||
|
|
||
|
HBasicBlock::HBasicBlock(HGraph* graph)
|
||
|
: block_id_(graph->GetNextBlockID()),
|
||
|
graph_(graph),
|
||
|
phis_(4),
|
||
|
first_(NULL),
|
||
|
last_(NULL),
|
||
|
end_(NULL),
|
||
|
loop_information_(NULL),
|
||
|
predecessors_(2),
|
||
|
dominator_(NULL),
|
||
|
dominated_blocks_(4),
|
||
|
last_environment_(NULL),
|
||
|
argument_count_(-1),
|
||
|
first_instruction_index_(-1),
|
||
|
last_instruction_index_(-1),
|
||
|
deleted_phis_(4),
|
||
|
is_inline_return_target_(false),
|
||
|
inverted_(false),
|
||
|
deopt_predecessor_(NULL) {
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::AttachLoopInformation() {
|
||
|
ASSERT(!IsLoopHeader());
|
||
|
loop_information_ = new HLoopInformation(this);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::DetachLoopInformation() {
|
||
|
ASSERT(IsLoopHeader());
|
||
|
loop_information_ = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::AddPhi(HPhi* phi) {
|
||
|
ASSERT(!IsStartBlock());
|
||
|
phis_.Add(phi);
|
||
|
phi->SetBlock(this);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::RemovePhi(HPhi* phi) {
|
||
|
ASSERT(phi->block() == this);
|
||
|
ASSERT(phis_.Contains(phi));
|
||
|
ASSERT(phi->HasNoUses());
|
||
|
phi->ClearOperands();
|
||
|
phis_.RemoveElement(phi);
|
||
|
phi->SetBlock(NULL);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::AddInstruction(HInstruction* instr) {
|
||
|
ASSERT(!IsStartBlock() || !IsFinished());
|
||
|
ASSERT(!instr->IsLinked());
|
||
|
ASSERT(!IsFinished());
|
||
|
if (first_ == NULL) {
|
||
|
HBlockEntry* entry = new HBlockEntry();
|
||
|
entry->InitializeAsFirst(this);
|
||
|
first_ = entry;
|
||
|
}
|
||
|
instr->InsertAfter(GetLastInstruction());
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HBasicBlock::GetLastInstruction() {
|
||
|
if (end_ != NULL) return end_->previous();
|
||
|
if (first_ == NULL) return NULL;
|
||
|
if (last_ == NULL) last_ = first_;
|
||
|
while (last_->next() != NULL) last_ = last_->next();
|
||
|
return last_;
|
||
|
}
|
||
|
|
||
|
|
||
|
HSimulate* HBasicBlock::CreateSimulate(int id) {
|
||
|
ASSERT(HasEnvironment());
|
||
|
HEnvironment* environment = last_environment();
|
||
|
ASSERT(id == AstNode::kNoNumber ||
|
||
|
environment->closure()->shared()->VerifyBailoutId(id));
|
||
|
|
||
|
int push_count = environment->push_count();
|
||
|
int pop_count = environment->pop_count();
|
||
|
|
||
|
int length = environment->values()->length();
|
||
|
HSimulate* instr = new HSimulate(id, pop_count, length);
|
||
|
for (int i = push_count - 1; i >= 0; --i) {
|
||
|
instr->AddPushedValue(environment->ExpressionStackAt(i));
|
||
|
}
|
||
|
for (int i = 0; i < environment->assigned_variables()->length(); ++i) {
|
||
|
int index = environment->assigned_variables()->at(i);
|
||
|
instr->AddAssignedValue(index, environment->Lookup(index));
|
||
|
}
|
||
|
environment->ClearHistory();
|
||
|
return instr;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::Finish(HControlInstruction* end) {
|
||
|
ASSERT(!IsFinished());
|
||
|
AddInstruction(end);
|
||
|
end_ = end;
|
||
|
if (end->FirstSuccessor() != NULL) {
|
||
|
end->FirstSuccessor()->RegisterPredecessor(this);
|
||
|
if (end->SecondSuccessor() != NULL) {
|
||
|
end->SecondSuccessor()->RegisterPredecessor(this);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::Goto(HBasicBlock* block, bool include_stack_check) {
|
||
|
AddSimulate(AstNode::kNoNumber);
|
||
|
HGoto* instr = new HGoto(block);
|
||
|
instr->set_include_stack_check(include_stack_check);
|
||
|
Finish(instr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
|
||
|
ASSERT(!HasEnvironment());
|
||
|
ASSERT(first() == NULL);
|
||
|
UpdateEnvironment(env);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::SetJoinId(int id) {
|
||
|
int length = predecessors_.length();
|
||
|
ASSERT(length > 0);
|
||
|
for (int i = 0; i < length; i++) {
|
||
|
HBasicBlock* predecessor = predecessors_[i];
|
||
|
ASSERT(predecessor->end()->IsGoto());
|
||
|
HSimulate* simulate = HSimulate::cast(predecessor->GetLastInstruction());
|
||
|
// We only need to verify the ID once.
|
||
|
ASSERT(i != 0 ||
|
||
|
predecessor->last_environment()->closure()->shared()
|
||
|
->VerifyBailoutId(id));
|
||
|
simulate->set_ast_id(id);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool HBasicBlock::Dominates(HBasicBlock* other) const {
|
||
|
HBasicBlock* current = other->dominator();
|
||
|
while (current != NULL) {
|
||
|
if (current == this) return true;
|
||
|
current = current->dominator();
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
|
||
|
ASSERT(IsLoopHeader());
|
||
|
|
||
|
SetJoinId(stmt->EntryId());
|
||
|
if (predecessors()->length() == 1) {
|
||
|
// This is a degenerated loop.
|
||
|
DetachLoopInformation();
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Only the first entry into the loop is from outside the loop. All other
|
||
|
// entries must be back edges.
|
||
|
for (int i = 1; i < predecessors()->length(); ++i) {
|
||
|
loop_information()->RegisterBackEdge(predecessors()->at(i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
|
||
|
if (!predecessors_.is_empty()) {
|
||
|
// Only loop header blocks can have a predecessor added after
|
||
|
// instructions have been added to the block (they have phis for all
|
||
|
// values in the environment, these phis may be eliminated later).
|
||
|
ASSERT(IsLoopHeader() || first_ == NULL);
|
||
|
HEnvironment* incoming_env = pred->last_environment();
|
||
|
if (IsLoopHeader()) {
|
||
|
ASSERT(phis()->length() == incoming_env->values()->length());
|
||
|
for (int i = 0; i < phis_.length(); ++i) {
|
||
|
phis_[i]->AddInput(incoming_env->values()->at(i));
|
||
|
}
|
||
|
} else {
|
||
|
last_environment()->AddIncomingEdge(this, pred->last_environment());
|
||
|
}
|
||
|
} else if (!HasEnvironment() && !IsFinished()) {
|
||
|
ASSERT(!IsLoopHeader());
|
||
|
SetInitialEnvironment(pred->last_environment()->Copy());
|
||
|
}
|
||
|
|
||
|
predecessors_.Add(pred);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
|
||
|
ASSERT(!dominated_blocks_.Contains(block));
|
||
|
// Keep the list of dominated blocks sorted such that if there is two
|
||
|
// succeeding block in this list, the predecessor is before the successor.
|
||
|
int index = 0;
|
||
|
while (index < dominated_blocks_.length() &&
|
||
|
dominated_blocks_[index]->block_id() < block->block_id()) {
|
||
|
++index;
|
||
|
}
|
||
|
dominated_blocks_.InsertAt(index, block);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
|
||
|
if (dominator_ == NULL) {
|
||
|
dominator_ = other;
|
||
|
other->AddDominatedBlock(this);
|
||
|
} else if (other->dominator() != NULL) {
|
||
|
HBasicBlock* first = dominator_;
|
||
|
HBasicBlock* second = other;
|
||
|
|
||
|
while (first != second) {
|
||
|
if (first->block_id() > second->block_id()) {
|
||
|
first = first->dominator();
|
||
|
} else {
|
||
|
second = second->dominator();
|
||
|
}
|
||
|
ASSERT(first != NULL && second != NULL);
|
||
|
}
|
||
|
|
||
|
if (dominator_ != first) {
|
||
|
ASSERT(dominator_->dominated_blocks_.Contains(this));
|
||
|
dominator_->dominated_blocks_.RemoveElement(this);
|
||
|
dominator_ = first;
|
||
|
first->AddDominatedBlock(this);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
|
||
|
for (int i = 0; i < predecessors_.length(); ++i) {
|
||
|
if (predecessors_[i] == predecessor) return i;
|
||
|
}
|
||
|
UNREACHABLE();
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
void HBasicBlock::Verify() {
|
||
|
// Check that every block is finished.
|
||
|
ASSERT(IsFinished());
|
||
|
ASSERT(block_id() >= 0);
|
||
|
|
||
|
// Verify that all blocks targetting a branch target, have the same boolean
|
||
|
// value on top of their expression stack.
|
||
|
if (!cond().is_null()) {
|
||
|
ASSERT(predecessors()->length() > 0);
|
||
|
for (int i = 1; i < predecessors()->length(); i++) {
|
||
|
HBasicBlock* pred = predecessors()->at(i);
|
||
|
HValue* top = pred->last_environment()->Top();
|
||
|
ASSERT(top->IsConstant());
|
||
|
Object* a = *HConstant::cast(top)->handle();
|
||
|
Object* b = *cond();
|
||
|
ASSERT(a == b);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
|
||
|
void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
|
||
|
this->back_edges_.Add(block);
|
||
|
AddBlock(block);
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HLoopInformation::GetLastBackEdge() const {
|
||
|
int max_id = -1;
|
||
|
HBasicBlock* result = NULL;
|
||
|
for (int i = 0; i < back_edges_.length(); ++i) {
|
||
|
HBasicBlock* cur = back_edges_[i];
|
||
|
if (cur->block_id() > max_id) {
|
||
|
max_id = cur->block_id();
|
||
|
result = cur;
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HLoopInformation::AddBlock(HBasicBlock* block) {
|
||
|
if (block == loop_header()) return;
|
||
|
if (block->parent_loop_header() == loop_header()) return;
|
||
|
if (block->parent_loop_header() != NULL) {
|
||
|
AddBlock(block->parent_loop_header());
|
||
|
} else {
|
||
|
block->set_parent_loop_header(loop_header());
|
||
|
blocks_.Add(block);
|
||
|
for (int i = 0; i < block->predecessors()->length(); ++i) {
|
||
|
AddBlock(block->predecessors()->at(i));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
|
||
|
// Checks reachability of the blocks in this graph and stores a bit in
|
||
|
// the BitVector "reachable()" for every block that can be reached
|
||
|
// from the start block of the graph. If "dont_visit" is non-null, the given
|
||
|
// block is treated as if it would not be part of the graph. "visited_count()"
|
||
|
// returns the number of reachable blocks.
|
||
|
class ReachabilityAnalyzer BASE_EMBEDDED {
|
||
|
public:
|
||
|
ReachabilityAnalyzer(HBasicBlock* entry_block,
|
||
|
int block_count,
|
||
|
HBasicBlock* dont_visit)
|
||
|
: visited_count_(0),
|
||
|
stack_(16),
|
||
|
reachable_(block_count),
|
||
|
dont_visit_(dont_visit) {
|
||
|
PushBlock(entry_block);
|
||
|
Analyze();
|
||
|
}
|
||
|
|
||
|
int visited_count() const { return visited_count_; }
|
||
|
const BitVector* reachable() const { return &reachable_; }
|
||
|
|
||
|
private:
|
||
|
void PushBlock(HBasicBlock* block) {
|
||
|
if (block != NULL && block != dont_visit_ &&
|
||
|
!reachable_.Contains(block->block_id())) {
|
||
|
reachable_.Add(block->block_id());
|
||
|
stack_.Add(block);
|
||
|
visited_count_++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Analyze() {
|
||
|
while (!stack_.is_empty()) {
|
||
|
HControlInstruction* end = stack_.RemoveLast()->end();
|
||
|
PushBlock(end->FirstSuccessor());
|
||
|
PushBlock(end->SecondSuccessor());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int visited_count_;
|
||
|
ZoneList<HBasicBlock*> stack_;
|
||
|
BitVector reachable_;
|
||
|
HBasicBlock* dont_visit_;
|
||
|
};
|
||
|
|
||
|
|
||
|
void HGraph::Verify() const {
|
||
|
for (int i = 0; i < blocks_.length(); i++) {
|
||
|
HBasicBlock* block = blocks_.at(i);
|
||
|
|
||
|
block->Verify();
|
||
|
|
||
|
// Check that every block contains at least one node and that only the last
|
||
|
// node is a control instruction.
|
||
|
HInstruction* current = block->first();
|
||
|
ASSERT(current != NULL && current->IsBlockEntry());
|
||
|
while (current != NULL) {
|
||
|
ASSERT((current->next() == NULL) == current->IsControlInstruction());
|
||
|
ASSERT(current->block() == block);
|
||
|
current->Verify();
|
||
|
current = current->next();
|
||
|
}
|
||
|
|
||
|
// Check that successors are correctly set.
|
||
|
HBasicBlock* first = block->end()->FirstSuccessor();
|
||
|
HBasicBlock* second = block->end()->SecondSuccessor();
|
||
|
ASSERT(second == NULL || first != NULL);
|
||
|
|
||
|
// Check that the predecessor array is correct.
|
||
|
if (first != NULL) {
|
||
|
ASSERT(first->predecessors()->Contains(block));
|
||
|
if (second != NULL) {
|
||
|
ASSERT(second->predecessors()->Contains(block));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Check that phis have correct arguments.
|
||
|
for (int j = 0; j < block->phis()->length(); j++) {
|
||
|
HPhi* phi = block->phis()->at(j);
|
||
|
phi->Verify();
|
||
|
}
|
||
|
|
||
|
// Check that all join blocks have predecessors that end with an
|
||
|
// unconditional goto and agree on their environment node id.
|
||
|
if (block->predecessors()->length() >= 2) {
|
||
|
int id = block->predecessors()->first()->last_environment()->ast_id();
|
||
|
for (int k = 0; k < block->predecessors()->length(); k++) {
|
||
|
HBasicBlock* predecessor = block->predecessors()->at(k);
|
||
|
ASSERT(predecessor->end()->IsGoto());
|
||
|
ASSERT(predecessor->last_environment()->ast_id() == id);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Check special property of first block to have no predecessors.
|
||
|
ASSERT(blocks_.at(0)->predecessors()->is_empty());
|
||
|
|
||
|
// Check that the graph is fully connected.
|
||
|
ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
|
||
|
ASSERT(analyzer.visited_count() == blocks_.length());
|
||
|
|
||
|
// Check that entry block dominator is NULL.
|
||
|
ASSERT(entry_block_->dominator() == NULL);
|
||
|
|
||
|
// Check dominators.
|
||
|
for (int i = 0; i < blocks_.length(); ++i) {
|
||
|
HBasicBlock* block = blocks_.at(i);
|
||
|
if (block->dominator() == NULL) {
|
||
|
// Only start block may have no dominator assigned to.
|
||
|
ASSERT(i == 0);
|
||
|
} else {
|
||
|
// Assert that block is unreachable if dominator must not be visited.
|
||
|
ReachabilityAnalyzer dominator_analyzer(entry_block_,
|
||
|
blocks_.length(),
|
||
|
block->dominator());
|
||
|
ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|
||
|
HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
|
||
|
Object* value) {
|
||
|
if (!pointer->is_set()) {
|
||
|
HConstant* constant = new HConstant(Handle<Object>(value),
|
||
|
Representation::Tagged());
|
||
|
constant->InsertAfter(GetConstantUndefined());
|
||
|
pointer->set(constant);
|
||
|
}
|
||
|
return pointer->get();
|
||
|
}
|
||
|
|
||
|
|
||
|
HConstant* HGraph::GetConstant1() {
|
||
|
return GetConstant(&constant_1_, Smi::FromInt(1));
|
||
|
}
|
||
|
|
||
|
|
||
|
HConstant* HGraph::GetConstantMinus1() {
|
||
|
return GetConstant(&constant_minus1_, Smi::FromInt(-1));
|
||
|
}
|
||
|
|
||
|
|
||
|
HConstant* HGraph::GetConstantTrue() {
|
||
|
return GetConstant(&constant_true_, Heap::true_value());
|
||
|
}
|
||
|
|
||
|
|
||
|
HConstant* HGraph::GetConstantFalse() {
|
||
|
return GetConstant(&constant_false_, Heap::false_value());
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::AppendOptional(HSubgraph* graph,
|
||
|
bool on_true_branch,
|
||
|
HValue* boolean_value) {
|
||
|
ASSERT(HasExit() && graph->HasExit());
|
||
|
HBasicBlock* other_block = graph_->CreateBasicBlock();
|
||
|
HBasicBlock* join_block = graph_->CreateBasicBlock();
|
||
|
|
||
|
HBasicBlock* true_branch = other_block;
|
||
|
HBasicBlock* false_branch = graph->entry_block();
|
||
|
if (on_true_branch) {
|
||
|
true_branch = graph->entry_block();
|
||
|
false_branch = other_block;
|
||
|
}
|
||
|
|
||
|
exit_block_->Finish(new HBranch(true_branch, false_branch, boolean_value));
|
||
|
other_block->Goto(join_block);
|
||
|
graph->exit_block()->Goto(join_block);
|
||
|
exit_block_ = join_block;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::AppendJoin(HSubgraph* then_graph,
|
||
|
HSubgraph* else_graph,
|
||
|
AstNode* node) {
|
||
|
if (then_graph->HasExit() && else_graph->HasExit()) {
|
||
|
// We need to merge, create new merge block.
|
||
|
HBasicBlock* join_block = graph_->CreateBasicBlock();
|
||
|
then_graph->exit_block()->Goto(join_block);
|
||
|
else_graph->exit_block()->Goto(join_block);
|
||
|
join_block->SetJoinId(node->id());
|
||
|
exit_block_ = join_block;
|
||
|
} else if (then_graph->HasExit()) {
|
||
|
exit_block_ = then_graph->exit_block_;
|
||
|
} else if (else_graph->HasExit()) {
|
||
|
exit_block_ = else_graph->exit_block_;
|
||
|
} else {
|
||
|
exit_block_ = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::ResolveContinue(IterationStatement* statement) {
|
||
|
HBasicBlock* continue_block = BundleContinue(statement);
|
||
|
if (continue_block != NULL) {
|
||
|
exit_block_ = JoinBlocks(exit_block(),
|
||
|
continue_block,
|
||
|
statement->ContinueId());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HSubgraph::BundleBreak(BreakableStatement* statement) {
|
||
|
return BundleBreakContinue(statement, false, statement->ExitId());
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HSubgraph::BundleContinue(IterationStatement* statement) {
|
||
|
return BundleBreakContinue(statement, true, statement->ContinueId());
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HSubgraph::BundleBreakContinue(BreakableStatement* statement,
|
||
|
bool is_continue,
|
||
|
int join_id) {
|
||
|
HBasicBlock* result = NULL;
|
||
|
const ZoneList<BreakContinueInfo*>* infos = break_continue_info();
|
||
|
for (int i = 0; i < infos->length(); ++i) {
|
||
|
BreakContinueInfo* info = infos->at(i);
|
||
|
if (info->is_continue() == is_continue &&
|
||
|
info->target() == statement &&
|
||
|
!info->IsResolved()) {
|
||
|
if (result == NULL) {
|
||
|
result = graph_->CreateBasicBlock();
|
||
|
}
|
||
|
info->block()->Goto(result);
|
||
|
info->Resolve();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (result != NULL) result->SetJoinId(join_id);
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HSubgraph::JoinBlocks(HBasicBlock* a, HBasicBlock* b, int id) {
|
||
|
if (a == NULL) return b;
|
||
|
if (b == NULL) return a;
|
||
|
HBasicBlock* target = graph_->CreateBasicBlock();
|
||
|
a->Goto(target);
|
||
|
b->Goto(target);
|
||
|
target->SetJoinId(id);
|
||
|
return target;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::AppendEndless(HSubgraph* body, IterationStatement* statement) {
|
||
|
ConnectExitTo(body->entry_block());
|
||
|
body->ResolveContinue(statement);
|
||
|
body->ConnectExitTo(body->entry_block(), true);
|
||
|
exit_block_ = body->BundleBreak(statement);
|
||
|
body->entry_block()->PostProcessLoopHeader(statement);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::AppendDoWhile(HSubgraph* body,
|
||
|
IterationStatement* statement,
|
||
|
HSubgraph* go_back,
|
||
|
HSubgraph* exit) {
|
||
|
ConnectExitTo(body->entry_block());
|
||
|
go_back->ConnectExitTo(body->entry_block(), true);
|
||
|
|
||
|
HBasicBlock* break_block = body->BundleBreak(statement);
|
||
|
exit_block_ =
|
||
|
JoinBlocks(exit->exit_block(), break_block, statement->ExitId());
|
||
|
body->entry_block()->PostProcessLoopHeader(statement);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::AppendWhile(HSubgraph* condition,
|
||
|
HSubgraph* body,
|
||
|
IterationStatement* statement,
|
||
|
HSubgraph* continue_subgraph,
|
||
|
HSubgraph* exit) {
|
||
|
ConnectExitTo(condition->entry_block());
|
||
|
|
||
|
HBasicBlock* break_block = body->BundleBreak(statement);
|
||
|
exit_block_ =
|
||
|
JoinBlocks(exit->exit_block(), break_block, statement->ExitId());
|
||
|
|
||
|
if (continue_subgraph != NULL) {
|
||
|
body->ConnectExitTo(continue_subgraph->entry_block(), true);
|
||
|
continue_subgraph->entry_block()->SetJoinId(statement->EntryId());
|
||
|
exit_block_ = JoinBlocks(exit_block_,
|
||
|
continue_subgraph->exit_block(),
|
||
|
statement->ExitId());
|
||
|
} else {
|
||
|
body->ConnectExitTo(condition->entry_block(), true);
|
||
|
}
|
||
|
condition->entry_block()->PostProcessLoopHeader(statement);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::Append(HSubgraph* next, BreakableStatement* stmt) {
|
||
|
exit_block_->Goto(next->entry_block());
|
||
|
exit_block_ = next->exit_block_;
|
||
|
|
||
|
if (stmt != NULL) {
|
||
|
next->entry_block()->SetJoinId(stmt->EntryId());
|
||
|
HBasicBlock* break_block = next->BundleBreak(stmt);
|
||
|
exit_block_ = JoinBlocks(exit_block(), break_block, stmt->ExitId());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::FinishExit(HControlInstruction* instruction) {
|
||
|
ASSERT(HasExit());
|
||
|
exit_block_->Finish(instruction);
|
||
|
exit_block_->ClearEnvironment();
|
||
|
exit_block_ = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::FinishBreakContinue(BreakableStatement* target,
|
||
|
bool is_continue) {
|
||
|
ASSERT(!exit_block_->IsFinished());
|
||
|
BreakContinueInfo* info = new BreakContinueInfo(target, exit_block_,
|
||
|
is_continue);
|
||
|
break_continue_info_.Add(info);
|
||
|
exit_block_ = NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
HGraph::HGraph(CompilationInfo* info)
|
||
|
: HSubgraph(this),
|
||
|
next_block_id_(0),
|
||
|
info_(info),
|
||
|
blocks_(8),
|
||
|
values_(16),
|
||
|
phi_list_(NULL) {
|
||
|
start_environment_ = new HEnvironment(NULL, info->scope(), info->closure());
|
||
|
start_environment_->set_ast_id(info->function()->id());
|
||
|
}
|
||
|
|
||
|
|
||
|
Handle<Code> HGraph::Compile() {
|
||
|
int values = GetMaximumValueID();
|
||
|
if (values > LAllocator::max_initial_value_ids()) {
|
||
|
if (FLAG_trace_bailout) PrintF("Function is too big\n");
|
||
|
return Handle<Code>::null();
|
||
|
}
|
||
|
|
||
|
LAllocator allocator(values, this);
|
||
|
LChunkBuilder builder(this, &allocator);
|
||
|
LChunk* chunk = builder.Build();
|
||
|
if (chunk == NULL) return Handle<Code>::null();
|
||
|
|
||
|
if (!FLAG_alloc_lithium) return Handle<Code>::null();
|
||
|
|
||
|
allocator.Allocate(chunk);
|
||
|
|
||
|
if (!FLAG_use_lithium) return Handle<Code>::null();
|
||
|
|
||
|
MacroAssembler assembler(NULL, 0);
|
||
|
LCodeGen generator(chunk, &assembler, info());
|
||
|
|
||
|
if (FLAG_eliminate_empty_blocks) {
|
||
|
chunk->MarkEmptyBlocks();
|
||
|
}
|
||
|
|
||
|
if (generator.GenerateCode()) {
|
||
|
if (FLAG_trace_codegen) {
|
||
|
PrintF("Crankshaft Compiler - ");
|
||
|
}
|
||
|
CodeGenerator::MakeCodePrologue(info());
|
||
|
Code::Flags flags =
|
||
|
Code::ComputeFlags(Code::OPTIMIZED_FUNCTION, NOT_IN_LOOP);
|
||
|
Handle<Code> code =
|
||
|
CodeGenerator::MakeCodeEpilogue(&assembler, flags, info());
|
||
|
generator.FinishCode(code);
|
||
|
CodeGenerator::PrintCode(code, info());
|
||
|
return code;
|
||
|
}
|
||
|
return Handle<Code>::null();
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HGraph::CreateBasicBlock() {
|
||
|
HBasicBlock* result = new HBasicBlock(this);
|
||
|
blocks_.Add(result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::Canonicalize() {
|
||
|
HPhase phase("Canonicalize", this);
|
||
|
if (FLAG_use_canonicalizing) {
|
||
|
for (int i = 0; i < blocks()->length(); ++i) {
|
||
|
HBasicBlock* b = blocks()->at(i);
|
||
|
for (HInstruction* insn = b->first(); insn != NULL; insn = insn->next()) {
|
||
|
HValue* value = insn->Canonicalize();
|
||
|
if (value != insn) {
|
||
|
if (value != NULL) {
|
||
|
insn->ReplaceAndDelete(value);
|
||
|
} else {
|
||
|
insn->Delete();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::OrderBlocks() {
|
||
|
HPhase phase("Block ordering");
|
||
|
BitVector visited(blocks_.length());
|
||
|
|
||
|
ZoneList<HBasicBlock*> reverse_result(8);
|
||
|
HBasicBlock* start = blocks_[0];
|
||
|
Postorder(start, &visited, &reverse_result, NULL);
|
||
|
|
||
|
blocks_.Clear();
|
||
|
int index = 0;
|
||
|
for (int i = reverse_result.length() - 1; i >= 0; --i) {
|
||
|
HBasicBlock* b = reverse_result[i];
|
||
|
blocks_.Add(b);
|
||
|
b->set_block_id(index++);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::PostorderLoopBlocks(HLoopInformation* loop,
|
||
|
BitVector* visited,
|
||
|
ZoneList<HBasicBlock*>* order,
|
||
|
HBasicBlock* loop_header) {
|
||
|
for (int i = 0; i < loop->blocks()->length(); ++i) {
|
||
|
HBasicBlock* b = loop->blocks()->at(i);
|
||
|
Postorder(b->end()->SecondSuccessor(), visited, order, loop_header);
|
||
|
Postorder(b->end()->FirstSuccessor(), visited, order, loop_header);
|
||
|
if (b->IsLoopHeader() && b != loop->loop_header()) {
|
||
|
PostorderLoopBlocks(b->loop_information(), visited, order, loop_header);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::Postorder(HBasicBlock* block,
|
||
|
BitVector* visited,
|
||
|
ZoneList<HBasicBlock*>* order,
|
||
|
HBasicBlock* loop_header) {
|
||
|
if (block == NULL || visited->Contains(block->block_id())) return;
|
||
|
if (block->parent_loop_header() != loop_header) return;
|
||
|
visited->Add(block->block_id());
|
||
|
if (block->IsLoopHeader()) {
|
||
|
PostorderLoopBlocks(block->loop_information(), visited, order, loop_header);
|
||
|
Postorder(block->end()->SecondSuccessor(), visited, order, block);
|
||
|
Postorder(block->end()->FirstSuccessor(), visited, order, block);
|
||
|
} else {
|
||
|
Postorder(block->end()->SecondSuccessor(), visited, order, loop_header);
|
||
|
Postorder(block->end()->FirstSuccessor(), visited, order, loop_header);
|
||
|
}
|
||
|
ASSERT(block->end()->FirstSuccessor() == NULL ||
|
||
|
order->Contains(block->end()->FirstSuccessor()) ||
|
||
|
block->end()->FirstSuccessor()->IsLoopHeader());
|
||
|
ASSERT(block->end()->SecondSuccessor() == NULL ||
|
||
|
order->Contains(block->end()->SecondSuccessor()) ||
|
||
|
block->end()->SecondSuccessor()->IsLoopHeader());
|
||
|
order->Add(block);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::AssignDominators() {
|
||
|
HPhase phase("Assign dominators", this);
|
||
|
for (int i = 0; i < blocks_.length(); ++i) {
|
||
|
if (blocks_[i]->IsLoopHeader()) {
|
||
|
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->first());
|
||
|
} else {
|
||
|
for (int j = 0; j < blocks_[i]->predecessors()->length(); ++j) {
|
||
|
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::EliminateRedundantPhis() {
|
||
|
HPhase phase("Phi elimination", this);
|
||
|
ZoneList<HValue*> uses_to_replace(2);
|
||
|
|
||
|
// Worklist of phis that can potentially be eliminated. Initialized
|
||
|
// with all phi nodes. When elimination of a phi node modifies
|
||
|
// another phi node the modified phi node is added to the worklist.
|
||
|
ZoneList<HPhi*> worklist(blocks_.length());
|
||
|
for (int i = 0; i < blocks_.length(); ++i) {
|
||
|
worklist.AddAll(*blocks_[i]->phis());
|
||
|
}
|
||
|
|
||
|
while (!worklist.is_empty()) {
|
||
|
HPhi* phi = worklist.RemoveLast();
|
||
|
HBasicBlock* block = phi->block();
|
||
|
|
||
|
// Skip phi node if it was already replaced.
|
||
|
if (block == NULL) continue;
|
||
|
|
||
|
// Get replacement value if phi is redundant.
|
||
|
HValue* value = phi->GetRedundantReplacement();
|
||
|
|
||
|
if (value != NULL) {
|
||
|
// Iterate through uses finding the ones that should be
|
||
|
// replaced.
|
||
|
const ZoneList<HValue*>* uses = phi->uses();
|
||
|
for (int i = 0; i < uses->length(); ++i) {
|
||
|
HValue* use = uses->at(i);
|
||
|
if (!use->block()->IsStartBlock()) {
|
||
|
uses_to_replace.Add(use);
|
||
|
}
|
||
|
}
|
||
|
// Replace the uses and add phis modified to the work list.
|
||
|
for (int i = 0; i < uses_to_replace.length(); ++i) {
|
||
|
HValue* use = uses_to_replace[i];
|
||
|
phi->ReplaceAtUse(use, value);
|
||
|
if (use->IsPhi()) worklist.Add(HPhi::cast(use));
|
||
|
}
|
||
|
uses_to_replace.Rewind(0);
|
||
|
block->RemovePhi(phi);
|
||
|
} else if (phi->HasNoUses() &&
|
||
|
!phi->HasReceiverOperand() &&
|
||
|
FLAG_eliminate_dead_phis) {
|
||
|
// We can't eliminate phis that have the receiver as an operand
|
||
|
// because in case of throwing an error we need the correct
|
||
|
// receiver value in the environment to construct a corrent
|
||
|
// stack trace.
|
||
|
block->RemovePhi(phi);
|
||
|
block->RecordDeletedPhi(phi->merged_index());
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool HGraph::CollectPhis() {
|
||
|
const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
|
||
|
phi_list_ = new ZoneList<HPhi*>(blocks->length());
|
||
|
for (int i = 0; i < blocks->length(); ++i) {
|
||
|
for (int j = 0; j < blocks->at(i)->phis()->length(); j++) {
|
||
|
HPhi* phi = blocks->at(i)->phis()->at(j);
|
||
|
phi_list_->Add(phi);
|
||
|
// We don't support phi uses of arguments for now.
|
||
|
if (phi->CheckFlag(HValue::kIsArguments)) return false;
|
||
|
}
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::InferTypes(ZoneList<HValue*>* worklist) {
|
||
|
BitVector in_worklist(GetMaximumValueID());
|
||
|
for (int i = 0; i < worklist->length(); ++i) {
|
||
|
ASSERT(!in_worklist.Contains(worklist->at(i)->id()));
|
||
|
in_worklist.Add(worklist->at(i)->id());
|
||
|
}
|
||
|
|
||
|
while (!worklist->is_empty()) {
|
||
|
HValue* current = worklist->RemoveLast();
|
||
|
in_worklist.Remove(current->id());
|
||
|
if (current->UpdateInferredType()) {
|
||
|
for (int j = 0; j < current->uses()->length(); j++) {
|
||
|
HValue* use = current->uses()->at(j);
|
||
|
if (!in_worklist.Contains(use->id())) {
|
||
|
in_worklist.Add(use->id());
|
||
|
worklist->Add(use);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
class HRangeAnalysis BASE_EMBEDDED {
|
||
|
public:
|
||
|
explicit HRangeAnalysis(HGraph* graph) : graph_(graph), changed_ranges_(16) {}
|
||
|
|
||
|
void Analyze();
|
||
|
|
||
|
private:
|
||
|
void TraceRange(const char* msg, ...);
|
||
|
void Analyze(HBasicBlock* block);
|
||
|
void InferControlFlowRange(HBranch* branch, HBasicBlock* dest);
|
||
|
void InferControlFlowRange(Token::Value op, HValue* value, HValue* other);
|
||
|
void InferPhiRange(HPhi* phi);
|
||
|
void InferRange(HValue* value);
|
||
|
void RollBackTo(int index);
|
||
|
void AddRange(HValue* value, Range* range);
|
||
|
|
||
|
HGraph* graph_;
|
||
|
ZoneList<HValue*> changed_ranges_;
|
||
|
};
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::TraceRange(const char* msg, ...) {
|
||
|
if (FLAG_trace_range) {
|
||
|
va_list arguments;
|
||
|
va_start(arguments, msg);
|
||
|
OS::VPrint(msg, arguments);
|
||
|
va_end(arguments);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::Analyze() {
|
||
|
HPhase phase("Range analysis", graph_);
|
||
|
Analyze(graph_->blocks()->at(0));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::Analyze(HBasicBlock* block) {
|
||
|
TraceRange("Analyzing block B%d\n", block->block_id());
|
||
|
|
||
|
int last_changed_range = changed_ranges_.length() - 1;
|
||
|
|
||
|
// Infer range based on control flow.
|
||
|
if (block->predecessors()->length() == 1) {
|
||
|
HBasicBlock* pred = block->predecessors()->first();
|
||
|
if (pred->end()->IsBranch()) {
|
||
|
InferControlFlowRange(HBranch::cast(pred->end()), block);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Process phi instructions.
|
||
|
for (int i = 0; i < block->phis()->length(); ++i) {
|
||
|
HPhi* phi = block->phis()->at(i);
|
||
|
InferPhiRange(phi);
|
||
|
}
|
||
|
|
||
|
// Go through all instructions of the current block.
|
||
|
HInstruction* instr = block->first();
|
||
|
while (instr != block->end()) {
|
||
|
InferRange(instr);
|
||
|
instr = instr->next();
|
||
|
}
|
||
|
|
||
|
// Continue analysis in all dominated blocks.
|
||
|
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
|
||
|
Analyze(block->dominated_blocks()->at(i));
|
||
|
}
|
||
|
|
||
|
RollBackTo(last_changed_range);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::InferControlFlowRange(HBranch* branch, HBasicBlock* dest) {
|
||
|
ASSERT(branch->FirstSuccessor() == dest || branch->SecondSuccessor() == dest);
|
||
|
ASSERT(branch->FirstSuccessor() != dest || branch->SecondSuccessor() != dest);
|
||
|
|
||
|
if (branch->value()->IsCompare()) {
|
||
|
HCompare* compare = HCompare::cast(branch->value());
|
||
|
Token::Value op = compare->token();
|
||
|
if (branch->SecondSuccessor() == dest) {
|
||
|
op = Token::NegateCompareOp(op);
|
||
|
}
|
||
|
Token::Value inverted_op = Token::InvertCompareOp(op);
|
||
|
InferControlFlowRange(op, compare->left(), compare->right());
|
||
|
InferControlFlowRange(inverted_op, compare->right(), compare->left());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// We know that value [op] other. Use this information to update the range on
|
||
|
// value.
|
||
|
void HRangeAnalysis::InferControlFlowRange(Token::Value op,
|
||
|
HValue* value,
|
||
|
HValue* other) {
|
||
|
Range* range = other->range();
|
||
|
if (range == NULL) range = new Range();
|
||
|
Range* new_range = NULL;
|
||
|
|
||
|
TraceRange("Control flow range infer %d %s %d\n",
|
||
|
value->id(),
|
||
|
Token::Name(op),
|
||
|
other->id());
|
||
|
|
||
|
if (op == Token::EQ || op == Token::EQ_STRICT) {
|
||
|
// The same range has to apply for value.
|
||
|
new_range = range->Copy();
|
||
|
} else if (op == Token::LT || op == Token::LTE) {
|
||
|
new_range = range->CopyClearLower();
|
||
|
if (op == Token::LT) {
|
||
|
new_range->Add(-1);
|
||
|
}
|
||
|
} else if (op == Token::GT || op == Token::GTE) {
|
||
|
new_range = range->CopyClearUpper();
|
||
|
if (op == Token::GT) {
|
||
|
new_range->Add(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (new_range != NULL && !new_range->IsMostGeneric()) {
|
||
|
AddRange(value, new_range);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::InferPhiRange(HPhi* phi) {
|
||
|
// TODO(twuerthinger): Infer loop phi ranges.
|
||
|
InferRange(phi);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::InferRange(HValue* value) {
|
||
|
ASSERT(!value->HasRange());
|
||
|
if (!value->representation().IsNone()) {
|
||
|
value->ComputeInitialRange();
|
||
|
Range* range = value->range();
|
||
|
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
|
||
|
value->id(),
|
||
|
value->Mnemonic(),
|
||
|
range->lower(),
|
||
|
range->upper());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::RollBackTo(int index) {
|
||
|
for (int i = index + 1; i < changed_ranges_.length(); ++i) {
|
||
|
changed_ranges_[i]->RemoveLastAddedRange();
|
||
|
}
|
||
|
changed_ranges_.Rewind(index + 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HRangeAnalysis::AddRange(HValue* value, Range* range) {
|
||
|
Range* original_range = value->range();
|
||
|
value->AddNewRange(range);
|
||
|
changed_ranges_.Add(value);
|
||
|
Range* new_range = value->range();
|
||
|
TraceRange("Updated range of %d set to [%d,%d]\n",
|
||
|
value->id(),
|
||
|
new_range->lower(),
|
||
|
new_range->upper());
|
||
|
if (original_range != NULL) {
|
||
|
TraceRange("Original range was [%d,%d]\n",
|
||
|
original_range->lower(),
|
||
|
original_range->upper());
|
||
|
}
|
||
|
TraceRange("New information was [%d,%d]\n",
|
||
|
range->lower(),
|
||
|
range->upper());
|
||
|
}
|
||
|
|
||
|
|
||
|
void TraceGVN(const char* msg, ...) {
|
||
|
if (FLAG_trace_gvn) {
|
||
|
va_list arguments;
|
||
|
va_start(arguments, msg);
|
||
|
OS::VPrint(msg, arguments);
|
||
|
va_end(arguments);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HValueMap::HValueMap(const HValueMap* other)
|
||
|
: array_size_(other->array_size_),
|
||
|
lists_size_(other->lists_size_),
|
||
|
count_(other->count_),
|
||
|
present_flags_(other->present_flags_),
|
||
|
array_(Zone::NewArray<HValueMapListElement>(other->array_size_)),
|
||
|
lists_(Zone::NewArray<HValueMapListElement>(other->lists_size_)),
|
||
|
free_list_head_(other->free_list_head_) {
|
||
|
memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement));
|
||
|
memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HValueMap::Kill(int flags) {
|
||
|
int depends_flags = HValue::ConvertChangesToDependsFlags(flags);
|
||
|
if ((present_flags_ & depends_flags) == 0) return;
|
||
|
present_flags_ = 0;
|
||
|
for (int i = 0; i < array_size_; ++i) {
|
||
|
HValue* value = array_[i].value;
|
||
|
if (value != NULL) {
|
||
|
// Clear list of collisions first, so we know if it becomes empty.
|
||
|
int kept = kNil; // List of kept elements.
|
||
|
int next;
|
||
|
for (int current = array_[i].next; current != kNil; current = next) {
|
||
|
next = lists_[current].next;
|
||
|
if ((lists_[current].value->flags() & depends_flags) != 0) {
|
||
|
// Drop it.
|
||
|
count_--;
|
||
|
lists_[current].next = free_list_head_;
|
||
|
free_list_head_ = current;
|
||
|
} else {
|
||
|
// Keep it.
|
||
|
lists_[current].next = kept;
|
||
|
kept = current;
|
||
|
present_flags_ |= lists_[current].value->flags();
|
||
|
}
|
||
|
}
|
||
|
array_[i].next = kept;
|
||
|
|
||
|
// Now possibly drop directly indexed element.
|
||
|
if ((array_[i].value->flags() & depends_flags) != 0) { // Drop it.
|
||
|
count_--;
|
||
|
int head = array_[i].next;
|
||
|
if (head == kNil) {
|
||
|
array_[i].value = NULL;
|
||
|
} else {
|
||
|
array_[i].value = lists_[head].value;
|
||
|
array_[i].next = lists_[head].next;
|
||
|
lists_[head].next = free_list_head_;
|
||
|
free_list_head_ = head;
|
||
|
}
|
||
|
} else {
|
||
|
present_flags_ |= array_[i].value->flags(); // Keep it.
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HValue* HValueMap::Lookup(HValue* value) const {
|
||
|
uint32_t hash = static_cast<uint32_t>(value->Hashcode());
|
||
|
uint32_t pos = Bound(hash);
|
||
|
if (array_[pos].value != NULL) {
|
||
|
if (array_[pos].value->Equals(value)) return array_[pos].value;
|
||
|
int next = array_[pos].next;
|
||
|
while (next != kNil) {
|
||
|
if (lists_[next].value->Equals(value)) return lists_[next].value;
|
||
|
next = lists_[next].next;
|
||
|
}
|
||
|
}
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HValueMap::Resize(int new_size) {
|
||
|
ASSERT(new_size > count_);
|
||
|
// Hashing the values into the new array has no more collisions than in the
|
||
|
// old hash map, so we can use the existing lists_ array, if we are careful.
|
||
|
|
||
|
// Make sure we have at least one free element.
|
||
|
if (free_list_head_ == kNil) {
|
||
|
ResizeLists(lists_size_ << 1);
|
||
|
}
|
||
|
|
||
|
HValueMapListElement* new_array =
|
||
|
Zone::NewArray<HValueMapListElement>(new_size);
|
||
|
memset(new_array, 0, sizeof(HValueMapListElement) * new_size);
|
||
|
|
||
|
HValueMapListElement* old_array = array_;
|
||
|
int old_size = array_size_;
|
||
|
|
||
|
int old_count = count_;
|
||
|
count_ = 0;
|
||
|
// Do not modify present_flags_. It is currently correct.
|
||
|
array_size_ = new_size;
|
||
|
array_ = new_array;
|
||
|
|
||
|
if (old_array != NULL) {
|
||
|
// Iterate over all the elements in lists, rehashing them.
|
||
|
for (int i = 0; i < old_size; ++i) {
|
||
|
if (old_array[i].value != NULL) {
|
||
|
int current = old_array[i].next;
|
||
|
while (current != kNil) {
|
||
|
Insert(lists_[current].value);
|
||
|
int next = lists_[current].next;
|
||
|
lists_[current].next = free_list_head_;
|
||
|
free_list_head_ = current;
|
||
|
current = next;
|
||
|
}
|
||
|
// Rehash the directly stored value.
|
||
|
Insert(old_array[i].value);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
USE(old_count);
|
||
|
ASSERT(count_ == old_count);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HValueMap::ResizeLists(int new_size) {
|
||
|
ASSERT(new_size > lists_size_);
|
||
|
|
||
|
HValueMapListElement* new_lists =
|
||
|
Zone::NewArray<HValueMapListElement>(new_size);
|
||
|
memset(new_lists, 0, sizeof(HValueMapListElement) * new_size);
|
||
|
|
||
|
HValueMapListElement* old_lists = lists_;
|
||
|
int old_size = lists_size_;
|
||
|
|
||
|
lists_size_ = new_size;
|
||
|
lists_ = new_lists;
|
||
|
|
||
|
if (old_lists != NULL) {
|
||
|
memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement));
|
||
|
}
|
||
|
for (int i = old_size; i < lists_size_; ++i) {
|
||
|
lists_[i].next = free_list_head_;
|
||
|
free_list_head_ = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HValueMap::Insert(HValue* value) {
|
||
|
ASSERT(value != NULL);
|
||
|
// Resizing when half of the hashtable is filled up.
|
||
|
if (count_ >= array_size_ >> 1) Resize(array_size_ << 1);
|
||
|
ASSERT(count_ < array_size_);
|
||
|
count_++;
|
||
|
uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode()));
|
||
|
if (array_[pos].value == NULL) {
|
||
|
array_[pos].value = value;
|
||
|
array_[pos].next = kNil;
|
||
|
} else {
|
||
|
if (free_list_head_ == kNil) {
|
||
|
ResizeLists(lists_size_ << 1);
|
||
|
}
|
||
|
int new_element_pos = free_list_head_;
|
||
|
ASSERT(new_element_pos != kNil);
|
||
|
free_list_head_ = lists_[free_list_head_].next;
|
||
|
lists_[new_element_pos].value = value;
|
||
|
lists_[new_element_pos].next = array_[pos].next;
|
||
|
ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL);
|
||
|
array_[pos].next = new_element_pos;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
class HStackCheckEliminator BASE_EMBEDDED {
|
||
|
public:
|
||
|
explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { }
|
||
|
|
||
|
void Process();
|
||
|
|
||
|
private:
|
||
|
void RemoveStackCheck(HBasicBlock* block);
|
||
|
|
||
|
HGraph* graph_;
|
||
|
};
|
||
|
|
||
|
|
||
|
void HStackCheckEliminator::Process() {
|
||
|
// For each loop block walk the dominator tree from the backwards branch to
|
||
|
// the loop header. If a call instruction is encountered the backwards branch
|
||
|
// is dominated by a call and the stack check in the backwards branch can be
|
||
|
// removed.
|
||
|
for (int i = 0; i < graph_->blocks()->length(); i++) {
|
||
|
HBasicBlock* block = graph_->blocks()->at(i);
|
||
|
if (block->IsLoopHeader()) {
|
||
|
HBasicBlock* backedge = block->loop_information()->GetLastBackEdge();
|
||
|
HBasicBlock* dominator = backedge;
|
||
|
bool backedge_dominated_by_call = false;
|
||
|
while (dominator != block && !backedge_dominated_by_call) {
|
||
|
HInstruction* instr = dominator->first();
|
||
|
while (instr != NULL && !backedge_dominated_by_call) {
|
||
|
if (instr->IsCall()) {
|
||
|
RemoveStackCheck(backedge);
|
||
|
backedge_dominated_by_call = true;
|
||
|
}
|
||
|
instr = instr->next();
|
||
|
}
|
||
|
dominator = dominator->dominator();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HStackCheckEliminator::RemoveStackCheck(HBasicBlock* block) {
|
||
|
HInstruction* instr = block->first();
|
||
|
while (instr != NULL) {
|
||
|
if (instr->IsGoto()) {
|
||
|
HGoto::cast(instr)->set_include_stack_check(false);
|
||
|
return;
|
||
|
}
|
||
|
instr = instr->next();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
class HGlobalValueNumberer BASE_EMBEDDED {
|
||
|
public:
|
||
|
explicit HGlobalValueNumberer(HGraph* graph)
|
||
|
: graph_(graph),
|
||
|
block_side_effects_(graph_->blocks()->length()),
|
||
|
loop_side_effects_(graph_->blocks()->length()) {
|
||
|
ASSERT(Heap::allow_allocation(false));
|
||
|
block_side_effects_.AddBlock(0, graph_->blocks()->length());
|
||
|
loop_side_effects_.AddBlock(0, graph_->blocks()->length());
|
||
|
}
|
||
|
~HGlobalValueNumberer() {
|
||
|
ASSERT(!Heap::allow_allocation(true));
|
||
|
}
|
||
|
|
||
|
void Analyze();
|
||
|
|
||
|
private:
|
||
|
void AnalyzeBlock(HBasicBlock* block, HValueMap* map);
|
||
|
void ComputeBlockSideEffects();
|
||
|
void LoopInvariantCodeMotion();
|
||
|
void ProcessLoopBlock(HBasicBlock* block,
|
||
|
HBasicBlock* before_loop,
|
||
|
int loop_kills);
|
||
|
bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header);
|
||
|
|
||
|
HGraph* graph_;
|
||
|
|
||
|
// A map of block IDs to their side effects.
|
||
|
ZoneList<int> block_side_effects_;
|
||
|
|
||
|
// A map of loop header block IDs to their loop's side effects.
|
||
|
ZoneList<int> loop_side_effects_;
|
||
|
};
|
||
|
|
||
|
|
||
|
void HGlobalValueNumberer::Analyze() {
|
||
|
ComputeBlockSideEffects();
|
||
|
if (FLAG_loop_invariant_code_motion) {
|
||
|
LoopInvariantCodeMotion();
|
||
|
}
|
||
|
HValueMap* map = new HValueMap();
|
||
|
AnalyzeBlock(graph_->blocks()->at(0), map);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGlobalValueNumberer::ComputeBlockSideEffects() {
|
||
|
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
|
||
|
// Compute side effects for the block.
|
||
|
HBasicBlock* block = graph_->blocks()->at(i);
|
||
|
HInstruction* instr = block->first();
|
||
|
int id = block->block_id();
|
||
|
int side_effects = 0;
|
||
|
while (instr != NULL) {
|
||
|
side_effects |= (instr->flags() & HValue::ChangesFlagsMask());
|
||
|
instr = instr->next();
|
||
|
}
|
||
|
block_side_effects_[id] |= side_effects;
|
||
|
|
||
|
// Loop headers are part of their loop.
|
||
|
if (block->IsLoopHeader()) {
|
||
|
loop_side_effects_[id] |= side_effects;
|
||
|
}
|
||
|
|
||
|
// Propagate loop side effects upwards.
|
||
|
if (block->HasParentLoopHeader()) {
|
||
|
int header_id = block->parent_loop_header()->block_id();
|
||
|
loop_side_effects_[header_id] |=
|
||
|
block->IsLoopHeader() ? loop_side_effects_[id] : side_effects;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGlobalValueNumberer::LoopInvariantCodeMotion() {
|
||
|
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
|
||
|
HBasicBlock* block = graph_->blocks()->at(i);
|
||
|
if (block->IsLoopHeader()) {
|
||
|
int side_effects = loop_side_effects_[block->block_id()];
|
||
|
TraceGVN("Try loop invariant motion for block B%d effects=0x%x\n",
|
||
|
block->block_id(),
|
||
|
side_effects);
|
||
|
|
||
|
HBasicBlock* last = block->loop_information()->GetLastBackEdge();
|
||
|
for (int j = block->block_id(); j <= last->block_id(); ++j) {
|
||
|
ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGlobalValueNumberer::ProcessLoopBlock(HBasicBlock* block,
|
||
|
HBasicBlock* loop_header,
|
||
|
int loop_kills) {
|
||
|
HBasicBlock* pre_header = loop_header->predecessors()->at(0);
|
||
|
int depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills);
|
||
|
TraceGVN("Loop invariant motion for B%d depends_flags=0x%x\n",
|
||
|
block->block_id(),
|
||
|
depends_flags);
|
||
|
HInstruction* instr = block->first();
|
||
|
while (instr != NULL) {
|
||
|
HInstruction* next = instr->next();
|
||
|
if (instr->CheckFlag(HValue::kUseGVN) &&
|
||
|
(instr->flags() & depends_flags) == 0) {
|
||
|
TraceGVN("Checking instruction %d (%s)\n",
|
||
|
instr->id(),
|
||
|
instr->Mnemonic());
|
||
|
bool inputs_loop_invariant = true;
|
||
|
for (int i = 0; i < instr->OperandCount(); ++i) {
|
||
|
if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) {
|
||
|
inputs_loop_invariant = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (inputs_loop_invariant && ShouldMove(instr, loop_header)) {
|
||
|
TraceGVN("Found loop invariant instruction %d\n", instr->id());
|
||
|
// Move the instruction out of the loop.
|
||
|
instr->Unlink();
|
||
|
instr->InsertBefore(pre_header->end());
|
||
|
}
|
||
|
}
|
||
|
instr = next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Only move instructions that postdominate the loop header (i.e. are
|
||
|
// always executed inside the loop). This is to avoid unnecessary
|
||
|
// deoptimizations assuming the loop is executed at least once.
|
||
|
// TODO(fschneider): Better type feedback should give us information
|
||
|
// about code that was never executed.
|
||
|
bool HGlobalValueNumberer::ShouldMove(HInstruction* instr,
|
||
|
HBasicBlock* loop_header) {
|
||
|
if (!instr->IsChange() &&
|
||
|
FLAG_aggressive_loop_invariant_motion) return true;
|
||
|
HBasicBlock* block = instr->block();
|
||
|
bool result = true;
|
||
|
if (block != loop_header) {
|
||
|
for (int i = 1; i < loop_header->predecessors()->length(); ++i) {
|
||
|
bool found = false;
|
||
|
HBasicBlock* pred = loop_header->predecessors()->at(i);
|
||
|
while (pred != loop_header) {
|
||
|
if (pred == block) found = true;
|
||
|
pred = pred->dominator();
|
||
|
}
|
||
|
if (!found) {
|
||
|
result = false;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGlobalValueNumberer::AnalyzeBlock(HBasicBlock* block, HValueMap* map) {
|
||
|
TraceGVN("Analyzing block B%d\n", block->block_id());
|
||
|
|
||
|
// If this is a loop header kill everything killed by the loop.
|
||
|
if (block->IsLoopHeader()) {
|
||
|
map->Kill(loop_side_effects_[block->block_id()]);
|
||
|
}
|
||
|
|
||
|
// Go through all instructions of the current block.
|
||
|
HInstruction* instr = block->first();
|
||
|
while (instr != NULL) {
|
||
|
HInstruction* next = instr->next();
|
||
|
int flags = (instr->flags() & HValue::ChangesFlagsMask());
|
||
|
if (flags != 0) {
|
||
|
ASSERT(!instr->CheckFlag(HValue::kUseGVN));
|
||
|
// Clear all instructions in the map that are affected by side effects.
|
||
|
map->Kill(flags);
|
||
|
TraceGVN("Instruction %d kills\n", instr->id());
|
||
|
} else if (instr->CheckFlag(HValue::kUseGVN)) {
|
||
|
HValue* other = map->Lookup(instr);
|
||
|
if (other != NULL) {
|
||
|
ASSERT(instr->Equals(other) && other->Equals(instr));
|
||
|
TraceGVN("Replacing value %d (%s) with value %d (%s)\n",
|
||
|
instr->id(),
|
||
|
instr->Mnemonic(),
|
||
|
other->id(),
|
||
|
other->Mnemonic());
|
||
|
instr->ReplaceValue(other);
|
||
|
instr->Delete();
|
||
|
} else {
|
||
|
map->Add(instr);
|
||
|
}
|
||
|
}
|
||
|
instr = next;
|
||
|
}
|
||
|
|
||
|
// Recursively continue analysis for all immediately dominated blocks.
|
||
|
int length = block->dominated_blocks()->length();
|
||
|
for (int i = 0; i < length; ++i) {
|
||
|
HBasicBlock* dominated = block->dominated_blocks()->at(i);
|
||
|
// No need to copy the map for the last child in the dominator tree.
|
||
|
HValueMap* successor_map = (i == length - 1) ? map : map->Copy();
|
||
|
|
||
|
// If the dominated block is not a successor to this block we have to
|
||
|
// kill everything killed on any path between this block and the
|
||
|
// dominated block. Note we rely on the block ordering.
|
||
|
bool is_successor = false;
|
||
|
int predecessor_count = dominated->predecessors()->length();
|
||
|
for (int j = 0; !is_successor && j < predecessor_count; ++j) {
|
||
|
is_successor = (dominated->predecessors()->at(j) == block);
|
||
|
}
|
||
|
|
||
|
if (!is_successor) {
|
||
|
int side_effects = 0;
|
||
|
for (int j = block->block_id() + 1; j < dominated->block_id(); ++j) {
|
||
|
side_effects |= block_side_effects_[j];
|
||
|
}
|
||
|
successor_map->Kill(side_effects);
|
||
|
}
|
||
|
|
||
|
AnalyzeBlock(dominated, successor_map);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
class HInferRepresentation BASE_EMBEDDED {
|
||
|
public:
|
||
|
explicit HInferRepresentation(HGraph* graph)
|
||
|
: graph_(graph), worklist_(8), in_worklist_(graph->GetMaximumValueID()) {}
|
||
|
|
||
|
void Analyze();
|
||
|
|
||
|
private:
|
||
|
Representation TryChange(HValue* current);
|
||
|
void AddToWorklist(HValue* current);
|
||
|
void InferBasedOnInputs(HValue* current);
|
||
|
void AddDependantsToWorklist(HValue* current);
|
||
|
void InferBasedOnUses(HValue* current);
|
||
|
|
||
|
HGraph* graph_;
|
||
|
ZoneList<HValue*> worklist_;
|
||
|
BitVector in_worklist_;
|
||
|
};
|
||
|
|
||
|
|
||
|
void HInferRepresentation::AddToWorklist(HValue* current) {
|
||
|
if (current->representation().IsSpecialization()) return;
|
||
|
if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return;
|
||
|
if (in_worklist_.Contains(current->id())) return;
|
||
|
worklist_.Add(current);
|
||
|
in_worklist_.Add(current->id());
|
||
|
}
|
||
|
|
||
|
|
||
|
// This method tries to specialize the representation type of the value
|
||
|
// given as a parameter. The value is asked to infer its representation type
|
||
|
// based on its inputs. If the inferred type is more specialized, then this
|
||
|
// becomes the new representation type of the node.
|
||
|
void HInferRepresentation::InferBasedOnInputs(HValue* current) {
|
||
|
Representation r = current->representation();
|
||
|
if (r.IsSpecialization()) return;
|
||
|
ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation));
|
||
|
Representation inferred = current->InferredRepresentation();
|
||
|
if (inferred.IsSpecialization()) {
|
||
|
current->ChangeRepresentation(inferred);
|
||
|
AddDependantsToWorklist(current);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HInferRepresentation::AddDependantsToWorklist(HValue* current) {
|
||
|
for (int i = 0; i < current->uses()->length(); ++i) {
|
||
|
AddToWorklist(current->uses()->at(i));
|
||
|
}
|
||
|
for (int i = 0; i < current->OperandCount(); ++i) {
|
||
|
AddToWorklist(current->OperandAt(i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// This method calculates whether specializing the representation of the value
|
||
|
// given as the parameter has a benefit in terms of less necessary type
|
||
|
// conversions. If there is a benefit, then the representation of the value is
|
||
|
// specialized.
|
||
|
void HInferRepresentation::InferBasedOnUses(HValue* current) {
|
||
|
Representation r = current->representation();
|
||
|
if (r.IsSpecialization() || current->HasNoUses()) return;
|
||
|
ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation));
|
||
|
Representation new_rep = TryChange(current);
|
||
|
if (!new_rep.IsNone()) {
|
||
|
if (!current->representation().Equals(new_rep)) {
|
||
|
current->ChangeRepresentation(new_rep);
|
||
|
AddDependantsToWorklist(current);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
Representation HInferRepresentation::TryChange(HValue* current) {
|
||
|
// Array of use counts for each representation.
|
||
|
int use_count[Representation::kNumRepresentations];
|
||
|
for (int i = 0; i < Representation::kNumRepresentations; i++) {
|
||
|
use_count[i] = 0;
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < current->uses()->length(); ++i) {
|
||
|
HValue* use = current->uses()->at(i);
|
||
|
int index = use->LookupOperandIndex(0, current);
|
||
|
Representation req_rep = use->RequiredInputRepresentation(index);
|
||
|
if (req_rep.IsNone()) continue;
|
||
|
if (use->IsPhi()) {
|
||
|
HPhi* phi = HPhi::cast(use);
|
||
|
phi->AddIndirectUsesTo(&use_count[0]);
|
||
|
}
|
||
|
use_count[req_rep.kind()]++;
|
||
|
}
|
||
|
int tagged_count = use_count[Representation::kTagged];
|
||
|
int double_count = use_count[Representation::kDouble];
|
||
|
int int32_count = use_count[Representation::kInteger32];
|
||
|
int non_tagged_count = double_count + int32_count;
|
||
|
|
||
|
// If a non-loop phi has tagged uses, don't convert it to untagged.
|
||
|
if (current->IsPhi() && !current->block()->IsLoopHeader()) {
|
||
|
if (tagged_count > 0) return Representation::None();
|
||
|
}
|
||
|
|
||
|
if (non_tagged_count >= tagged_count) {
|
||
|
// More untagged than tagged.
|
||
|
if (double_count > 0) {
|
||
|
// There is at least one usage that is a double => guess that the
|
||
|
// correct representation is double.
|
||
|
return Representation::Double();
|
||
|
} else if (int32_count > 0) {
|
||
|
return Representation::Integer32();
|
||
|
}
|
||
|
}
|
||
|
return Representation::None();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HInferRepresentation::Analyze() {
|
||
|
HPhase phase("Infer representations", graph_);
|
||
|
|
||
|
// (1) Initialize bit vectors and count real uses. Each phi
|
||
|
// gets a bit-vector of length <number of phis>.
|
||
|
const ZoneList<HPhi*>* phi_list = graph_->phi_list();
|
||
|
int num_phis = phi_list->length();
|
||
|
ScopedVector<BitVector*> connected_phis(num_phis);
|
||
|
for (int i = 0; i < num_phis; i++) {
|
||
|
phi_list->at(i)->InitRealUses(i);
|
||
|
connected_phis[i] = new BitVector(num_phis);
|
||
|
connected_phis[i]->Add(i);
|
||
|
}
|
||
|
|
||
|
// (2) Do a fixed point iteration to find the set of connected phis.
|
||
|
// A phi is connected to another phi if its value is used either
|
||
|
// directly or indirectly through a transitive closure of the def-use
|
||
|
// relation.
|
||
|
bool change = true;
|
||
|
while (change) {
|
||
|
change = false;
|
||
|
for (int i = 0; i < num_phis; i++) {
|
||
|
HPhi* phi = phi_list->at(i);
|
||
|
for (int j = 0; j < phi->uses()->length(); j++) {
|
||
|
HValue* use = phi->uses()->at(j);
|
||
|
if (use->IsPhi()) {
|
||
|
int phi_use = HPhi::cast(use)->phi_id();
|
||
|
if (connected_phis[i]->UnionIsChanged(*connected_phis[phi_use])) {
|
||
|
change = true;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// (3) Sum up the non-phi use counts of all connected phis.
|
||
|
// Don't include the non-phi uses of the phi itself.
|
||
|
for (int i = 0; i < num_phis; i++) {
|
||
|
HPhi* phi = phi_list->at(i);
|
||
|
for (BitVector::Iterator it(connected_phis.at(i));
|
||
|
!it.Done();
|
||
|
it.Advance()) {
|
||
|
int index = it.Current();
|
||
|
if (index != i) {
|
||
|
HPhi* it_use = phi_list->at(it.Current());
|
||
|
phi->AddNonPhiUsesFrom(it_use);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < graph_->blocks()->length(); ++i) {
|
||
|
HBasicBlock* block = graph_->blocks()->at(i);
|
||
|
const ZoneList<HPhi*>* phis = block->phis();
|
||
|
for (int j = 0; j < phis->length(); ++j) {
|
||
|
AddToWorklist(phis->at(j));
|
||
|
}
|
||
|
|
||
|
HInstruction* current = block->first();
|
||
|
while (current != NULL) {
|
||
|
AddToWorklist(current);
|
||
|
current = current->next();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while (!worklist_.is_empty()) {
|
||
|
HValue* current = worklist_.RemoveLast();
|
||
|
in_worklist_.Remove(current->id());
|
||
|
InferBasedOnInputs(current);
|
||
|
InferBasedOnUses(current);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::InitializeInferredTypes() {
|
||
|
HPhase phase("Inferring types", this);
|
||
|
InitializeInferredTypes(0, this->blocks_.length() - 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) {
|
||
|
for (int i = from_inclusive; i <= to_inclusive; ++i) {
|
||
|
HBasicBlock* block = blocks_[i];
|
||
|
|
||
|
const ZoneList<HPhi*>* phis = block->phis();
|
||
|
for (int j = 0; j < phis->length(); j++) {
|
||
|
phis->at(j)->UpdateInferredType();
|
||
|
}
|
||
|
|
||
|
HInstruction* current = block->first();
|
||
|
while (current != NULL) {
|
||
|
current->UpdateInferredType();
|
||
|
current = current->next();
|
||
|
}
|
||
|
|
||
|
if (block->IsLoopHeader()) {
|
||
|
HBasicBlock* last_back_edge =
|
||
|
block->loop_information()->GetLastBackEdge();
|
||
|
InitializeInferredTypes(i + 1, last_back_edge->block_id());
|
||
|
// Skip all blocks already processed by the recursive call.
|
||
|
i = last_back_edge->block_id();
|
||
|
// Update phis of the loop header now after the whole loop body is
|
||
|
// guaranteed to be processed.
|
||
|
ZoneList<HValue*> worklist(block->phis()->length());
|
||
|
for (int j = 0; j < block->phis()->length(); ++j) {
|
||
|
worklist.Add(block->phis()->at(j));
|
||
|
}
|
||
|
InferTypes(&worklist);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) {
|
||
|
HValue* current = value;
|
||
|
while (current != NULL) {
|
||
|
if (visited->Contains(current->id())) return;
|
||
|
|
||
|
// For phis, we must propagate the check to all of its inputs.
|
||
|
if (current->IsPhi()) {
|
||
|
visited->Add(current->id());
|
||
|
HPhi* phi = HPhi::cast(current);
|
||
|
for (int i = 0; i < phi->OperandCount(); ++i) {
|
||
|
PropagateMinusZeroChecks(phi->OperandAt(i), visited);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
// For multiplication and division, we must propagate to the left and
|
||
|
// the right side.
|
||
|
if (current->IsMul()) {
|
||
|
HMul* mul = HMul::cast(current);
|
||
|
mul->EnsureAndPropagateNotMinusZero(visited);
|
||
|
PropagateMinusZeroChecks(mul->left(), visited);
|
||
|
PropagateMinusZeroChecks(mul->right(), visited);
|
||
|
} else if (current->IsDiv()) {
|
||
|
HDiv* div = HDiv::cast(current);
|
||
|
div->EnsureAndPropagateNotMinusZero(visited);
|
||
|
PropagateMinusZeroChecks(div->left(), visited);
|
||
|
PropagateMinusZeroChecks(div->right(), visited);
|
||
|
}
|
||
|
|
||
|
current = current->EnsureAndPropagateNotMinusZero(visited);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::InsertRepresentationChangeForUse(HValue* value,
|
||
|
HValue* use,
|
||
|
Representation to,
|
||
|
bool is_truncating) {
|
||
|
// Propagate flags for negative zero checks upwards from conversions
|
||
|
// int32-to-tagged and int32-to-double.
|
||
|
Representation from = value->representation();
|
||
|
if (from.IsInteger32()) {
|
||
|
ASSERT(to.IsTagged() || to.IsDouble());
|
||
|
BitVector visited(GetMaximumValueID());
|
||
|
PropagateMinusZeroChecks(value, &visited);
|
||
|
}
|
||
|
|
||
|
// Insert the representation change right before its use. For phi-uses we
|
||
|
// insert at the end of the corresponding predecessor.
|
||
|
HBasicBlock* insert_block = use->block();
|
||
|
if (use->IsPhi()) {
|
||
|
int index = 0;
|
||
|
while (use->OperandAt(index) != value) ++index;
|
||
|
insert_block = insert_block->predecessors()->at(index);
|
||
|
}
|
||
|
|
||
|
HInstruction* next = (insert_block == use->block())
|
||
|
? HInstruction::cast(use)
|
||
|
: insert_block->end();
|
||
|
|
||
|
// For constants we try to make the representation change at compile
|
||
|
// time. When a representation change is not possible without loss of
|
||
|
// information we treat constants like normal instructions and insert the
|
||
|
// change instructions for them.
|
||
|
HInstruction* new_value = NULL;
|
||
|
if (value->IsConstant()) {
|
||
|
HConstant* constant = HConstant::cast(value);
|
||
|
// Try to create a new copy of the constant with the new representation.
|
||
|
new_value = is_truncating
|
||
|
? constant->CopyToTruncatedInt32()
|
||
|
: constant->CopyToRepresentation(to);
|
||
|
}
|
||
|
|
||
|
if (new_value == NULL) {
|
||
|
new_value = new HChange(value, value->representation(), to);
|
||
|
}
|
||
|
|
||
|
new_value->InsertBefore(next);
|
||
|
value->ReplaceFirstAtUse(use, new_value, to);
|
||
|
}
|
||
|
|
||
|
|
||
|
int CompareConversionUses(HValue* a,
|
||
|
HValue* b,
|
||
|
Representation a_rep,
|
||
|
Representation b_rep) {
|
||
|
if (a_rep.kind() > b_rep.kind()) {
|
||
|
// Make sure specializations are separated in the result array.
|
||
|
return 1;
|
||
|
}
|
||
|
// Put truncating conversions before non-truncating conversions.
|
||
|
bool a_truncate = a->CheckFlag(HValue::kTruncatingToInt32);
|
||
|
bool b_truncate = b->CheckFlag(HValue::kTruncatingToInt32);
|
||
|
if (a_truncate != b_truncate) {
|
||
|
return a_truncate ? -1 : 1;
|
||
|
}
|
||
|
// Sort by increasing block ID.
|
||
|
return a->block()->block_id() - b->block()->block_id();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::InsertRepresentationChanges(HValue* current) {
|
||
|
Representation r = current->representation();
|
||
|
if (r.IsNone()) return;
|
||
|
if (current->uses()->length() == 0) return;
|
||
|
|
||
|
// Collect the representation changes in a sorted list. This allows
|
||
|
// us to avoid duplicate changes without searching the list.
|
||
|
ZoneList<HValue*> to_convert(2);
|
||
|
ZoneList<Representation> to_convert_reps(2);
|
||
|
for (int i = 0; i < current->uses()->length(); ++i) {
|
||
|
HValue* use = current->uses()->at(i);
|
||
|
// The occurrences index means the index within the operand array of "use"
|
||
|
// at which "current" is used. While iterating through the use array we
|
||
|
// also have to iterate over the different occurrence indices.
|
||
|
int occurrence_index = 0;
|
||
|
if (use->UsesMultipleTimes(current)) {
|
||
|
occurrence_index = current->uses()->CountOccurrences(use, 0, i - 1);
|
||
|
if (FLAG_trace_representation) {
|
||
|
PrintF("Instruction %d is used multiple times at %d; occurrence=%d\n",
|
||
|
current->id(),
|
||
|
use->id(),
|
||
|
occurrence_index);
|
||
|
}
|
||
|
}
|
||
|
int operand_index = use->LookupOperandIndex(occurrence_index, current);
|
||
|
Representation req = use->RequiredInputRepresentation(operand_index);
|
||
|
if (req.IsNone() || req.Equals(r)) continue;
|
||
|
int index = 0;
|
||
|
while (to_convert.length() > index &&
|
||
|
CompareConversionUses(to_convert[index],
|
||
|
use,
|
||
|
to_convert_reps[index],
|
||
|
req) < 0) {
|
||
|
++index;
|
||
|
}
|
||
|
if (FLAG_trace_representation) {
|
||
|
PrintF("Inserting a representation change to %s of %d for use at %d\n",
|
||
|
req.Mnemonic(),
|
||
|
current->id(),
|
||
|
use->id());
|
||
|
}
|
||
|
to_convert.InsertAt(index, use);
|
||
|
to_convert_reps.InsertAt(index, req);
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < to_convert.length(); ++i) {
|
||
|
HValue* use = to_convert[i];
|
||
|
Representation r_to = to_convert_reps[i];
|
||
|
bool is_truncating = use->CheckFlag(HValue::kTruncatingToInt32);
|
||
|
InsertRepresentationChangeForUse(current, use, r_to, is_truncating);
|
||
|
}
|
||
|
|
||
|
if (current->uses()->is_empty()) {
|
||
|
ASSERT(current->IsConstant());
|
||
|
current->Delete();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraph::InsertRepresentationChanges() {
|
||
|
HPhase phase("Insert representation changes", this);
|
||
|
|
||
|
|
||
|
// Compute truncation flag for phis: Initially assume that all
|
||
|
// int32-phis allow truncation and iteratively remove the ones that
|
||
|
// are used in an operation that does not allow a truncating
|
||
|
// conversion.
|
||
|
// TODO(fschneider): Replace this with a worklist-based iteration.
|
||
|
for (int i = 0; i < phi_list()->length(); i++) {
|
||
|
HPhi* phi = phi_list()->at(i);
|
||
|
if (phi->representation().IsInteger32()) {
|
||
|
phi->SetFlag(HValue::kTruncatingToInt32);
|
||
|
}
|
||
|
}
|
||
|
bool change = true;
|
||
|
while (change) {
|
||
|
change = false;
|
||
|
for (int i = 0; i < phi_list()->length(); i++) {
|
||
|
HPhi* phi = phi_list()->at(i);
|
||
|
if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue;
|
||
|
for (int j = 0; j < phi->uses()->length(); j++) {
|
||
|
HValue* use = phi->uses()->at(j);
|
||
|
if (!use->CheckFlag(HValue::kTruncatingToInt32)) {
|
||
|
phi->ClearFlag(HValue::kTruncatingToInt32);
|
||
|
change = true;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < blocks_.length(); ++i) {
|
||
|
// Process phi instructions first.
|
||
|
for (int j = 0; j < blocks_[i]->phis()->length(); j++) {
|
||
|
HPhi* phi = blocks_[i]->phis()->at(j);
|
||
|
InsertRepresentationChanges(phi);
|
||
|
}
|
||
|
|
||
|
// Process normal instructions.
|
||
|
HInstruction* current = blocks_[i]->first();
|
||
|
while (current != NULL) {
|
||
|
InsertRepresentationChanges(current);
|
||
|
current = current->next();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Implementation of utility classes to represent an expression's context in
|
||
|
// the AST.
|
||
|
AstContext::AstContext(HGraphBuilder* owner, Expression::Context kind)
|
||
|
: owner_(owner), kind_(kind), outer_(owner->ast_context()) {
|
||
|
owner->set_ast_context(this); // Push.
|
||
|
}
|
||
|
|
||
|
|
||
|
AstContext::~AstContext() {
|
||
|
owner_->set_ast_context(outer_); // Pop.
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// HGraphBuilder infrastructure for bailing out and checking bailouts.
|
||
|
#define BAILOUT(reason) \
|
||
|
do { \
|
||
|
Bailout(reason); \
|
||
|
return; \
|
||
|
} while (false)
|
||
|
|
||
|
|
||
|
#define CHECK_BAILOUT \
|
||
|
do { \
|
||
|
if (HasStackOverflow()) return; \
|
||
|
} while (false)
|
||
|
|
||
|
|
||
|
#define VISIT_FOR_EFFECT(expr) \
|
||
|
do { \
|
||
|
VisitForEffect(expr); \
|
||
|
if (HasStackOverflow()) return; \
|
||
|
} while (false)
|
||
|
|
||
|
|
||
|
#define VISIT_FOR_VALUE(expr) \
|
||
|
do { \
|
||
|
VisitForValue(expr); \
|
||
|
if (HasStackOverflow()) return; \
|
||
|
} while (false)
|
||
|
|
||
|
|
||
|
// 'thing' could be an expression, statement, or list of statements.
|
||
|
#define ADD_TO_SUBGRAPH(graph, thing) \
|
||
|
do { \
|
||
|
AddToSubgraph(graph, thing); \
|
||
|
if (HasStackOverflow()) return; \
|
||
|
} while (false)
|
||
|
|
||
|
|
||
|
class HGraphBuilder::SubgraphScope BASE_EMBEDDED {
|
||
|
public:
|
||
|
SubgraphScope(HGraphBuilder* builder, HSubgraph* new_subgraph)
|
||
|
: builder_(builder) {
|
||
|
old_subgraph_ = builder_->current_subgraph_;
|
||
|
subgraph_ = new_subgraph;
|
||
|
builder_->current_subgraph_ = subgraph_;
|
||
|
}
|
||
|
|
||
|
~SubgraphScope() {
|
||
|
old_subgraph_->AddBreakContinueInfo(subgraph_);
|
||
|
builder_->current_subgraph_ = old_subgraph_;
|
||
|
}
|
||
|
|
||
|
HSubgraph* subgraph() const { return subgraph_; }
|
||
|
|
||
|
private:
|
||
|
HGraphBuilder* builder_;
|
||
|
HSubgraph* old_subgraph_;
|
||
|
HSubgraph* subgraph_;
|
||
|
};
|
||
|
|
||
|
|
||
|
void HGraphBuilder::Bailout(const char* reason) {
|
||
|
if (FLAG_trace_bailout) {
|
||
|
SmartPointer<char> debug_name = graph()->debug_name()->ToCString();
|
||
|
PrintF("Bailout in HGraphBuilder: @\"%s\": %s\n", *debug_name, reason);
|
||
|
}
|
||
|
SetStackOverflow();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitForEffect(Expression* expr) {
|
||
|
#ifdef DEBUG
|
||
|
int original_count = environment()->total_count();
|
||
|
#endif
|
||
|
BinaryOperation* binary_op = expr->AsBinaryOperation();
|
||
|
|
||
|
// We use special casing for expression types not handled properly by our
|
||
|
// usual trick of pretending they're in a value context and cleaning up
|
||
|
// later.
|
||
|
if (binary_op != NULL && binary_op->op() == Token::COMMA) {
|
||
|
VISIT_FOR_EFFECT(binary_op->left());
|
||
|
VISIT_FOR_EFFECT(binary_op->right());
|
||
|
} else {
|
||
|
{ EffectContext for_effect(this);
|
||
|
Visit(expr);
|
||
|
}
|
||
|
if (HasStackOverflow() || !subgraph()->HasExit()) return;
|
||
|
// Discard return value.
|
||
|
Pop();
|
||
|
// TODO(kasperl): Try to improve the way we compute the last added
|
||
|
// instruction. The NULL check makes me uncomfortable.
|
||
|
HValue* last = subgraph()->exit_block()->GetLastInstruction();
|
||
|
// We need to ensure we emit a simulate after inlined functions in an
|
||
|
// effect context, to avoid having a bailout target the fictional
|
||
|
// environment with the return value on top.
|
||
|
if ((last != NULL && last->HasSideEffects()) ||
|
||
|
subgraph()->exit_block()->IsInlineReturnTarget()) {
|
||
|
AddSimulate(expr->id());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ASSERT(environment()->total_count() == original_count);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitForValue(Expression* expr) {
|
||
|
#ifdef DEBUG
|
||
|
int original_height = environment()->values()->length();
|
||
|
#endif
|
||
|
{ ValueContext for_value(this);
|
||
|
Visit(expr);
|
||
|
}
|
||
|
if (HasStackOverflow() || !subgraph()->HasExit()) return;
|
||
|
// TODO(kasperl): Try to improve the way we compute the last added
|
||
|
// instruction. The NULL check makes me uncomfortable.
|
||
|
HValue* last = subgraph()->exit_block()->GetLastInstruction();
|
||
|
if (last != NULL && last->HasSideEffects()) {
|
||
|
AddSimulate(expr->id());
|
||
|
}
|
||
|
ASSERT(environment()->values()->length() == original_height + 1);
|
||
|
}
|
||
|
|
||
|
|
||
|
HValue* HGraphBuilder::VisitArgument(Expression* expr) {
|
||
|
VisitForValue(expr);
|
||
|
if (HasStackOverflow() || !subgraph()->HasExit()) return NULL;
|
||
|
return environment()->Top();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitArgumentList(ZoneList<Expression*>* arguments) {
|
||
|
for (int i = 0; i < arguments->length(); i++) {
|
||
|
VisitArgument(arguments->at(i));
|
||
|
if (HasStackOverflow() || !current_subgraph_->HasExit()) return;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HGraph* HGraphBuilder::CreateGraph(CompilationInfo* info) {
|
||
|
ASSERT(current_subgraph_ == NULL);
|
||
|
graph_ = new HGraph(info);
|
||
|
|
||
|
{
|
||
|
HPhase phase("Block building");
|
||
|
graph_->Initialize(CreateBasicBlock(graph_->start_environment()));
|
||
|
current_subgraph_ = graph_;
|
||
|
|
||
|
Scope* scope = info->scope();
|
||
|
SetupScope(scope);
|
||
|
VisitDeclarations(scope->declarations());
|
||
|
|
||
|
AddInstruction(new HStackCheck());
|
||
|
|
||
|
ZoneList<Statement*>* stmts = info->function()->body();
|
||
|
HSubgraph* body = CreateGotoSubgraph(environment());
|
||
|
AddToSubgraph(body, stmts);
|
||
|
if (HasStackOverflow()) return NULL;
|
||
|
current_subgraph_->Append(body, NULL);
|
||
|
body->entry_block()->SetJoinId(info->function()->id());
|
||
|
|
||
|
if (graph_->HasExit()) {
|
||
|
graph_->FinishExit(new HReturn(graph_->GetConstantUndefined()));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
graph_->OrderBlocks();
|
||
|
graph_->AssignDominators();
|
||
|
graph_->EliminateRedundantPhis();
|
||
|
if (!graph_->CollectPhis()) {
|
||
|
Bailout("Phi-use of arguments object");
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
HInferRepresentation rep(graph_);
|
||
|
rep.Analyze();
|
||
|
|
||
|
if (FLAG_use_range) {
|
||
|
HRangeAnalysis rangeAnalysis(graph_);
|
||
|
rangeAnalysis.Analyze();
|
||
|
}
|
||
|
|
||
|
graph_->InitializeInferredTypes();
|
||
|
graph_->Canonicalize();
|
||
|
graph_->InsertRepresentationChanges();
|
||
|
|
||
|
// Eliminate redundant stack checks on backwards branches.
|
||
|
HStackCheckEliminator sce(graph_);
|
||
|
sce.Process();
|
||
|
|
||
|
// Perform common subexpression elimination and loop-invariant code motion.
|
||
|
if (FLAG_use_gvn) {
|
||
|
HPhase phase("Global value numbering", graph_);
|
||
|
HGlobalValueNumberer gvn(graph_);
|
||
|
gvn.Analyze();
|
||
|
}
|
||
|
|
||
|
return graph_;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AddToSubgraph(HSubgraph* graph, Statement* stmt) {
|
||
|
SubgraphScope scope(this, graph);
|
||
|
Visit(stmt);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AddToSubgraph(HSubgraph* graph, Expression* expr) {
|
||
|
SubgraphScope scope(this, graph);
|
||
|
VisitForValue(expr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCondition(Expression* expr,
|
||
|
HBasicBlock* true_block,
|
||
|
HBasicBlock* false_block,
|
||
|
bool invert_true,
|
||
|
bool invert_false) {
|
||
|
VisitForControl(expr, true_block, false_block, invert_true, invert_false);
|
||
|
CHECK_BAILOUT;
|
||
|
#ifdef DEBUG
|
||
|
HValue* value = true_block->predecessors()->at(0)->last_environment()->Top();
|
||
|
true_block->set_cond(HConstant::cast(value)->handle());
|
||
|
|
||
|
value = false_block->predecessors()->at(0)->last_environment()->Top();
|
||
|
false_block->set_cond(HConstant::cast(value)->handle());
|
||
|
#endif
|
||
|
|
||
|
true_block->SetJoinId(expr->id());
|
||
|
false_block->SetJoinId(expr->id());
|
||
|
true_block->last_environment()->Pop();
|
||
|
false_block->last_environment()->Pop();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AddConditionToSubgraph(HSubgraph* subgraph,
|
||
|
Expression* expr,
|
||
|
HSubgraph* true_graph,
|
||
|
HSubgraph* false_graph) {
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
VisitCondition(expr,
|
||
|
true_graph->entry_block(),
|
||
|
false_graph->entry_block(),
|
||
|
false,
|
||
|
false);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitForControl(Expression* expr,
|
||
|
HBasicBlock* true_block,
|
||
|
HBasicBlock* false_block,
|
||
|
bool invert_true,
|
||
|
bool invert_false) {
|
||
|
TestContext for_test(this, true_block, false_block,
|
||
|
invert_true, invert_false);
|
||
|
BinaryOperation* binary_op = expr->AsBinaryOperation();
|
||
|
UnaryOperation* unary_op = expr->AsUnaryOperation();
|
||
|
|
||
|
if (unary_op != NULL && unary_op->op() == Token::NOT) {
|
||
|
VisitForControl(unary_op->expression(),
|
||
|
false_block,
|
||
|
true_block,
|
||
|
!invert_false,
|
||
|
!invert_true);
|
||
|
} else if (binary_op != NULL && binary_op->op() == Token::AND) {
|
||
|
// Translate left subexpression.
|
||
|
HBasicBlock* eval_right = graph()->CreateBasicBlock();
|
||
|
VisitForControl(binary_op->left(),
|
||
|
eval_right,
|
||
|
false_block,
|
||
|
false,
|
||
|
invert_false);
|
||
|
if (HasStackOverflow()) return;
|
||
|
eval_right->SetJoinId(binary_op->left()->id());
|
||
|
|
||
|
// Translate right subexpression.
|
||
|
eval_right->last_environment()->Pop();
|
||
|
subgraph()->set_exit_block(eval_right);
|
||
|
VisitForControl(binary_op->right(),
|
||
|
true_block,
|
||
|
false_block,
|
||
|
invert_true,
|
||
|
invert_false);
|
||
|
} else if (binary_op != NULL && binary_op->op() == Token::OR) {
|
||
|
// Translate left subexpression.
|
||
|
HBasicBlock* eval_right = graph()->CreateBasicBlock();
|
||
|
VisitForControl(binary_op->left(),
|
||
|
true_block,
|
||
|
eval_right,
|
||
|
invert_true,
|
||
|
false);
|
||
|
if (HasStackOverflow()) return;
|
||
|
eval_right->SetJoinId(binary_op->left()->id());
|
||
|
|
||
|
// Translate right subexpression
|
||
|
eval_right->last_environment()->Pop();
|
||
|
subgraph()->set_exit_block(eval_right);
|
||
|
VisitForControl(binary_op->right(),
|
||
|
true_block,
|
||
|
false_block,
|
||
|
invert_true,
|
||
|
invert_false);
|
||
|
} else {
|
||
|
#ifdef DEBUG
|
||
|
int original_length = environment()->values()->length();
|
||
|
#endif
|
||
|
// TODO(kmillikin): Refactor to avoid. This code is duplicated from
|
||
|
// VisitForValue, except without pushing a value context on the
|
||
|
// expression context stack.
|
||
|
Visit(expr);
|
||
|
if (HasStackOverflow() || !subgraph()->HasExit()) return;
|
||
|
HValue* last = subgraph()->exit_block()->GetLastInstruction();
|
||
|
if (last != NULL && last->HasSideEffects()) {
|
||
|
AddSimulate(expr->id());
|
||
|
}
|
||
|
ASSERT(environment()->values()->length() == original_length + 1);
|
||
|
HValue* value = Pop();
|
||
|
HBasicBlock* materialize_true = graph()->CreateBasicBlock();
|
||
|
HBasicBlock* materialize_false = graph()->CreateBasicBlock();
|
||
|
CurrentBlock()->Finish(new HBranch(materialize_true,
|
||
|
materialize_false,
|
||
|
value));
|
||
|
HValue* true_value = invert_true
|
||
|
? graph()->GetConstantFalse()
|
||
|
: graph()->GetConstantTrue();
|
||
|
materialize_true->set_inverted(invert_true);
|
||
|
true_block->set_deopt_predecessor(materialize_true);
|
||
|
|
||
|
if (true_block->IsInlineReturnTarget()) {
|
||
|
materialize_true->AddLeaveInlined(true_value, true_block);
|
||
|
} else {
|
||
|
materialize_true->last_environment()->Push(true_value);
|
||
|
materialize_true->Goto(true_block);
|
||
|
}
|
||
|
HValue* false_value = invert_false
|
||
|
? graph()->GetConstantTrue()
|
||
|
: graph()->GetConstantFalse();
|
||
|
materialize_false->set_inverted(invert_false);
|
||
|
false_block->set_deopt_predecessor(materialize_false);
|
||
|
|
||
|
if (false_block->IsInlineReturnTarget()) {
|
||
|
materialize_false->AddLeaveInlined(false_value, false_block);
|
||
|
} else {
|
||
|
materialize_false->last_environment()->Push(false_value);
|
||
|
materialize_false->Goto(false_block);
|
||
|
}
|
||
|
subgraph()->set_exit_block(NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AddToSubgraph(HSubgraph* graph,
|
||
|
ZoneList<Statement*>* stmts) {
|
||
|
SubgraphScope scope(this, graph);
|
||
|
VisitStatements(stmts);
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
|
||
|
ASSERT(current_subgraph_->HasExit());
|
||
|
current_subgraph_->exit_block()->AddInstruction(instr);
|
||
|
return instr;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AddSimulate(int id) {
|
||
|
ASSERT(current_subgraph_->HasExit());
|
||
|
current_subgraph_->exit_block()->AddSimulate(id);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AddPhi(HPhi* instr) {
|
||
|
ASSERT(current_subgraph_->HasExit());
|
||
|
current_subgraph_->exit_block()->AddPhi(instr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::PushAndAdd(HInstruction* instr) {
|
||
|
Push(instr);
|
||
|
AddInstruction(instr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::PushAndAdd(HInstruction* instr, int position) {
|
||
|
instr->set_position(position);
|
||
|
PushAndAdd(instr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::PushArgumentsForStubCall(int argument_count) {
|
||
|
const int kMaxStubArguments = 4;
|
||
|
ASSERT_GE(kMaxStubArguments, argument_count);
|
||
|
// Push the arguments on the stack.
|
||
|
HValue* arguments[kMaxStubArguments];
|
||
|
for (int i = argument_count - 1; i >= 0; i--) {
|
||
|
arguments[i] = Pop();
|
||
|
}
|
||
|
for (int i = 0; i < argument_count; i++) {
|
||
|
AddInstruction(new HPushArgument(arguments[i]));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::ProcessCall(HCall* call, int source_position) {
|
||
|
for (int i = call->argument_count() - 1; i >= 0; --i) {
|
||
|
HValue* value = Pop();
|
||
|
HPushArgument* push = new HPushArgument(value);
|
||
|
call->SetArgumentAt(i, push);
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < call->argument_count(); ++i) {
|
||
|
AddInstruction(call->PushArgumentAt(i));
|
||
|
}
|
||
|
|
||
|
PushAndAdd(call, source_position);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::SetupScope(Scope* scope) {
|
||
|
// We don't yet handle the function name for named function expressions.
|
||
|
if (scope->function() != NULL) BAILOUT("named function expression");
|
||
|
|
||
|
// We can't handle heap-allocated locals.
|
||
|
if (scope->num_heap_slots() > 0) BAILOUT("heap allocated locals");
|
||
|
|
||
|
HConstant* undefined_constant =
|
||
|
new HConstant(Factory::undefined_value(), Representation::Tagged());
|
||
|
AddInstruction(undefined_constant);
|
||
|
graph_->set_undefined_constant(undefined_constant);
|
||
|
|
||
|
// Set the initial values of parameters including "this". "This" has
|
||
|
// parameter index 0.
|
||
|
int count = scope->num_parameters() + 1;
|
||
|
for (int i = 0; i < count; ++i) {
|
||
|
HInstruction* parameter = AddInstruction(new HParameter(i));
|
||
|
environment()->Bind(i, parameter);
|
||
|
}
|
||
|
|
||
|
// Set the initial values of stack-allocated locals.
|
||
|
for (int i = count; i < environment()->values()->length(); ++i) {
|
||
|
environment()->Bind(i, undefined_constant);
|
||
|
}
|
||
|
|
||
|
// Handle the arguments and arguments shadow variables specially (they do
|
||
|
// not have declarations).
|
||
|
if (scope->arguments() != NULL) {
|
||
|
HArgumentsObject* object = new HArgumentsObject;
|
||
|
AddInstruction(object);
|
||
|
graph()->SetArgumentsObject(object);
|
||
|
environment()->Bind(scope->arguments(), object);
|
||
|
environment()->Bind(scope->arguments_shadow(), object);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
|
||
|
for (int i = 0; i < statements->length(); i++) {
|
||
|
Visit(statements->at(i));
|
||
|
if (HasStackOverflow() || !current_subgraph_->HasExit()) break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
|
||
|
HBasicBlock* b = graph()->CreateBasicBlock();
|
||
|
b->SetInitialEnvironment(env);
|
||
|
return b;
|
||
|
}
|
||
|
|
||
|
|
||
|
HSubgraph* HGraphBuilder::CreateInlinedSubgraph(HEnvironment* outer,
|
||
|
Handle<JSFunction> target,
|
||
|
FunctionLiteral* function) {
|
||
|
HConstant* undefined = graph()->GetConstantUndefined();
|
||
|
HEnvironment* inner =
|
||
|
outer->CopyForInlining(target, function, true, undefined);
|
||
|
HSubgraph* subgraph = new HSubgraph(graph());
|
||
|
subgraph->Initialize(CreateBasicBlock(inner));
|
||
|
return subgraph;
|
||
|
}
|
||
|
|
||
|
|
||
|
HSubgraph* HGraphBuilder::CreateGotoSubgraph(HEnvironment* env) {
|
||
|
HSubgraph* subgraph = new HSubgraph(graph());
|
||
|
HEnvironment* new_env = env->CopyWithoutHistory();
|
||
|
subgraph->Initialize(CreateBasicBlock(new_env));
|
||
|
return subgraph;
|
||
|
}
|
||
|
|
||
|
|
||
|
HSubgraph* HGraphBuilder::CreateEmptySubgraph() {
|
||
|
HSubgraph* subgraph = new HSubgraph(graph());
|
||
|
subgraph->Initialize(graph()->CreateBasicBlock());
|
||
|
return subgraph;
|
||
|
}
|
||
|
|
||
|
|
||
|
HSubgraph* HGraphBuilder::CreateBranchSubgraph(HEnvironment* env) {
|
||
|
HSubgraph* subgraph = new HSubgraph(graph());
|
||
|
HEnvironment* new_env = env->Copy();
|
||
|
subgraph->Initialize(CreateBasicBlock(new_env));
|
||
|
return subgraph;
|
||
|
}
|
||
|
|
||
|
|
||
|
HSubgraph* HGraphBuilder::CreateLoopHeaderSubgraph(HEnvironment* env) {
|
||
|
HSubgraph* subgraph = new HSubgraph(graph());
|
||
|
HBasicBlock* block = graph()->CreateBasicBlock();
|
||
|
HEnvironment* new_env = env->CopyAsLoopHeader(block);
|
||
|
block->SetInitialEnvironment(new_env);
|
||
|
subgraph->Initialize(block);
|
||
|
subgraph->entry_block()->AttachLoopInformation();
|
||
|
return subgraph;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitBlock(Block* stmt) {
|
||
|
if (stmt->labels() != NULL) {
|
||
|
HSubgraph* block_graph = CreateGotoSubgraph(environment());
|
||
|
ADD_TO_SUBGRAPH(block_graph, stmt->statements());
|
||
|
current_subgraph_->Append(block_graph, stmt);
|
||
|
} else {
|
||
|
VisitStatements(stmt->statements());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
|
||
|
VisitForEffect(stmt->expression());
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitIfStatement(IfStatement* stmt) {
|
||
|
if (stmt->condition()->ToBooleanIsTrue()) {
|
||
|
Visit(stmt->then_statement());
|
||
|
} else if (stmt->condition()->ToBooleanIsFalse()) {
|
||
|
Visit(stmt->else_statement());
|
||
|
} else {
|
||
|
HSubgraph* then_graph = CreateEmptySubgraph();
|
||
|
HSubgraph* else_graph = CreateEmptySubgraph();
|
||
|
VisitCondition(stmt->condition(),
|
||
|
then_graph->entry_block(),
|
||
|
else_graph->entry_block(),
|
||
|
false, false);
|
||
|
if (HasStackOverflow()) return;
|
||
|
ADD_TO_SUBGRAPH(then_graph, stmt->then_statement());
|
||
|
ADD_TO_SUBGRAPH(else_graph, stmt->else_statement());
|
||
|
current_subgraph_->AppendJoin(then_graph, else_graph, stmt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
|
||
|
current_subgraph_->FinishBreakContinue(stmt->target(), true);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
|
||
|
current_subgraph_->FinishBreakContinue(stmt->target(), false);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
|
||
|
AstContext* context = call_context();
|
||
|
if (context == NULL) {
|
||
|
// Not an inlined return, so an actual one.
|
||
|
VISIT_FOR_VALUE(stmt->expression());
|
||
|
HValue* result = environment()->Pop();
|
||
|
subgraph()->FinishExit(new HReturn(result));
|
||
|
} else {
|
||
|
// Return from an inlined function, visit the subexpression in the
|
||
|
// expression context of the call.
|
||
|
if (context->IsTest()) {
|
||
|
TestContext* test = TestContext::cast(context);
|
||
|
VisitForControl(stmt->expression(),
|
||
|
test->if_true(),
|
||
|
test->if_false(),
|
||
|
false,
|
||
|
false);
|
||
|
} else {
|
||
|
HValue* return_value = NULL;
|
||
|
if (context->IsEffect()) {
|
||
|
VISIT_FOR_EFFECT(stmt->expression());
|
||
|
return_value = graph()->GetConstantUndefined();
|
||
|
} else {
|
||
|
ASSERT(context->IsValue());
|
||
|
VISIT_FOR_VALUE(stmt->expression());
|
||
|
return_value = environment()->Pop();
|
||
|
}
|
||
|
subgraph()->exit_block()->AddLeaveInlined(return_value,
|
||
|
function_return_);
|
||
|
subgraph()->set_exit_block(NULL);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
|
||
|
BAILOUT("WithEnterStatement");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
|
||
|
BAILOUT("WithExitStatement");
|
||
|
}
|
||
|
|
||
|
|
||
|
HCompare* HGraphBuilder::BuildSwitchCompare(HSubgraph* subgraph,
|
||
|
HValue* switch_value,
|
||
|
CaseClause* clause) {
|
||
|
AddToSubgraph(subgraph, clause->label());
|
||
|
if (HasStackOverflow()) return NULL;
|
||
|
HValue* clause_value = subgraph->environment()->Pop();
|
||
|
HCompare* compare = new HCompare(switch_value,
|
||
|
clause_value,
|
||
|
Token::EQ_STRICT);
|
||
|
compare->SetInputRepresentation(Representation::Integer32());
|
||
|
subgraph->exit_block()->AddInstruction(compare);
|
||
|
return compare;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
|
||
|
VISIT_FOR_VALUE(stmt->tag());
|
||
|
HValue* switch_value = Pop();
|
||
|
|
||
|
ZoneList<CaseClause*>* clauses = stmt->cases();
|
||
|
int num_clauses = clauses->length();
|
||
|
if (num_clauses == 0) return;
|
||
|
if (num_clauses > 128) BAILOUT("SwitchStatement: too many clauses");
|
||
|
|
||
|
for (int i = 0; i < num_clauses; i++) {
|
||
|
CaseClause* clause = clauses->at(i);
|
||
|
if (clause->is_default()) continue;
|
||
|
clause->RecordTypeFeedback(oracle());
|
||
|
if (!clause->IsSmiCompare()) BAILOUT("SwitchStatement: non-smi compare");
|
||
|
if (!clause->label()->IsSmiLiteral()) {
|
||
|
BAILOUT("SwitchStatement: non-literal switch label");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The single exit block of the whole switch statement.
|
||
|
HBasicBlock* single_exit_block = graph_->CreateBasicBlock();
|
||
|
|
||
|
// Build a series of empty subgraphs for the comparisons.
|
||
|
// The default clause does not have a comparison subgraph.
|
||
|
ZoneList<HSubgraph*> compare_graphs(num_clauses);
|
||
|
for (int i = 0; i < num_clauses; i++) {
|
||
|
HSubgraph* subgraph = !clauses->at(i)->is_default()
|
||
|
? CreateEmptySubgraph()
|
||
|
: NULL;
|
||
|
compare_graphs.Add(subgraph);
|
||
|
}
|
||
|
|
||
|
HSubgraph* prev_graph = current_subgraph_;
|
||
|
HCompare* prev_compare_inst = NULL;
|
||
|
for (int i = 0; i < num_clauses; i++) {
|
||
|
CaseClause* clause = clauses->at(i);
|
||
|
if (clause->is_default()) continue;
|
||
|
|
||
|
// Finish the previous graph by connecting it to the current.
|
||
|
HSubgraph* subgraph = compare_graphs.at(i);
|
||
|
if (prev_compare_inst == NULL) {
|
||
|
ASSERT(prev_graph == current_subgraph_);
|
||
|
prev_graph->exit_block()->Finish(new HGoto(subgraph->entry_block()));
|
||
|
} else {
|
||
|
HBasicBlock* empty = graph()->CreateBasicBlock();
|
||
|
prev_graph->exit_block()->Finish(new HBranch(empty,
|
||
|
subgraph->entry_block(),
|
||
|
prev_compare_inst));
|
||
|
}
|
||
|
|
||
|
// Build instructions for current subgraph.
|
||
|
prev_compare_inst = BuildSwitchCompare(subgraph, switch_value, clause);
|
||
|
if (HasStackOverflow()) return;
|
||
|
|
||
|
prev_graph = subgraph;
|
||
|
}
|
||
|
|
||
|
// Finish last comparison if there was at least one comparison.
|
||
|
// last_false_block is the (empty) false-block of the last comparison. If
|
||
|
// there are no comparisons at all (a single default clause), it is just
|
||
|
// the last block of the current subgraph.
|
||
|
HBasicBlock* last_false_block = current_subgraph_->exit_block();
|
||
|
if (prev_graph != current_subgraph_) {
|
||
|
last_false_block = graph()->CreateBasicBlock();
|
||
|
HBasicBlock* empty = graph()->CreateBasicBlock();
|
||
|
prev_graph->exit_block()->Finish(new HBranch(empty,
|
||
|
last_false_block,
|
||
|
prev_compare_inst));
|
||
|
}
|
||
|
|
||
|
// Build statement blocks, connect them to their comparison block and
|
||
|
// to the previous statement block, if there is a fall-through.
|
||
|
HSubgraph* previous_subgraph = NULL;
|
||
|
for (int i = 0; i < num_clauses; i++) {
|
||
|
CaseClause* clause = clauses->at(i);
|
||
|
HSubgraph* subgraph = CreateEmptySubgraph();
|
||
|
|
||
|
if (clause->is_default()) {
|
||
|
// Default clause: Connect it to the last false block.
|
||
|
last_false_block->Finish(new HGoto(subgraph->entry_block()));
|
||
|
} else {
|
||
|
// Connect with the corresponding comparison.
|
||
|
HBasicBlock* empty =
|
||
|
compare_graphs.at(i)->exit_block()->end()->FirstSuccessor();
|
||
|
empty->Finish(new HGoto(subgraph->entry_block()));
|
||
|
}
|
||
|
|
||
|
// Check for fall-through from previous statement block.
|
||
|
if (previous_subgraph != NULL && previous_subgraph->HasExit()) {
|
||
|
previous_subgraph->exit_block()->
|
||
|
Finish(new HGoto(subgraph->entry_block()));
|
||
|
}
|
||
|
|
||
|
ADD_TO_SUBGRAPH(subgraph, clause->statements());
|
||
|
HBasicBlock* break_block = subgraph->BundleBreak(stmt);
|
||
|
if (break_block != NULL) {
|
||
|
break_block->Finish(new HGoto(single_exit_block));
|
||
|
}
|
||
|
|
||
|
previous_subgraph = subgraph;
|
||
|
}
|
||
|
|
||
|
// If the last statement block has a fall-through, connect it to the
|
||
|
// single exit block.
|
||
|
if (previous_subgraph->HasExit()) {
|
||
|
previous_subgraph->exit_block()->Finish(new HGoto(single_exit_block));
|
||
|
}
|
||
|
|
||
|
// If there is no default clause finish the last comparison's false target.
|
||
|
if (!last_false_block->IsFinished()) {
|
||
|
last_false_block->Finish(new HGoto(single_exit_block));
|
||
|
}
|
||
|
|
||
|
if (single_exit_block->HasPredecessor()) {
|
||
|
current_subgraph_->set_exit_block(single_exit_block);
|
||
|
} else {
|
||
|
current_subgraph_->set_exit_block(NULL);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool HGraph::HasOsrEntryAt(IterationStatement* statement) {
|
||
|
return statement->OsrEntryId() == info()->osr_ast_id();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HSubgraph::PreProcessOsrEntry(IterationStatement* statement) {
|
||
|
if (!graph()->HasOsrEntryAt(statement)) return;
|
||
|
|
||
|
HBasicBlock* non_osr_entry = graph()->CreateBasicBlock();
|
||
|
HBasicBlock* osr_entry = graph()->CreateBasicBlock();
|
||
|
HValue* true_value = graph()->GetConstantTrue();
|
||
|
HBranch* branch = new HBranch(non_osr_entry, osr_entry, true_value);
|
||
|
exit_block()->Finish(branch);
|
||
|
|
||
|
HBasicBlock* loop_predecessor = graph()->CreateBasicBlock();
|
||
|
non_osr_entry->Goto(loop_predecessor);
|
||
|
|
||
|
int osr_entry_id = statement->OsrEntryId();
|
||
|
// We want the correct environment at the OsrEntry instruction. Build
|
||
|
// it explicitly. The expression stack should be empty.
|
||
|
int count = osr_entry->last_environment()->total_count();
|
||
|
ASSERT(count == (osr_entry->last_environment()->parameter_count() +
|
||
|
osr_entry->last_environment()->local_count()));
|
||
|
for (int i = 0; i < count; ++i) {
|
||
|
HUnknownOSRValue* unknown = new HUnknownOSRValue;
|
||
|
osr_entry->AddInstruction(unknown);
|
||
|
osr_entry->last_environment()->Bind(i, unknown);
|
||
|
}
|
||
|
|
||
|
osr_entry->AddSimulate(osr_entry_id);
|
||
|
osr_entry->AddInstruction(new HOsrEntry(osr_entry_id));
|
||
|
osr_entry->Goto(loop_predecessor);
|
||
|
loop_predecessor->SetJoinId(statement->EntryId());
|
||
|
set_exit_block(loop_predecessor);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
|
||
|
ASSERT(subgraph()->HasExit());
|
||
|
subgraph()->PreProcessOsrEntry(stmt);
|
||
|
|
||
|
HSubgraph* body_graph = CreateLoopHeaderSubgraph(environment());
|
||
|
ADD_TO_SUBGRAPH(body_graph, stmt->body());
|
||
|
body_graph->ResolveContinue(stmt);
|
||
|
|
||
|
if (!body_graph->HasExit() || stmt->cond()->ToBooleanIsTrue()) {
|
||
|
current_subgraph_->AppendEndless(body_graph, stmt);
|
||
|
} else {
|
||
|
HSubgraph* go_back = CreateEmptySubgraph();
|
||
|
HSubgraph* exit = CreateEmptySubgraph();
|
||
|
AddConditionToSubgraph(body_graph, stmt->cond(), go_back, exit);
|
||
|
if (HasStackOverflow()) return;
|
||
|
current_subgraph_->AppendDoWhile(body_graph, stmt, go_back, exit);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool HGraphBuilder::ShouldPeel(HSubgraph* cond, HSubgraph* body) {
|
||
|
return FLAG_use_peeling;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
|
||
|
ASSERT(subgraph()->HasExit());
|
||
|
subgraph()->PreProcessOsrEntry(stmt);
|
||
|
|
||
|
HSubgraph* cond_graph = NULL;
|
||
|
HSubgraph* body_graph = NULL;
|
||
|
HSubgraph* exit_graph = NULL;
|
||
|
|
||
|
// If the condition is constant true, do not generate a condition subgraph.
|
||
|
if (stmt->cond()->ToBooleanIsTrue()) {
|
||
|
body_graph = CreateLoopHeaderSubgraph(environment());
|
||
|
ADD_TO_SUBGRAPH(body_graph, stmt->body());
|
||
|
} else {
|
||
|
cond_graph = CreateLoopHeaderSubgraph(environment());
|
||
|
body_graph = CreateEmptySubgraph();
|
||
|
exit_graph = CreateEmptySubgraph();
|
||
|
AddConditionToSubgraph(cond_graph, stmt->cond(), body_graph, exit_graph);
|
||
|
if (HasStackOverflow()) return;
|
||
|
ADD_TO_SUBGRAPH(body_graph, stmt->body());
|
||
|
}
|
||
|
|
||
|
body_graph->ResolveContinue(stmt);
|
||
|
|
||
|
if (cond_graph != NULL) {
|
||
|
AppendPeeledWhile(stmt, cond_graph, body_graph, exit_graph);
|
||
|
} else {
|
||
|
// TODO(fschneider): Implement peeling for endless loops as well.
|
||
|
current_subgraph_->AppendEndless(body_graph, stmt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AppendPeeledWhile(IterationStatement* stmt,
|
||
|
HSubgraph* cond_graph,
|
||
|
HSubgraph* body_graph,
|
||
|
HSubgraph* exit_graph) {
|
||
|
HSubgraph* loop = NULL;
|
||
|
if (body_graph->HasExit() && stmt != peeled_statement_ &&
|
||
|
ShouldPeel(cond_graph, body_graph)) {
|
||
|
// Save the last peeled iteration statement to prevent infinite recursion.
|
||
|
IterationStatement* outer_peeled_statement = peeled_statement_;
|
||
|
peeled_statement_ = stmt;
|
||
|
loop = CreateGotoSubgraph(body_graph->environment());
|
||
|
ADD_TO_SUBGRAPH(loop, stmt);
|
||
|
peeled_statement_ = outer_peeled_statement;
|
||
|
}
|
||
|
current_subgraph_->AppendWhile(cond_graph, body_graph, stmt, loop,
|
||
|
exit_graph);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitForStatement(ForStatement* stmt) {
|
||
|
// Only visit the init statement in the peeled part of the loop.
|
||
|
if (stmt->init() != NULL && peeled_statement_ != stmt) {
|
||
|
Visit(stmt->init());
|
||
|
CHECK_BAILOUT;
|
||
|
}
|
||
|
ASSERT(subgraph()->HasExit());
|
||
|
subgraph()->PreProcessOsrEntry(stmt);
|
||
|
|
||
|
HSubgraph* cond_graph = NULL;
|
||
|
HSubgraph* body_graph = NULL;
|
||
|
HSubgraph* exit_graph = NULL;
|
||
|
if (stmt->cond() != NULL) {
|
||
|
cond_graph = CreateLoopHeaderSubgraph(environment());
|
||
|
body_graph = CreateEmptySubgraph();
|
||
|
exit_graph = CreateEmptySubgraph();
|
||
|
AddConditionToSubgraph(cond_graph, stmt->cond(), body_graph, exit_graph);
|
||
|
if (HasStackOverflow()) return;
|
||
|
ADD_TO_SUBGRAPH(body_graph, stmt->body());
|
||
|
} else {
|
||
|
body_graph = CreateLoopHeaderSubgraph(environment());
|
||
|
ADD_TO_SUBGRAPH(body_graph, stmt->body());
|
||
|
}
|
||
|
|
||
|
HSubgraph* next_graph = NULL;
|
||
|
body_graph->ResolveContinue(stmt);
|
||
|
|
||
|
if (stmt->next() != NULL && body_graph->HasExit()) {
|
||
|
next_graph = CreateGotoSubgraph(body_graph->environment());
|
||
|
ADD_TO_SUBGRAPH(next_graph, stmt->next());
|
||
|
body_graph->Append(next_graph, NULL);
|
||
|
next_graph->entry_block()->SetJoinId(stmt->ContinueId());
|
||
|
}
|
||
|
|
||
|
if (cond_graph != NULL) {
|
||
|
AppendPeeledWhile(stmt, cond_graph, body_graph, exit_graph);
|
||
|
} else {
|
||
|
current_subgraph_->AppendEndless(body_graph, stmt);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
|
||
|
BAILOUT("ForInStatement");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
|
||
|
BAILOUT("TryCatchStatement");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
|
||
|
BAILOUT("TryFinallyStatement");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
|
||
|
BAILOUT("DebuggerStatement");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
|
||
|
Handle<SharedFunctionInfo> shared_info =
|
||
|
Compiler::BuildFunctionInfo(expr, graph_->info()->script());
|
||
|
CHECK_BAILOUT;
|
||
|
PushAndAdd(new HFunctionLiteral(shared_info, expr->pretenure()));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitSharedFunctionInfoLiteral(
|
||
|
SharedFunctionInfoLiteral* expr) {
|
||
|
BAILOUT("SharedFunctionInfoLiteral");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitConditional(Conditional* expr) {
|
||
|
HSubgraph* then_graph = CreateEmptySubgraph();
|
||
|
HSubgraph* else_graph = CreateEmptySubgraph();
|
||
|
VisitCondition(expr->condition(),
|
||
|
then_graph->entry_block(),
|
||
|
else_graph->entry_block(),
|
||
|
false, false);
|
||
|
if (HasStackOverflow()) return;
|
||
|
ADD_TO_SUBGRAPH(then_graph, expr->then_expression());
|
||
|
ADD_TO_SUBGRAPH(else_graph, expr->else_expression());
|
||
|
current_subgraph_->AppendJoin(then_graph, else_graph, expr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::LookupGlobalPropertyCell(VariableProxy* expr,
|
||
|
LookupResult* lookup,
|
||
|
bool is_store) {
|
||
|
if (expr->is_this()) {
|
||
|
BAILOUT("global this reference");
|
||
|
}
|
||
|
if (!graph()->info()->has_global_object()) {
|
||
|
BAILOUT("no global object to optimize VariableProxy");
|
||
|
}
|
||
|
Handle<GlobalObject> global(graph()->info()->global_object());
|
||
|
global->Lookup(*expr->name(), lookup);
|
||
|
if (!lookup->IsProperty()) {
|
||
|
BAILOUT("global variable cell not yet introduced");
|
||
|
}
|
||
|
if (lookup->type() != NORMAL) {
|
||
|
BAILOUT("global variable has accessors");
|
||
|
}
|
||
|
if (is_store && lookup->IsReadOnly()) {
|
||
|
BAILOUT("read-only global variable");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::HandleGlobalVariableLoad(VariableProxy* expr) {
|
||
|
LookupResult lookup;
|
||
|
LookupGlobalPropertyCell(expr, &lookup, false);
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
Handle<GlobalObject> global(graph()->info()->global_object());
|
||
|
// TODO(3039103): Handle global property load through an IC call when access
|
||
|
// checks are enabled.
|
||
|
if (global->IsAccessCheckNeeded()) {
|
||
|
BAILOUT("global object requires access check");
|
||
|
}
|
||
|
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
|
||
|
bool check_hole = !lookup.IsDontDelete() || lookup.IsReadOnly();
|
||
|
PushAndAdd(new HLoadGlobal(cell, check_hole));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
|
||
|
Variable* variable = expr->AsVariable();
|
||
|
if (variable == NULL) {
|
||
|
BAILOUT("reference to rewritten variable");
|
||
|
} else if (variable->IsStackAllocated()) {
|
||
|
if (environment()->Lookup(variable)->CheckFlag(HValue::kIsArguments)) {
|
||
|
BAILOUT("unsupported context for arguments object");
|
||
|
}
|
||
|
Push(environment()->Lookup(variable));
|
||
|
} else if (variable->is_global()) {
|
||
|
HandleGlobalVariableLoad(expr);
|
||
|
} else {
|
||
|
BAILOUT("reference to non-stack-allocated/non-global variable");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitLiteral(Literal* expr) {
|
||
|
PushAndAdd(new HConstant(expr->handle(), Representation::Tagged()));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
|
||
|
PushAndAdd(new HRegExpLiteral(expr->pattern(),
|
||
|
expr->flags(),
|
||
|
expr->literal_index()));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
|
||
|
HObjectLiteral* literal = (new HObjectLiteral(expr->constant_properties(),
|
||
|
expr->fast_elements(),
|
||
|
expr->literal_index(),
|
||
|
expr->depth()));
|
||
|
PushAndAdd(literal);
|
||
|
|
||
|
expr->CalculateEmitStore();
|
||
|
|
||
|
for (int i = 0; i < expr->properties()->length(); i++) {
|
||
|
ObjectLiteral::Property* property = expr->properties()->at(i);
|
||
|
if (property->IsCompileTimeValue()) continue;
|
||
|
|
||
|
Literal* key = property->key();
|
||
|
Expression* value = property->value();
|
||
|
|
||
|
switch (property->kind()) {
|
||
|
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
|
||
|
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
|
||
|
// Fall through.
|
||
|
case ObjectLiteral::Property::COMPUTED:
|
||
|
if (key->handle()->IsSymbol()) {
|
||
|
if (property->emit_store()) {
|
||
|
VISIT_FOR_VALUE(value);
|
||
|
HValue* value = Pop();
|
||
|
Handle<String> name = Handle<String>::cast(key->handle());
|
||
|
AddInstruction(new HStoreNamedGeneric(literal, name, value));
|
||
|
AddSimulate(key->id());
|
||
|
} else {
|
||
|
VISIT_FOR_EFFECT(value);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
// Fall through.
|
||
|
case ObjectLiteral::Property::PROTOTYPE:
|
||
|
case ObjectLiteral::Property::SETTER:
|
||
|
case ObjectLiteral::Property::GETTER:
|
||
|
BAILOUT("Object literal with complex property");
|
||
|
default: UNREACHABLE();
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
|
||
|
ZoneList<Expression*>* subexprs = expr->values();
|
||
|
int length = subexprs->length();
|
||
|
|
||
|
HArrayLiteral* literal = new HArrayLiteral(expr->constant_elements(),
|
||
|
length,
|
||
|
expr->literal_index(),
|
||
|
expr->depth());
|
||
|
PushAndAdd(literal);
|
||
|
HValue* elements = AddInstruction(new HLoadElements(literal));
|
||
|
|
||
|
for (int i = 0; i < length; i++) {
|
||
|
Expression* subexpr = subexprs->at(i);
|
||
|
// If the subexpression is a literal or a simple materialized literal it
|
||
|
// is already set in the cloned array.
|
||
|
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
|
||
|
|
||
|
VISIT_FOR_VALUE(subexpr);
|
||
|
HValue* value = Pop();
|
||
|
if (!Smi::IsValid(i)) BAILOUT("Non-smi key in array literal");
|
||
|
HValue* key = AddInstruction(new HConstant(Handle<Object>(Smi::FromInt(i)),
|
||
|
Representation::Integer32()));
|
||
|
AddInstruction(new HStoreKeyedFastElement(elements, key, value));
|
||
|
AddSimulate(expr->GetIdForElement(i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
|
||
|
BAILOUT("CatchExtensionObject");
|
||
|
}
|
||
|
|
||
|
|
||
|
HBasicBlock* HGraphBuilder::BuildTypeSwitch(ZoneMapList* maps,
|
||
|
ZoneList<HSubgraph*>* subgraphs,
|
||
|
HValue* receiver,
|
||
|
int join_id) {
|
||
|
ASSERT(subgraphs->length() == (maps->length() + 1));
|
||
|
|
||
|
// Build map compare subgraphs for all but the first map.
|
||
|
ZoneList<HSubgraph*> map_compare_subgraphs(maps->length() - 1);
|
||
|
for (int i = maps->length() - 1; i > 0; --i) {
|
||
|
HSubgraph* subgraph = CreateBranchSubgraph(environment());
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
HSubgraph* else_subgraph =
|
||
|
(i == (maps->length() - 1))
|
||
|
? subgraphs->last()
|
||
|
: map_compare_subgraphs.last();
|
||
|
current_subgraph_->exit_block()->Finish(
|
||
|
new HCompareMapAndBranch(receiver,
|
||
|
maps->at(i),
|
||
|
subgraphs->at(i)->entry_block(),
|
||
|
else_subgraph->entry_block()));
|
||
|
map_compare_subgraphs.Add(subgraph);
|
||
|
}
|
||
|
|
||
|
// Generate first map check to end the current block.
|
||
|
AddInstruction(new HCheckNonSmi(receiver));
|
||
|
HSubgraph* else_subgraph =
|
||
|
(maps->length() == 1) ? subgraphs->at(1) : map_compare_subgraphs.last();
|
||
|
current_subgraph_->exit_block()->Finish(
|
||
|
new HCompareMapAndBranch(receiver,
|
||
|
Handle<Map>(maps->first()),
|
||
|
subgraphs->first()->entry_block(),
|
||
|
else_subgraph->entry_block()));
|
||
|
|
||
|
// Join all the call subgraphs in a new basic block and make
|
||
|
// this basic block the current basic block.
|
||
|
HBasicBlock* join_block = graph_->CreateBasicBlock();
|
||
|
for (int i = 0; i < subgraphs->length(); ++i) {
|
||
|
if (subgraphs->at(i)->HasExit()) {
|
||
|
subgraphs->at(i)->exit_block()->Goto(join_block);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (join_block->predecessors()->is_empty()) return NULL;
|
||
|
join_block->SetJoinId(join_id);
|
||
|
return join_block;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Sets the lookup result and returns true if the store can be inlined.
|
||
|
static bool ComputeStoredField(Handle<Map> type,
|
||
|
Handle<String> name,
|
||
|
LookupResult* lookup) {
|
||
|
type->LookupInDescriptors(NULL, *name, lookup);
|
||
|
if (!lookup->IsPropertyOrTransition()) return false;
|
||
|
if (lookup->type() == FIELD) return true;
|
||
|
return (lookup->type() == MAP_TRANSITION) &&
|
||
|
(type->unused_property_fields() > 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int ComputeStoredFieldIndex(Handle<Map> type,
|
||
|
Handle<String> name,
|
||
|
LookupResult* lookup) {
|
||
|
ASSERT(lookup->type() == FIELD || lookup->type() == MAP_TRANSITION);
|
||
|
if (lookup->type() == FIELD) {
|
||
|
return lookup->GetLocalFieldIndexFromMap(*type);
|
||
|
} else {
|
||
|
Map* transition = lookup->GetTransitionMapFromMap(*type);
|
||
|
return transition->PropertyIndexFor(*name) - type->inobject_properties();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildStoreNamedField(HValue* object,
|
||
|
Handle<String> name,
|
||
|
HValue* value,
|
||
|
Handle<Map> type,
|
||
|
LookupResult* lookup,
|
||
|
bool smi_and_map_check) {
|
||
|
if (smi_and_map_check) {
|
||
|
AddInstruction(new HCheckNonSmi(object));
|
||
|
AddInstruction(new HCheckMap(object, type));
|
||
|
}
|
||
|
|
||
|
int index = ComputeStoredFieldIndex(type, name, lookup);
|
||
|
bool is_in_object = index < 0;
|
||
|
int offset = index * kPointerSize;
|
||
|
if (index < 0) {
|
||
|
// Negative property indices are in-object properties, indexed
|
||
|
// from the end of the fixed part of the object.
|
||
|
offset += type->instance_size();
|
||
|
} else {
|
||
|
offset += FixedArray::kHeaderSize;
|
||
|
}
|
||
|
HStoreNamedField* instr =
|
||
|
new HStoreNamedField(object, name, value, is_in_object, offset);
|
||
|
if (lookup->type() == MAP_TRANSITION) {
|
||
|
Handle<Map> transition(lookup->GetTransitionMapFromMap(*type));
|
||
|
instr->set_transition(transition);
|
||
|
}
|
||
|
return instr;
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildStoreNamedGeneric(HValue* object,
|
||
|
Handle<String> name,
|
||
|
HValue* value) {
|
||
|
return new HStoreNamedGeneric(object, name, value);
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildStoreNamed(HValue* object,
|
||
|
HValue* value,
|
||
|
Expression* expr) {
|
||
|
Property* prop = (expr->AsProperty() != NULL)
|
||
|
? expr->AsProperty()
|
||
|
: expr->AsAssignment()->target()->AsProperty();
|
||
|
Literal* key = prop->key()->AsLiteral();
|
||
|
Handle<String> name = Handle<String>::cast(key->handle());
|
||
|
ASSERT(!name.is_null());
|
||
|
|
||
|
LookupResult lookup;
|
||
|
ZoneMapList* types = expr->GetReceiverTypes();
|
||
|
bool is_monomorphic = expr->IsMonomorphic() &&
|
||
|
ComputeStoredField(types->first(), name, &lookup);
|
||
|
|
||
|
return is_monomorphic
|
||
|
? BuildStoreNamedField(object, name, value, types->first(), &lookup,
|
||
|
true) // Needs smi and map check.
|
||
|
: BuildStoreNamedGeneric(object, name, value);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::HandlePolymorphicStoreNamedField(Assignment* expr,
|
||
|
HValue* object,
|
||
|
HValue* value,
|
||
|
ZoneMapList* types,
|
||
|
Handle<String> name) {
|
||
|
int number_of_types = Min(types->length(), kMaxStorePolymorphism);
|
||
|
ZoneMapList maps(number_of_types);
|
||
|
ZoneList<HSubgraph*> subgraphs(number_of_types + 1);
|
||
|
bool needs_generic = (types->length() > kMaxStorePolymorphism);
|
||
|
|
||
|
// Build subgraphs for each of the specific maps.
|
||
|
//
|
||
|
// TODO(ager): We should recognize when the prototype chains for
|
||
|
// different maps are identical. In that case we can avoid
|
||
|
// repeatedly generating the same prototype map checks.
|
||
|
for (int i = 0; i < number_of_types; ++i) {
|
||
|
Handle<Map> map = types->at(i);
|
||
|
LookupResult lookup;
|
||
|
if (ComputeStoredField(map, name, &lookup)) {
|
||
|
maps.Add(map);
|
||
|
HSubgraph* subgraph = CreateBranchSubgraph(environment());
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
HInstruction* instr =
|
||
|
BuildStoreNamedField(object, name, value, map, &lookup, false);
|
||
|
Push(value);
|
||
|
instr->set_position(expr->position());
|
||
|
AddInstruction(instr);
|
||
|
subgraphs.Add(subgraph);
|
||
|
} else {
|
||
|
needs_generic = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If none of the properties were named fields we generate a
|
||
|
// generic store.
|
||
|
if (maps.length() == 0) {
|
||
|
HInstruction* instr = new HStoreNamedGeneric(object, name, value);
|
||
|
Push(value);
|
||
|
instr->set_position(expr->position());
|
||
|
AddInstruction(instr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Build subgraph for generic store through IC.
|
||
|
{
|
||
|
HSubgraph* subgraph = CreateBranchSubgraph(environment());
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
if (!needs_generic && FLAG_deoptimize_uncommon_cases) {
|
||
|
subgraph->FinishExit(new HDeoptimize());
|
||
|
} else {
|
||
|
HInstruction* instr = new HStoreNamedGeneric(object, name, value);
|
||
|
Push(value);
|
||
|
instr->set_position(expr->position());
|
||
|
AddInstruction(instr);
|
||
|
}
|
||
|
subgraphs.Add(subgraph);
|
||
|
}
|
||
|
|
||
|
HBasicBlock* new_exit_block =
|
||
|
BuildTypeSwitch(&maps, &subgraphs, object, expr->id());
|
||
|
current_subgraph_->set_exit_block(new_exit_block);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
|
||
|
Property* prop = expr->target()->AsProperty();
|
||
|
ASSERT(prop != NULL);
|
||
|
expr->RecordTypeFeedback(oracle());
|
||
|
VISIT_FOR_VALUE(prop->obj());
|
||
|
|
||
|
HValue* value = NULL;
|
||
|
HInstruction* instr = NULL;
|
||
|
|
||
|
if (prop->key()->IsPropertyName()) {
|
||
|
// Named store.
|
||
|
VISIT_FOR_VALUE(expr->value());
|
||
|
value = Pop();
|
||
|
HValue* object = Pop();
|
||
|
|
||
|
Literal* key = prop->key()->AsLiteral();
|
||
|
Handle<String> name = Handle<String>::cast(key->handle());
|
||
|
ASSERT(!name.is_null());
|
||
|
|
||
|
ZoneMapList* types = expr->GetReceiverTypes();
|
||
|
LookupResult lookup;
|
||
|
|
||
|
if (expr->IsMonomorphic()) {
|
||
|
instr = BuildStoreNamed(object, value, expr);
|
||
|
|
||
|
} else if (types != NULL && types->length() > 1) {
|
||
|
HandlePolymorphicStoreNamedField(expr, object, value, types, name);
|
||
|
return;
|
||
|
|
||
|
} else {
|
||
|
instr = new HStoreNamedGeneric(object, name, value);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
// Keyed store.
|
||
|
VISIT_FOR_VALUE(prop->key());
|
||
|
VISIT_FOR_VALUE(expr->value());
|
||
|
value = Pop();
|
||
|
HValue* key = Pop();
|
||
|
HValue* object = Pop();
|
||
|
|
||
|
bool is_fast_elements = expr->IsMonomorphic() &&
|
||
|
expr->GetMonomorphicReceiverType()->has_fast_elements();
|
||
|
|
||
|
instr = is_fast_elements
|
||
|
? BuildStoreKeyedFastElement(object, key, value, expr)
|
||
|
: BuildStoreKeyedGeneric(object, key, value);
|
||
|
}
|
||
|
|
||
|
Push(value);
|
||
|
instr->set_position(expr->position());
|
||
|
AddInstruction(instr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::HandleGlobalVariableAssignment(VariableProxy* proxy,
|
||
|
HValue* value,
|
||
|
int position) {
|
||
|
LookupResult lookup;
|
||
|
LookupGlobalPropertyCell(proxy, &lookup, true);
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
Handle<GlobalObject> global(graph()->info()->global_object());
|
||
|
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
|
||
|
HInstruction* instr = new HStoreGlobal(value, cell);
|
||
|
instr->set_position(position);
|
||
|
AddInstruction(instr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
|
||
|
Expression* target = expr->target();
|
||
|
VariableProxy* proxy = target->AsVariableProxy();
|
||
|
Variable* var = proxy->AsVariable();
|
||
|
Property* prop = target->AsProperty();
|
||
|
ASSERT(var == NULL || prop == NULL);
|
||
|
|
||
|
// We have a second position recorded in the FullCodeGenerator to have
|
||
|
// type feedback for the binary operation.
|
||
|
BinaryOperation* operation = expr->binary_operation();
|
||
|
operation->RecordTypeFeedback(oracle());
|
||
|
|
||
|
if (var != NULL) {
|
||
|
if (!var->is_global() && !var->IsStackAllocated()) {
|
||
|
BAILOUT("non-stack/non-global in compound assignment");
|
||
|
}
|
||
|
|
||
|
VISIT_FOR_VALUE(operation);
|
||
|
|
||
|
if (var->is_global()) {
|
||
|
HandleGlobalVariableAssignment(proxy, Top(), expr->position());
|
||
|
} else {
|
||
|
Bind(var, Top());
|
||
|
}
|
||
|
} else if (prop != NULL) {
|
||
|
prop->RecordTypeFeedback(oracle());
|
||
|
|
||
|
if (prop->key()->IsPropertyName()) {
|
||
|
// Named property.
|
||
|
VISIT_FOR_VALUE(prop->obj());
|
||
|
HValue* obj = Top();
|
||
|
|
||
|
HInstruction* load = NULL;
|
||
|
if (prop->IsMonomorphic()) {
|
||
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
||
|
Handle<Map> map = prop->GetReceiverTypes()->first();
|
||
|
load = BuildLoadNamed(obj, prop, map, name);
|
||
|
} else {
|
||
|
load = BuildLoadNamedGeneric(obj, prop);
|
||
|
}
|
||
|
PushAndAdd(load);
|
||
|
if (load->HasSideEffects()) {
|
||
|
AddSimulate(expr->compound_bailout_id());
|
||
|
}
|
||
|
|
||
|
VISIT_FOR_VALUE(expr->value());
|
||
|
HValue* right = Pop();
|
||
|
HValue* left = Pop();
|
||
|
|
||
|
HInstruction* instr = BuildBinaryOperation(operation, left, right);
|
||
|
PushAndAdd(instr);
|
||
|
if (instr->HasSideEffects()) AddSimulate(operation->id());
|
||
|
|
||
|
HInstruction* store = BuildStoreNamed(obj, instr, prop);
|
||
|
AddInstruction(store);
|
||
|
|
||
|
// Drop the simulated receiver and value and put back the value.
|
||
|
Drop(2);
|
||
|
Push(instr);
|
||
|
|
||
|
} else {
|
||
|
// Keyed property.
|
||
|
VISIT_FOR_VALUE(prop->obj());
|
||
|
VISIT_FOR_VALUE(prop->key());
|
||
|
HValue* obj = environment()->ExpressionStackAt(1);
|
||
|
HValue* key = environment()->ExpressionStackAt(0);
|
||
|
|
||
|
bool is_fast_elements = prop->IsMonomorphic() &&
|
||
|
prop->GetMonomorphicReceiverType()->has_fast_elements();
|
||
|
|
||
|
HInstruction* load = is_fast_elements
|
||
|
? BuildLoadKeyedFastElement(obj, key, prop)
|
||
|
: BuildLoadKeyedGeneric(obj, key);
|
||
|
PushAndAdd(load);
|
||
|
if (load->HasSideEffects()) {
|
||
|
AddSimulate(expr->compound_bailout_id());
|
||
|
}
|
||
|
|
||
|
VISIT_FOR_VALUE(expr->value());
|
||
|
HValue* right = Pop();
|
||
|
HValue* left = Pop();
|
||
|
|
||
|
HInstruction* instr = BuildBinaryOperation(operation, left, right);
|
||
|
PushAndAdd(instr);
|
||
|
if (instr->HasSideEffects()) AddSimulate(operation->id());
|
||
|
|
||
|
HInstruction* store = is_fast_elements
|
||
|
? BuildStoreKeyedFastElement(obj, key, instr, prop)
|
||
|
: BuildStoreKeyedGeneric(obj, key, instr);
|
||
|
AddInstruction(store);
|
||
|
|
||
|
// Drop the simulated receiver, key and value and put back the value.
|
||
|
Drop(3);
|
||
|
Push(instr);
|
||
|
}
|
||
|
} else {
|
||
|
BAILOUT("invalid lhs in compound assignment");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitAssignment(Assignment* expr) {
|
||
|
VariableProxy* proxy = expr->target()->AsVariableProxy();
|
||
|
Variable* var = proxy->AsVariable();
|
||
|
Property* prop = expr->target()->AsProperty();
|
||
|
ASSERT(var == NULL || prop == NULL);
|
||
|
|
||
|
if (expr->is_compound()) {
|
||
|
HandleCompoundAssignment(expr);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (var != NULL) {
|
||
|
if (proxy->IsArguments()) BAILOUT("assignment to arguments");
|
||
|
if (var->is_global()) {
|
||
|
VISIT_FOR_VALUE(expr->value());
|
||
|
HandleGlobalVariableAssignment(proxy, Top(), expr->position());
|
||
|
} else {
|
||
|
// We allow reference to the arguments object only in assignemtns
|
||
|
// to local variables to make sure that the arguments object does
|
||
|
// not escape and is not modified.
|
||
|
VariableProxy* rhs = expr->value()->AsVariableProxy();
|
||
|
if (rhs != NULL &&
|
||
|
rhs->var()->IsStackAllocated() &&
|
||
|
environment()->Lookup(rhs->var())->CheckFlag(HValue::kIsArguments)) {
|
||
|
Push(environment()->Lookup(rhs->var()));
|
||
|
} else {
|
||
|
VISIT_FOR_VALUE(expr->value());
|
||
|
}
|
||
|
|
||
|
Bind(proxy->var(), Top());
|
||
|
}
|
||
|
} else if (prop != NULL) {
|
||
|
HandlePropertyAssignment(expr);
|
||
|
} else {
|
||
|
BAILOUT("unsupported invalid lhs");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitThrow(Throw* expr) {
|
||
|
VISIT_FOR_VALUE(expr->exception());
|
||
|
|
||
|
HValue* value = environment()->Pop();
|
||
|
HControlInstruction* instr = new HThrow(value);
|
||
|
instr->set_position(expr->position());
|
||
|
current_subgraph_->FinishExit(instr);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::HandlePolymorphicLoadNamedField(Property* expr,
|
||
|
HValue* object,
|
||
|
ZoneMapList* types,
|
||
|
Handle<String> name) {
|
||
|
int number_of_types = Min(types->length(), kMaxLoadPolymorphism);
|
||
|
ZoneMapList maps(number_of_types);
|
||
|
ZoneList<HSubgraph*> subgraphs(number_of_types + 1);
|
||
|
bool needs_generic = (types->length() > kMaxLoadPolymorphism);
|
||
|
|
||
|
// Build subgraphs for each of the specific maps.
|
||
|
//
|
||
|
// TODO(ager): We should recognize when the prototype chains for
|
||
|
// different maps are identical. In that case we can avoid
|
||
|
// repeatedly generating the same prototype map checks.
|
||
|
for (int i = 0; i < number_of_types; ++i) {
|
||
|
Handle<Map> map = types->at(i);
|
||
|
LookupResult lookup;
|
||
|
map->LookupInDescriptors(NULL, *name, &lookup);
|
||
|
if (lookup.IsProperty() && lookup.type() == FIELD) {
|
||
|
maps.Add(map);
|
||
|
HSubgraph* subgraph = CreateBranchSubgraph(environment());
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
HInstruction* instr =
|
||
|
BuildLoadNamedField(object, expr, map, &lookup, false);
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
subgraphs.Add(subgraph);
|
||
|
} else {
|
||
|
needs_generic = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If none of the properties were named fields we generate a
|
||
|
// generic load.
|
||
|
if (maps.length() == 0) {
|
||
|
HInstruction* instr = BuildLoadNamedGeneric(object, expr);
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Build subgraph for generic load through IC.
|
||
|
{
|
||
|
HSubgraph* subgraph = CreateBranchSubgraph(environment());
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
if (!needs_generic && FLAG_deoptimize_uncommon_cases) {
|
||
|
subgraph->FinishExit(new HDeoptimize());
|
||
|
} else {
|
||
|
HInstruction* instr = BuildLoadNamedGeneric(object, expr);
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
}
|
||
|
subgraphs.Add(subgraph);
|
||
|
}
|
||
|
|
||
|
HBasicBlock* new_exit_block =
|
||
|
BuildTypeSwitch(&maps, &subgraphs, object, expr->id());
|
||
|
current_subgraph_->set_exit_block(new_exit_block);
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildLoadNamedField(HValue* object,
|
||
|
Property* expr,
|
||
|
Handle<Map> type,
|
||
|
LookupResult* lookup,
|
||
|
bool smi_and_map_check) {
|
||
|
if (smi_and_map_check) {
|
||
|
AddInstruction(new HCheckNonSmi(object));
|
||
|
AddInstruction(new HCheckMap(object, type));
|
||
|
}
|
||
|
|
||
|
int index = lookup->GetLocalFieldIndexFromMap(*type);
|
||
|
if (index < 0) {
|
||
|
// Negative property indices are in-object properties, indexed
|
||
|
// from the end of the fixed part of the object.
|
||
|
int offset = (index * kPointerSize) + type->instance_size();
|
||
|
return new HLoadNamedField(object, true, offset);
|
||
|
} else {
|
||
|
// Non-negative property indices are in the properties array.
|
||
|
int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
|
||
|
return new HLoadNamedField(object, false, offset);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildLoadNamedGeneric(HValue* obj,
|
||
|
Property* expr) {
|
||
|
ASSERT(expr->key()->IsPropertyName());
|
||
|
Handle<Object> name = expr->key()->AsLiteral()->handle();
|
||
|
return new HLoadNamedGeneric(obj, name);
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildLoadNamed(HValue* obj,
|
||
|
Property* expr,
|
||
|
Handle<Map> map,
|
||
|
Handle<String> name) {
|
||
|
LookupResult lookup;
|
||
|
map->LookupInDescriptors(NULL, *name, &lookup);
|
||
|
if (lookup.IsProperty() && lookup.type() == FIELD) {
|
||
|
return BuildLoadNamedField(obj,
|
||
|
expr,
|
||
|
map,
|
||
|
&lookup,
|
||
|
true);
|
||
|
} else {
|
||
|
return BuildLoadNamedGeneric(obj, expr);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
|
||
|
HValue* key) {
|
||
|
return new HLoadKeyedGeneric(object, key);
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildLoadKeyedFastElement(HValue* object,
|
||
|
HValue* key,
|
||
|
Property* expr) {
|
||
|
ASSERT(!expr->key()->IsPropertyName() && expr->IsMonomorphic());
|
||
|
AddInstruction(new HCheckNonSmi(object));
|
||
|
Handle<Map> map = expr->GetMonomorphicReceiverType();
|
||
|
ASSERT(map->has_fast_elements());
|
||
|
AddInstruction(new HCheckMap(object, map));
|
||
|
HInstruction* elements = AddInstruction(new HLoadElements(object));
|
||
|
HInstruction* length = AddInstruction(new HArrayLength(elements));
|
||
|
AddInstruction(new HBoundsCheck(key, length));
|
||
|
return new HLoadKeyedFastElement(elements, key);
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildStoreKeyedGeneric(HValue* object,
|
||
|
HValue* key,
|
||
|
HValue* value) {
|
||
|
return new HStoreKeyedGeneric(object, key, value);
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildStoreKeyedFastElement(HValue* object,
|
||
|
HValue* key,
|
||
|
HValue* val,
|
||
|
Expression* expr) {
|
||
|
ASSERT(expr->IsMonomorphic());
|
||
|
AddInstruction(new HCheckNonSmi(object));
|
||
|
Handle<Map> map = expr->GetMonomorphicReceiverType();
|
||
|
ASSERT(map->has_fast_elements());
|
||
|
AddInstruction(new HCheckMap(object, map));
|
||
|
HInstruction* elements = AddInstruction(new HLoadElements(object));
|
||
|
AddInstruction(new HCheckMap(elements, Factory::fixed_array_map()));
|
||
|
bool is_array = (map->instance_type() == JS_ARRAY_TYPE);
|
||
|
HInstruction* length = NULL;
|
||
|
if (is_array) {
|
||
|
length = AddInstruction(new HArrayLength(object));
|
||
|
} else {
|
||
|
length = AddInstruction(new HArrayLength(elements));
|
||
|
}
|
||
|
AddInstruction(new HBoundsCheck(key, length));
|
||
|
return new HStoreKeyedFastElement(elements, key, val);
|
||
|
}
|
||
|
|
||
|
|
||
|
bool HGraphBuilder::TryArgumentsAccess(Property* expr) {
|
||
|
VariableProxy* proxy = expr->obj()->AsVariableProxy();
|
||
|
if (proxy == NULL) return false;
|
||
|
if (!proxy->var()->IsStackAllocated()) return false;
|
||
|
if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
if (expr->key()->IsPropertyName()) {
|
||
|
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
|
||
|
if (!name->IsEqualTo(CStrVector("length"))) return false;
|
||
|
HInstruction* elements = AddInstruction(new HArgumentsElements);
|
||
|
PushAndAdd(new HArgumentsLength(elements));
|
||
|
} else {
|
||
|
VisitForValue(expr->key());
|
||
|
if (HasStackOverflow()) return false;
|
||
|
HValue* key = Pop();
|
||
|
HInstruction* elements = AddInstruction(new HArgumentsElements);
|
||
|
HInstruction* length = AddInstruction(new HArgumentsLength(elements));
|
||
|
AddInstruction(new HBoundsCheck(key, length));
|
||
|
PushAndAdd(new HAccessArgumentsAt(elements, length, key));
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitProperty(Property* expr) {
|
||
|
expr->RecordTypeFeedback(oracle());
|
||
|
|
||
|
if (TryArgumentsAccess(expr)) return;
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
VISIT_FOR_VALUE(expr->obj());
|
||
|
|
||
|
HInstruction* instr = NULL;
|
||
|
if (expr->IsArrayLength()) {
|
||
|
HValue* array = Pop();
|
||
|
AddInstruction(new HCheckNonSmi(array));
|
||
|
instr = new HArrayLength(array);
|
||
|
|
||
|
} else if (expr->key()->IsPropertyName()) {
|
||
|
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
|
||
|
ZoneMapList* types = expr->GetReceiverTypes();
|
||
|
|
||
|
HValue* obj = Pop();
|
||
|
if (expr->IsMonomorphic()) {
|
||
|
instr = BuildLoadNamed(obj, expr, types->first(), name);
|
||
|
} else if (types != NULL && types->length() > 1) {
|
||
|
HandlePolymorphicLoadNamedField(expr, obj, types, name);
|
||
|
return;
|
||
|
|
||
|
} else {
|
||
|
instr = BuildLoadNamedGeneric(obj, expr);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
VISIT_FOR_VALUE(expr->key());
|
||
|
|
||
|
HValue* key = Pop();
|
||
|
HValue* obj = Pop();
|
||
|
|
||
|
bool is_fast_elements = expr->IsMonomorphic() &&
|
||
|
expr->GetMonomorphicReceiverType()->has_fast_elements();
|
||
|
|
||
|
instr = is_fast_elements
|
||
|
? BuildLoadKeyedFastElement(obj, key, expr)
|
||
|
: BuildLoadKeyedGeneric(obj, key);
|
||
|
}
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AddCheckConstantFunction(Call* expr,
|
||
|
HValue* receiver,
|
||
|
Handle<Map> receiver_map,
|
||
|
bool smi_and_map_check) {
|
||
|
// Constant functions have the nice property that the map will change if they
|
||
|
// are overwritten. Therefore it is enough to check the map of the holder and
|
||
|
// its prototypes.
|
||
|
if (smi_and_map_check) {
|
||
|
AddInstruction(new HCheckNonSmi(receiver));
|
||
|
AddInstruction(new HCheckMap(receiver, receiver_map));
|
||
|
}
|
||
|
if (!expr->holder().is_null()) {
|
||
|
AddInstruction(new HCheckPrototypeMaps(receiver,
|
||
|
expr->holder(),
|
||
|
receiver_map));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::HandlePolymorphicCallNamed(Call* expr,
|
||
|
HValue* receiver,
|
||
|
ZoneMapList* types,
|
||
|
Handle<String> name) {
|
||
|
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
|
||
|
int number_of_types = Min(types->length(), kMaxCallPolymorphism);
|
||
|
ZoneMapList maps(number_of_types);
|
||
|
ZoneList<HSubgraph*> subgraphs(number_of_types + 1);
|
||
|
bool needs_generic = (types->length() > kMaxCallPolymorphism);
|
||
|
|
||
|
// Build subgraphs for each of the specific maps.
|
||
|
//
|
||
|
// TODO(ager): We should recognize when the prototype chains for
|
||
|
// different maps are identical. In that case we can avoid
|
||
|
// repeatedly generating the same prototype map checks.
|
||
|
for (int i = 0; i < number_of_types; ++i) {
|
||
|
Handle<Map> map = types->at(i);
|
||
|
if (expr->ComputeTarget(map, name)) {
|
||
|
maps.Add(map);
|
||
|
HSubgraph* subgraph = CreateBranchSubgraph(environment());
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
AddCheckConstantFunction(expr, receiver, map, false);
|
||
|
if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
|
||
|
PrintF("Trying to inline the polymorphic call to %s\n",
|
||
|
*name->ToCString());
|
||
|
}
|
||
|
if (!FLAG_polymorphic_inlining || !TryInline(expr)) {
|
||
|
// Check for bailout, as trying to inline might fail due to bailout
|
||
|
// during hydrogen processing.
|
||
|
CHECK_BAILOUT;
|
||
|
HCall* call = new HCallConstantFunction(expr->target(), argument_count);
|
||
|
ProcessCall(call, expr->position());
|
||
|
}
|
||
|
subgraphs.Add(subgraph);
|
||
|
} else {
|
||
|
needs_generic = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we couldn't compute the target for any of the maps just
|
||
|
// perform an IC call.
|
||
|
if (maps.length() == 0) {
|
||
|
HCall* call = new HCallNamed(name, argument_count);
|
||
|
ProcessCall(call, expr->position());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Build subgraph for generic call through IC.
|
||
|
{
|
||
|
HSubgraph* subgraph = CreateBranchSubgraph(environment());
|
||
|
SubgraphScope scope(this, subgraph);
|
||
|
if (!needs_generic && FLAG_deoptimize_uncommon_cases) {
|
||
|
subgraph->FinishExit(new HDeoptimize());
|
||
|
} else {
|
||
|
HCall* call = new HCallNamed(name, argument_count);
|
||
|
ProcessCall(call, expr->position());
|
||
|
}
|
||
|
subgraphs.Add(subgraph);
|
||
|
}
|
||
|
|
||
|
HBasicBlock* new_exit_block =
|
||
|
BuildTypeSwitch(&maps, &subgraphs, receiver, expr->id());
|
||
|
current_subgraph_->set_exit_block(new_exit_block);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::TraceInline(Handle<JSFunction> target, bool result) {
|
||
|
SmartPointer<char> callee = target->shared()->DebugName()->ToCString();
|
||
|
SmartPointer<char> caller =
|
||
|
graph()->info()->function()->debug_name()->ToCString();
|
||
|
if (result) {
|
||
|
PrintF("Inlined %s called from %s.\n", *callee, *caller);
|
||
|
} else {
|
||
|
PrintF("Do not inline %s called from %s.\n", *callee, *caller);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
bool HGraphBuilder::TryInline(Call* expr) {
|
||
|
if (!FLAG_use_inlining) return false;
|
||
|
|
||
|
// Precondition: call is monomorphic and we have found a target with the
|
||
|
// appropriate arity.
|
||
|
Handle<JSFunction> target = expr->target();
|
||
|
|
||
|
// Do a quick check on source code length to avoid parsing large
|
||
|
// inlining candidates.
|
||
|
if (FLAG_limit_inlining && target->shared()->SourceSize() > kMaxSourceSize) {
|
||
|
if (FLAG_trace_inlining) TraceInline(target, false);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Target must be inlineable.
|
||
|
if (!target->IsInlineable()) return false;
|
||
|
|
||
|
// No context change required.
|
||
|
CompilationInfo* outer_info = graph()->info();
|
||
|
if (target->context() != outer_info->closure()->context() ||
|
||
|
outer_info->scope()->contains_with() ||
|
||
|
outer_info->scope()->num_heap_slots() > 0) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Don't inline deeper than two calls.
|
||
|
HEnvironment* env = environment();
|
||
|
if (env->outer() != NULL && env->outer()->outer() != NULL) return false;
|
||
|
|
||
|
// Don't inline recursive functions.
|
||
|
if (target->shared() == outer_info->closure()->shared()) return false;
|
||
|
|
||
|
// We don't want to add more than a certain number of nodes from inlining.
|
||
|
if (FLAG_limit_inlining && inlined_count_ > kMaxInlinedNodes) {
|
||
|
if (FLAG_trace_inlining) TraceInline(target, false);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
int count_before = AstNode::Count();
|
||
|
|
||
|
// Parse and allocate variables.
|
||
|
Handle<SharedFunctionInfo> shared(target->shared());
|
||
|
CompilationInfo inner_info(shared);
|
||
|
if (!ParserApi::Parse(&inner_info) ||
|
||
|
!Scope::Analyze(&inner_info)) {
|
||
|
return false;
|
||
|
}
|
||
|
FunctionLiteral* function = inner_info.function();
|
||
|
|
||
|
// Count the number of AST nodes added by inlining this call.
|
||
|
int nodes_added = AstNode::Count() - count_before;
|
||
|
if (FLAG_limit_inlining && nodes_added > kMaxInlinedSize) {
|
||
|
if (FLAG_trace_inlining) TraceInline(target, false);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Check if we can handle all declarations in the inlined functions.
|
||
|
VisitDeclarations(inner_info.scope()->declarations());
|
||
|
if (HasStackOverflow()) {
|
||
|
ClearStackOverflow();
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Don't inline functions that uses the arguments object or that
|
||
|
// have a mismatching number of parameters.
|
||
|
int arity = expr->arguments()->length();
|
||
|
if (function->scope()->arguments() != NULL ||
|
||
|
arity != target->shared()->formal_parameter_count()) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// All statements in the body must be inlineable.
|
||
|
for (int i = 0, count = function->body()->length(); i < count; ++i) {
|
||
|
if (!function->body()->at(i)->IsInlineable()) return false;
|
||
|
}
|
||
|
|
||
|
// Generate the deoptimization data for the unoptimized version of
|
||
|
// the target function if we don't already have it.
|
||
|
if (!shared->has_deoptimization_support()) {
|
||
|
// Note that we compile here using the same AST that we will use for
|
||
|
// generating the optimized inline code.
|
||
|
inner_info.EnableDeoptimizationSupport();
|
||
|
if (!FullCodeGenerator::MakeCode(&inner_info)) return false;
|
||
|
shared->EnableDeoptimizationSupport(*inner_info.code());
|
||
|
Compiler::RecordFunctionCompilation(
|
||
|
Logger::FUNCTION_TAG,
|
||
|
Handle<String>(shared->DebugName()),
|
||
|
shared->start_position(),
|
||
|
&inner_info);
|
||
|
}
|
||
|
|
||
|
// Save the pending call context and type feedback oracle. Set up new ones
|
||
|
// for the inlined function.
|
||
|
ASSERT(shared->has_deoptimization_support());
|
||
|
AstContext* saved_call_context = call_context();
|
||
|
HBasicBlock* saved_function_return = function_return();
|
||
|
TypeFeedbackOracle* saved_oracle = oracle();
|
||
|
// On-stack replacement cannot target inlined functions. Since we don't
|
||
|
// use a separate CompilationInfo structure for the inlined function, we
|
||
|
// save and restore the AST ID in the original compilation info.
|
||
|
int saved_osr_ast_id = graph()->info()->osr_ast_id();
|
||
|
|
||
|
TestContext* test_context = NULL;
|
||
|
if (ast_context()->IsTest()) {
|
||
|
// Inlined body is treated as if it occurs in an 'inlined' call context
|
||
|
// with true and false blocks that will forward to the real ones.
|
||
|
HBasicBlock* if_true = graph()->CreateBasicBlock();
|
||
|
HBasicBlock* if_false = graph()->CreateBasicBlock();
|
||
|
if_true->MarkAsInlineReturnTarget();
|
||
|
if_false->MarkAsInlineReturnTarget();
|
||
|
// AstContext constructor pushes on the context stack.
|
||
|
bool invert_true = TestContext::cast(ast_context())->invert_true();
|
||
|
bool invert_false = TestContext::cast(ast_context())->invert_false();
|
||
|
test_context = new TestContext(this, if_true, if_false,
|
||
|
invert_true, invert_false);
|
||
|
function_return_ = NULL;
|
||
|
} else {
|
||
|
// Inlined body is treated as if it occurs in the original call context.
|
||
|
function_return_ = graph()->CreateBasicBlock();
|
||
|
function_return_->MarkAsInlineReturnTarget();
|
||
|
}
|
||
|
call_context_ = ast_context();
|
||
|
TypeFeedbackOracle new_oracle(Handle<Code>(shared->code()));
|
||
|
oracle_ = &new_oracle;
|
||
|
graph()->info()->SetOsrAstId(AstNode::kNoNumber);
|
||
|
|
||
|
HSubgraph* body = CreateInlinedSubgraph(env, target, function);
|
||
|
body->exit_block()->AddInstruction(new HEnterInlined(target, function));
|
||
|
AddToSubgraph(body, function->body());
|
||
|
if (HasStackOverflow()) {
|
||
|
// Bail out if the inline function did, as we cannot residualize a call
|
||
|
// instead.
|
||
|
delete test_context;
|
||
|
call_context_ = saved_call_context;
|
||
|
function_return_ = saved_function_return;
|
||
|
oracle_ = saved_oracle;
|
||
|
graph()->info()->SetOsrAstId(saved_osr_ast_id);
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// Update inlined nodes count.
|
||
|
inlined_count_ += nodes_added;
|
||
|
|
||
|
if (FLAG_trace_inlining) TraceInline(target, true);
|
||
|
|
||
|
if (body->HasExit()) {
|
||
|
// Add a return of undefined if control can fall off the body. In a
|
||
|
// test context, undefined is false.
|
||
|
HValue* return_value = graph()->GetConstantUndefined();
|
||
|
if (test_context == NULL) {
|
||
|
ASSERT(function_return_ != NULL);
|
||
|
body->exit_block()->AddLeaveInlined(return_value, function_return_);
|
||
|
} else {
|
||
|
// The graph builder assumes control can reach both branches of a
|
||
|
// test, so we materialize the undefined value and test it rather than
|
||
|
// simply jumping to the false target.
|
||
|
//
|
||
|
// TODO(3168478): refactor to avoid this.
|
||
|
HBasicBlock* materialize_true = graph()->CreateBasicBlock();
|
||
|
HBasicBlock* materialize_false = graph()->CreateBasicBlock();
|
||
|
HBranch* branch =
|
||
|
new HBranch(materialize_true, materialize_false, return_value);
|
||
|
body->exit_block()->Finish(branch);
|
||
|
|
||
|
materialize_true->AddLeaveInlined(graph()->GetConstantTrue(),
|
||
|
test_context->if_true());
|
||
|
materialize_false->AddLeaveInlined(graph()->GetConstantFalse(),
|
||
|
test_context->if_false());
|
||
|
}
|
||
|
body->set_exit_block(NULL);
|
||
|
}
|
||
|
|
||
|
// Record the environment at the inlined function call.
|
||
|
AddSimulate(expr->ReturnId());
|
||
|
|
||
|
// Jump to the function entry (without re-recording the environment).
|
||
|
subgraph()->exit_block()->Finish(new HGoto(body->entry_block()));
|
||
|
|
||
|
// Fix up the function exits.
|
||
|
if (test_context != NULL) {
|
||
|
HBasicBlock* if_true = test_context->if_true();
|
||
|
HBasicBlock* if_false = test_context->if_false();
|
||
|
if_true->SetJoinId(expr->id());
|
||
|
if_false->SetJoinId(expr->id());
|
||
|
ASSERT(ast_context() == test_context);
|
||
|
delete test_context; // Destructor pops from expression context stack.
|
||
|
// Forward to the real test context.
|
||
|
|
||
|
// Discard the lingering branch value (which may be true or false,
|
||
|
// depending on whether the final condition was negated) and jump to the
|
||
|
// true target with a true branch value.
|
||
|
HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
|
||
|
bool invert_true = TestContext::cast(ast_context())->invert_true();
|
||
|
HValue* true_value = invert_true
|
||
|
? graph()->GetConstantFalse()
|
||
|
: graph()->GetConstantTrue();
|
||
|
if_true->last_environment()->Pop();
|
||
|
if (true_target->IsInlineReturnTarget()) {
|
||
|
if_true->AddLeaveInlined(true_value, true_target);
|
||
|
} else {
|
||
|
if_true->last_environment()->Push(true_value);
|
||
|
if_true->Goto(true_target);
|
||
|
}
|
||
|
|
||
|
// Do the same for the false target.
|
||
|
HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
|
||
|
bool invert_false = TestContext::cast(ast_context())->invert_false();
|
||
|
HValue* false_value = invert_false
|
||
|
? graph()->GetConstantTrue()
|
||
|
: graph()->GetConstantFalse();
|
||
|
if_false->last_environment()->Pop();
|
||
|
if (false_target->IsInlineReturnTarget()) {
|
||
|
if_false->AddLeaveInlined(false_value, false_target);
|
||
|
} else {
|
||
|
if_false->last_environment()->Push(false_value);
|
||
|
if_false->Goto(false_target);
|
||
|
}
|
||
|
|
||
|
// TODO(kmillikin): Come up with a better way to handle this. It is too
|
||
|
// subtle. NULL here indicates that the enclosing context has no control
|
||
|
// flow to handle.
|
||
|
subgraph()->set_exit_block(NULL);
|
||
|
|
||
|
} else {
|
||
|
function_return_->SetJoinId(expr->id());
|
||
|
subgraph()->set_exit_block(function_return_);
|
||
|
}
|
||
|
|
||
|
call_context_ = saved_call_context;
|
||
|
function_return_ = saved_function_return;
|
||
|
oracle_ = saved_oracle;
|
||
|
graph()->info()->SetOsrAstId(saved_osr_ast_id);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HBasicBlock::AddLeaveInlined(HValue* return_value, HBasicBlock* target) {
|
||
|
ASSERT(target->IsInlineReturnTarget());
|
||
|
AddInstruction(new HLeaveInlined);
|
||
|
HEnvironment* outer = last_environment()->outer();
|
||
|
outer->Push(return_value);
|
||
|
UpdateEnvironment(outer);
|
||
|
Goto(target);
|
||
|
}
|
||
|
|
||
|
|
||
|
bool HGraphBuilder::TryMathFunctionInline(Call* expr) {
|
||
|
// Try to inline calls like Math.* as operations in the calling function.
|
||
|
MathFunctionId id = expr->target()->shared()->math_function_id();
|
||
|
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
|
||
|
switch (id) {
|
||
|
case kMathRound:
|
||
|
case kMathFloor:
|
||
|
case kMathAbs:
|
||
|
case kMathSqrt:
|
||
|
if (argument_count == 2) {
|
||
|
HValue* argument = Pop();
|
||
|
// Pop receiver.
|
||
|
Pop();
|
||
|
HUnaryMathOperation* op = new HUnaryMathOperation(argument, id);
|
||
|
PushAndAdd(op, expr->position());
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
// Either not a special math function or not yet supported for inlining.
|
||
|
break;
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
bool HGraphBuilder::TryCallApply(Call* expr) {
|
||
|
Expression* callee = expr->expression();
|
||
|
Property* prop = callee->AsProperty();
|
||
|
ASSERT(prop != NULL);
|
||
|
|
||
|
if (graph()->info()->scope()->arguments() == NULL) return false;
|
||
|
|
||
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
||
|
if (!name->IsEqualTo(CStrVector("apply"))) return false;
|
||
|
|
||
|
ZoneList<Expression*>* args = expr->arguments();
|
||
|
if (args->length() != 2) return false;
|
||
|
|
||
|
VariableProxy* arg_two = args->at(1)->AsVariableProxy();
|
||
|
if (arg_two == NULL) return false;
|
||
|
HValue* arg_two_value = environment()->Lookup(arg_two->var());
|
||
|
if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
|
||
|
|
||
|
if (!expr->IsMonomorphic()) return false;
|
||
|
|
||
|
// Found pattern f.apply(receiver, arguments).
|
||
|
VisitForValue(prop->obj());
|
||
|
if (HasStackOverflow()) return false;
|
||
|
HValue* function = Pop();
|
||
|
VisitForValue(args->at(0));
|
||
|
if (HasStackOverflow()) return false;
|
||
|
HValue* receiver = Pop();
|
||
|
HInstruction* elements = AddInstruction(new HArgumentsElements);
|
||
|
HInstruction* length = AddInstruction(new HArgumentsLength(elements));
|
||
|
AddCheckConstantFunction(expr,
|
||
|
function,
|
||
|
expr->GetReceiverTypes()->first(),
|
||
|
true);
|
||
|
PushAndAdd(new HApplyArguments(function, receiver, length, elements),
|
||
|
expr->position());
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCall(Call* expr) {
|
||
|
Expression* callee = expr->expression();
|
||
|
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
|
||
|
HCall* call = NULL;
|
||
|
|
||
|
Property* prop = callee->AsProperty();
|
||
|
if (prop != NULL) {
|
||
|
if (!prop->key()->IsPropertyName()) {
|
||
|
// Keyed function call.
|
||
|
VisitArgument(prop->obj());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
VISIT_FOR_VALUE(prop->key());
|
||
|
// Push receiver and key like the non-optimized code generator expects it.
|
||
|
HValue* key = Pop();
|
||
|
HValue* receiver = Pop();
|
||
|
Push(key);
|
||
|
Push(receiver);
|
||
|
|
||
|
VisitArgumentList(expr->arguments());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
call = new HCallKeyed(key, argument_count);
|
||
|
ProcessCall(call, expr->position());
|
||
|
HValue* result = Pop();
|
||
|
// Drop the receiver from the environment and put back the result of
|
||
|
// the call.
|
||
|
Drop(1);
|
||
|
Push(result);
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Named function call.
|
||
|
expr->RecordTypeFeedback(oracle());
|
||
|
|
||
|
if (TryCallApply(expr)) return;
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
HValue* receiver = VisitArgument(prop->obj());
|
||
|
CHECK_BAILOUT;
|
||
|
VisitArgumentList(expr->arguments());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
||
|
|
||
|
expr->RecordTypeFeedback(oracle());
|
||
|
ZoneMapList* types = expr->GetReceiverTypes();
|
||
|
|
||
|
if (expr->IsMonomorphic()) {
|
||
|
AddCheckConstantFunction(expr, receiver, types->first(), true);
|
||
|
|
||
|
if (TryMathFunctionInline(expr) || TryInline(expr)) {
|
||
|
return;
|
||
|
} else {
|
||
|
// Check for bailout, as the TryInline call in the if condition above
|
||
|
// might return false due to bailout during hydrogen processing.
|
||
|
CHECK_BAILOUT;
|
||
|
call = new HCallConstantFunction(expr->target(), argument_count);
|
||
|
}
|
||
|
} else if (types != NULL && types->length() > 1) {
|
||
|
HandlePolymorphicCallNamed(expr, receiver, types, name);
|
||
|
return;
|
||
|
|
||
|
} else {
|
||
|
call = new HCallNamed(name, argument_count);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
|
||
|
bool global_call = (var != NULL) && var->is_global() && !var->is_this();
|
||
|
|
||
|
if (!global_call) {
|
||
|
++argument_count;
|
||
|
VisitArgument(expr->expression());
|
||
|
CHECK_BAILOUT;
|
||
|
}
|
||
|
|
||
|
if (global_call) {
|
||
|
// If there is a global property cell for the name at compile time and
|
||
|
// access check is not enabled we assume that the function will not change
|
||
|
// and generate optimized code for calling the function.
|
||
|
CompilationInfo* info = graph()->info();
|
||
|
bool known_global_function = info->has_global_object() &&
|
||
|
!info->global_object()->IsAccessCheckNeeded() &&
|
||
|
expr->ComputeGlobalTarget(Handle<GlobalObject>(info->global_object()),
|
||
|
var->name());
|
||
|
if (known_global_function) {
|
||
|
// Push the global object instead of the global receiver because
|
||
|
// code generated by the full code generator expects it.
|
||
|
PushAndAdd(new HGlobalObject);
|
||
|
VisitArgumentList(expr->arguments());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
VISIT_FOR_VALUE(expr->expression());
|
||
|
HValue* function = Pop();
|
||
|
AddInstruction(new HCheckFunction(function, expr->target()));
|
||
|
|
||
|
// Replace the global object with the global receiver.
|
||
|
HGlobalReceiver* global_receiver = new HGlobalReceiver;
|
||
|
// Index of the receiver from the top of the expression stack.
|
||
|
const int receiver_index = argument_count - 1;
|
||
|
AddInstruction(global_receiver);
|
||
|
ASSERT(environment()->ExpressionStackAt(receiver_index)->
|
||
|
IsGlobalObject());
|
||
|
environment()->SetExpressionStackAt(receiver_index, global_receiver);
|
||
|
|
||
|
if (TryInline(expr)) return;
|
||
|
// Check for bailout, as trying to inline might fail due to bailout
|
||
|
// during hydrogen processing.
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
call = new HCallKnownGlobal(expr->target(), argument_count);
|
||
|
} else {
|
||
|
PushAndAdd(new HGlobalObject);
|
||
|
VisitArgumentList(expr->arguments());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
call = new HCallGlobal(var->name(), argument_count);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
PushAndAdd(new HGlobalReceiver);
|
||
|
VisitArgumentList(expr->arguments());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
call = new HCallFunction(argument_count);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ProcessCall(call, expr->position());
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCallNew(CallNew* expr) {
|
||
|
// The constructor function is also used as the receiver argument to the
|
||
|
// JS construct call builtin.
|
||
|
VisitArgument(expr->expression());
|
||
|
CHECK_BAILOUT;
|
||
|
VisitArgumentList(expr->arguments());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
int argument_count = expr->arguments()->length() + 1; // Plus constructor.
|
||
|
HCall* call = new HCallNew(argument_count);
|
||
|
|
||
|
ProcessCall(call, expr->position());
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for generating inlined runtime functions.
|
||
|
|
||
|
// Lookup table for generators for runtime calls that are generated inline.
|
||
|
// Elements of the table are member pointers to functions of HGraphBuilder.
|
||
|
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
|
||
|
&HGraphBuilder::Generate##Name,
|
||
|
|
||
|
const HGraphBuilder::InlineFunctionGenerator
|
||
|
HGraphBuilder::kInlineFunctionGenerators[] = {
|
||
|
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
|
||
|
INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
|
||
|
};
|
||
|
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
|
||
|
Handle<String> name = expr->name();
|
||
|
if (name->IsEqualTo(CStrVector("_Log"))) {
|
||
|
Push(graph()->GetConstantUndefined());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
Runtime::Function* function = expr->function();
|
||
|
if (expr->is_jsruntime()) {
|
||
|
BAILOUT("call to a JavaScript runtime function");
|
||
|
}
|
||
|
ASSERT(function != NULL);
|
||
|
|
||
|
VisitArgumentList(expr->arguments());
|
||
|
CHECK_BAILOUT;
|
||
|
|
||
|
int argument_count = expr->arguments()->length();
|
||
|
if (function->intrinsic_type == Runtime::INLINE) {
|
||
|
ASSERT(name->length() > 0);
|
||
|
ASSERT(name->Get(0) == '_');
|
||
|
// Call to an inline function.
|
||
|
int lookup_index = static_cast<int>(function->function_id) -
|
||
|
static_cast<int>(Runtime::kFirstInlineFunction);
|
||
|
ASSERT(lookup_index >= 0);
|
||
|
ASSERT(static_cast<size_t>(lookup_index) <
|
||
|
ARRAY_SIZE(kInlineFunctionGenerators));
|
||
|
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
|
||
|
|
||
|
// Call the inline code generator using the pointer-to-member.
|
||
|
(this->*generator)(argument_count);
|
||
|
} else {
|
||
|
ASSERT(function->intrinsic_type == Runtime::RUNTIME);
|
||
|
HCall* call = new HCallRuntime(name, expr->function(), argument_count);
|
||
|
ProcessCall(call, RelocInfo::kNoPosition);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
|
||
|
Token::Value op = expr->op();
|
||
|
if (op == Token::VOID) {
|
||
|
VISIT_FOR_EFFECT(expr->expression());
|
||
|
Push(graph()->GetConstantUndefined());
|
||
|
} else if (op == Token::DELETE) {
|
||
|
Property* prop = expr->expression()->AsProperty();
|
||
|
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
|
||
|
if (prop == NULL && var == NULL) {
|
||
|
// Result of deleting non-property, non-variable reference is true.
|
||
|
// Evaluate the subexpression for side effects.
|
||
|
VISIT_FOR_EFFECT(expr->expression());
|
||
|
Push(graph_->GetConstantTrue());
|
||
|
} else if (var != NULL &&
|
||
|
!var->is_global() &&
|
||
|
var->AsSlot() != NULL &&
|
||
|
var->AsSlot()->type() != Slot::LOOKUP) {
|
||
|
// Result of deleting non-global, non-dynamic variables is false.
|
||
|
// The subexpression does not have side effects.
|
||
|
Push(graph_->GetConstantFalse());
|
||
|
} else if (prop != NULL) {
|
||
|
VISIT_FOR_VALUE(prop->obj());
|
||
|
VISIT_FOR_VALUE(prop->key());
|
||
|
HValue* key = Pop();
|
||
|
HValue* obj = Pop();
|
||
|
PushAndAdd(new HDeleteProperty(obj, key));
|
||
|
} else if (var->is_global()) {
|
||
|
BAILOUT("delete with global variable");
|
||
|
} else {
|
||
|
BAILOUT("delete with non-global variable");
|
||
|
}
|
||
|
} else if (op == Token::NOT) {
|
||
|
HSubgraph* true_graph = CreateEmptySubgraph();
|
||
|
HSubgraph* false_graph = CreateEmptySubgraph();
|
||
|
VisitCondition(expr->expression(),
|
||
|
false_graph->entry_block(),
|
||
|
true_graph->entry_block(),
|
||
|
true, true);
|
||
|
if (HasStackOverflow()) return;
|
||
|
true_graph->environment()->Push(graph_->GetConstantTrue());
|
||
|
false_graph->environment()->Push(graph_->GetConstantFalse());
|
||
|
current_subgraph_->AppendJoin(true_graph, false_graph, expr);
|
||
|
} else if (op == Token::BIT_NOT || op == Token::SUB) {
|
||
|
VISIT_FOR_VALUE(expr->expression());
|
||
|
HValue* value = Pop();
|
||
|
HInstruction* instr = NULL;
|
||
|
switch (op) {
|
||
|
case Token::BIT_NOT:
|
||
|
instr = new HBitNot(value);
|
||
|
break;
|
||
|
case Token::SUB:
|
||
|
instr = new HMul(graph_->GetConstantMinus1(), value);
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
break;
|
||
|
}
|
||
|
PushAndAdd(instr);
|
||
|
} else if (op == Token::TYPEOF) {
|
||
|
VISIT_FOR_VALUE(expr->expression());
|
||
|
HValue* value = Pop();
|
||
|
PushAndAdd(new HTypeof(value));
|
||
|
} else {
|
||
|
BAILOUT("Value: unsupported unary operation");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitIncrementOperation(IncrementOperation* expr) {
|
||
|
// IncrementOperation is never visited by the visitor. It only
|
||
|
// occurs as a subexpression of CountOperation.
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildIncrement(HValue* value, bool increment) {
|
||
|
HConstant* delta = increment
|
||
|
? graph_->GetConstant1()
|
||
|
: graph_->GetConstantMinus1();
|
||
|
HInstruction* instr = new HAdd(value, delta);
|
||
|
AssumeRepresentation(instr, Representation::Integer32());
|
||
|
return instr;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCountOperation(CountOperation* expr) {
|
||
|
IncrementOperation* increment = expr->increment();
|
||
|
Expression* target = increment->expression();
|
||
|
VariableProxy* proxy = target->AsVariableProxy();
|
||
|
Variable* var = proxy->AsVariable();
|
||
|
Property* prop = target->AsProperty();
|
||
|
ASSERT(var == NULL || prop == NULL);
|
||
|
bool inc = expr->op() == Token::INC;
|
||
|
|
||
|
if (var != NULL) {
|
||
|
if (!var->is_global() && !var->IsStackAllocated()) {
|
||
|
BAILOUT("non-stack/non-global variable in count operation");
|
||
|
}
|
||
|
|
||
|
VISIT_FOR_VALUE(target);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HInstruction* instr = BuildIncrement(value, inc);
|
||
|
AddInstruction(instr);
|
||
|
|
||
|
if (expr->is_prefix()) {
|
||
|
Push(instr);
|
||
|
} else {
|
||
|
Push(value);
|
||
|
}
|
||
|
|
||
|
if (var->is_global()) {
|
||
|
HandleGlobalVariableAssignment(proxy, instr, expr->position());
|
||
|
} else {
|
||
|
ASSERT(var->IsStackAllocated());
|
||
|
Bind(var, instr);
|
||
|
}
|
||
|
|
||
|
} else if (prop != NULL) {
|
||
|
prop->RecordTypeFeedback(oracle());
|
||
|
|
||
|
if (prop->key()->IsPropertyName()) {
|
||
|
// Named property.
|
||
|
|
||
|
// Match the full code generator stack by simulate an extra stack element
|
||
|
// for postfix operations in a value context.
|
||
|
if (expr->is_postfix() && !ast_context()->IsEffect()) {
|
||
|
Push(graph_->GetConstantUndefined());
|
||
|
}
|
||
|
|
||
|
VISIT_FOR_VALUE(prop->obj());
|
||
|
HValue* obj = Top();
|
||
|
|
||
|
HInstruction* load = NULL;
|
||
|
if (prop->IsMonomorphic()) {
|
||
|
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
|
||
|
Handle<Map> map = prop->GetReceiverTypes()->first();
|
||
|
load = BuildLoadNamed(obj, prop, map, name);
|
||
|
} else {
|
||
|
load = BuildLoadNamedGeneric(obj, prop);
|
||
|
}
|
||
|
PushAndAdd(load);
|
||
|
if (load->HasSideEffects()) AddSimulate(increment->id());
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
|
||
|
HInstruction* instr = BuildIncrement(value, inc);
|
||
|
AddInstruction(instr);
|
||
|
|
||
|
HInstruction* store = BuildStoreNamed(obj, instr, prop);
|
||
|
AddInstruction(store);
|
||
|
|
||
|
// Drop simulated receiver and push the result.
|
||
|
// There is no deoptimization to after the increment, so we can simulate
|
||
|
// the expression stack here.
|
||
|
Drop(1);
|
||
|
if (expr->is_prefix()) {
|
||
|
Push(instr);
|
||
|
} else {
|
||
|
if (!ast_context()->IsEffect()) Drop(1); // Drop simulated zero.
|
||
|
Push(value);
|
||
|
}
|
||
|
|
||
|
} else {
|
||
|
// Keyed property.
|
||
|
|
||
|
// Match the full code generator stack by simulate an extra stack element
|
||
|
// for postfix operations in a value context.
|
||
|
if (expr->is_postfix() && !ast_context()->IsEffect()) {
|
||
|
Push(graph_->GetConstantUndefined());
|
||
|
}
|
||
|
|
||
|
VISIT_FOR_VALUE(prop->obj());
|
||
|
VISIT_FOR_VALUE(prop->key());
|
||
|
|
||
|
HValue* obj = environment()->ExpressionStackAt(1);
|
||
|
HValue* key = environment()->ExpressionStackAt(0);
|
||
|
|
||
|
bool is_fast_elements = prop->IsMonomorphic() &&
|
||
|
prop->GetMonomorphicReceiverType()->has_fast_elements();
|
||
|
|
||
|
HInstruction* load = is_fast_elements
|
||
|
? BuildLoadKeyedFastElement(obj, key, prop)
|
||
|
: BuildLoadKeyedGeneric(obj, key);
|
||
|
PushAndAdd(load);
|
||
|
if (load->HasSideEffects()) AddSimulate(increment->id());
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
|
||
|
HInstruction* instr = BuildIncrement(value, inc);
|
||
|
AddInstruction(instr);
|
||
|
|
||
|
HInstruction* store = is_fast_elements
|
||
|
? BuildStoreKeyedFastElement(obj, key, instr, prop)
|
||
|
: new HStoreKeyedGeneric(obj, key, instr);
|
||
|
AddInstruction(store);
|
||
|
|
||
|
// Drop simulated receiver and key and push the result.
|
||
|
// There is no deoptimization to after the increment, so we can simulate
|
||
|
// the expression stack here.
|
||
|
Drop(2);
|
||
|
if (expr->is_prefix()) {
|
||
|
Push(instr);
|
||
|
} else {
|
||
|
if (!ast_context()->IsEffect()) Drop(1); // Drop simulated zero.
|
||
|
Push(value);
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
BAILOUT("invalid lhs in count operation");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HInstruction* HGraphBuilder::BuildBinaryOperation(BinaryOperation* expr,
|
||
|
HValue* left,
|
||
|
HValue* right) {
|
||
|
HInstruction* instr = NULL;
|
||
|
switch (expr->op()) {
|
||
|
case Token::ADD:
|
||
|
instr = new HAdd(left, right);
|
||
|
break;
|
||
|
case Token::SUB:
|
||
|
instr = new HSub(left, right);
|
||
|
break;
|
||
|
case Token::MUL:
|
||
|
instr = new HMul(left, right);
|
||
|
break;
|
||
|
case Token::MOD:
|
||
|
instr = new HMod(left, right);
|
||
|
break;
|
||
|
case Token::DIV:
|
||
|
instr = new HDiv(left, right);
|
||
|
break;
|
||
|
case Token::BIT_XOR:
|
||
|
instr = new HBitXor(left, right);
|
||
|
break;
|
||
|
case Token::BIT_AND:
|
||
|
instr = new HBitAnd(left, right);
|
||
|
break;
|
||
|
case Token::BIT_OR:
|
||
|
instr = new HBitOr(left, right);
|
||
|
break;
|
||
|
case Token::SAR:
|
||
|
instr = new HSar(left, right);
|
||
|
break;
|
||
|
case Token::SHR:
|
||
|
instr = new HShr(left, right);
|
||
|
break;
|
||
|
case Token::SHL:
|
||
|
instr = new HShl(left, right);
|
||
|
break;
|
||
|
default:
|
||
|
UNREACHABLE();
|
||
|
}
|
||
|
TypeInfo info = oracle()->BinaryType(expr, TypeFeedbackOracle::RESULT);
|
||
|
// If we hit an uninitialized binary op stub we will get type info
|
||
|
// for a smi operation. If one of the operands is a constant string
|
||
|
// do not generate code assuming it is a smi operation.
|
||
|
if (info.IsSmi() &&
|
||
|
((left->IsConstant() && HConstant::cast(left)->HasStringValue()) ||
|
||
|
(right->IsConstant() && HConstant::cast(right)->HasStringValue()))) {
|
||
|
return instr;
|
||
|
}
|
||
|
if (FLAG_trace_representation) {
|
||
|
PrintF("Info: %s/%s\n", info.ToString(), ToRepresentation(info).Mnemonic());
|
||
|
}
|
||
|
AssumeRepresentation(instr, ToRepresentation(info));
|
||
|
return instr;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Check for the form (%_ClassOf(foo) === 'BarClass').
|
||
|
static bool IsClassOfTest(CompareOperation* expr) {
|
||
|
if (expr->op() != Token::EQ_STRICT) return false;
|
||
|
CallRuntime* call = expr->left()->AsCallRuntime();
|
||
|
if (call == NULL) return false;
|
||
|
Literal* literal = expr->right()->AsLiteral();
|
||
|
if (literal == NULL) return false;
|
||
|
if (!literal->handle()->IsString()) return false;
|
||
|
if (!call->name()->IsEqualTo(CStrVector("_ClassOf"))) return false;
|
||
|
ASSERT(call->arguments()->length() == 1);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
|
||
|
if (expr->op() == Token::COMMA) {
|
||
|
VISIT_FOR_EFFECT(expr->left());
|
||
|
VISIT_FOR_VALUE(expr->right());
|
||
|
} else if (expr->op() == Token::AND || expr->op() == Token::OR) {
|
||
|
VISIT_FOR_VALUE(expr->left());
|
||
|
ASSERT(current_subgraph_->HasExit());
|
||
|
|
||
|
HValue* left = Top();
|
||
|
bool is_logical_and = (expr->op() == Token::AND);
|
||
|
|
||
|
HEnvironment* environment_copy = environment()->Copy();
|
||
|
environment_copy->Pop();
|
||
|
HSubgraph* right_subgraph;
|
||
|
right_subgraph = CreateBranchSubgraph(environment_copy);
|
||
|
ADD_TO_SUBGRAPH(right_subgraph, expr->right());
|
||
|
current_subgraph_->AppendOptional(right_subgraph, is_logical_and, left);
|
||
|
current_subgraph_->exit_block()->SetJoinId(expr->id());
|
||
|
} else {
|
||
|
VISIT_FOR_VALUE(expr->left());
|
||
|
VISIT_FOR_VALUE(expr->right());
|
||
|
|
||
|
HValue* right = Pop();
|
||
|
HValue* left = Pop();
|
||
|
HInstruction* instr = BuildBinaryOperation(expr, left, right);
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::AssumeRepresentation(HValue* value, Representation r) {
|
||
|
if (value->CheckFlag(HValue::kFlexibleRepresentation)) {
|
||
|
if (FLAG_trace_representation) {
|
||
|
PrintF("Assume representation for %s to be %s (%d)\n",
|
||
|
value->Mnemonic(),
|
||
|
r.Mnemonic(),
|
||
|
graph_->GetMaximumValueID());
|
||
|
}
|
||
|
value->ChangeRepresentation(r);
|
||
|
// The representation of the value is dictated by type feedback.
|
||
|
value->ClearFlag(HValue::kFlexibleRepresentation);
|
||
|
} else if (FLAG_trace_representation) {
|
||
|
PrintF("No representation assumed\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
Representation HGraphBuilder::ToRepresentation(TypeInfo info) {
|
||
|
if (info.IsSmi()) return Representation::Integer32();
|
||
|
if (info.IsInteger32()) return Representation::Integer32();
|
||
|
if (info.IsDouble()) return Representation::Double();
|
||
|
if (info.IsNumber()) return Representation::Double();
|
||
|
return Representation::Tagged();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
|
||
|
if (IsClassOfTest(expr)) {
|
||
|
CallRuntime* call = expr->left()->AsCallRuntime();
|
||
|
VISIT_FOR_VALUE(call->arguments()->at(0));
|
||
|
HValue* value = Pop();
|
||
|
Literal* literal = expr->right()->AsLiteral();
|
||
|
Handle<String> rhs = Handle<String>::cast(literal->handle());
|
||
|
HInstruction* instr = new HClassOfTest(value, rhs);
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// Check for the pattern: typeof <expression> == <string literal>.
|
||
|
UnaryOperation* left_unary = expr->left()->AsUnaryOperation();
|
||
|
Literal* right_literal = expr->right()->AsLiteral();
|
||
|
if ((expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT) &&
|
||
|
left_unary != NULL && left_unary->op() == Token::TYPEOF &&
|
||
|
right_literal != NULL && right_literal->handle()->IsString()) {
|
||
|
VISIT_FOR_VALUE(left_unary->expression());
|
||
|
HValue* left = Pop();
|
||
|
HInstruction* instr = new HTypeofIs(left,
|
||
|
Handle<String>::cast(right_literal->handle()));
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
VISIT_FOR_VALUE(expr->left());
|
||
|
VISIT_FOR_VALUE(expr->right());
|
||
|
|
||
|
HValue* right = Pop();
|
||
|
HValue* left = Pop();
|
||
|
Token::Value op = expr->op();
|
||
|
|
||
|
TypeInfo info = oracle()->CompareType(expr, TypeFeedbackOracle::RESULT);
|
||
|
HInstruction* instr = NULL;
|
||
|
if (op == Token::INSTANCEOF) {
|
||
|
instr = new HInstanceOf(left, right);
|
||
|
} else if (op == Token::IN) {
|
||
|
BAILOUT("Unsupported comparison: in");
|
||
|
} else if (info.IsNonPrimitive()) {
|
||
|
switch (op) {
|
||
|
case Token::EQ:
|
||
|
case Token::EQ_STRICT: {
|
||
|
AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(left));
|
||
|
AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(right));
|
||
|
instr = new HCompareJSObjectEq(left, right);
|
||
|
break;
|
||
|
}
|
||
|
default:
|
||
|
BAILOUT("Unsupported non-primitive compare");
|
||
|
break;
|
||
|
}
|
||
|
} else {
|
||
|
HCompare* compare = new HCompare(left, right, op);
|
||
|
Representation r = ToRepresentation(info);
|
||
|
compare->SetInputRepresentation(r);
|
||
|
instr = compare;
|
||
|
}
|
||
|
PushAndAdd(instr, expr->position());
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitCompareToNull(CompareToNull* expr) {
|
||
|
VISIT_FOR_VALUE(expr->expression());
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HIsNull* compare = new HIsNull(value, expr->is_strict());
|
||
|
|
||
|
PushAndAdd(compare);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitThisFunction(ThisFunction* expr) {
|
||
|
BAILOUT("ThisFunction");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::VisitDeclaration(Declaration* decl) {
|
||
|
// We allow only declarations that do not require code generation.
|
||
|
// The following all require code generation: global variables and
|
||
|
// functions, variables with slot type LOOKUP, declarations with
|
||
|
// mode CONST, and functions.
|
||
|
Variable* var = decl->proxy()->var();
|
||
|
Slot* slot = var->AsSlot();
|
||
|
if (var->is_global() ||
|
||
|
(slot != NULL && slot->type() == Slot::LOOKUP) ||
|
||
|
decl->mode() == Variable::CONST ||
|
||
|
decl->fun() != NULL) {
|
||
|
BAILOUT("unsupported declaration");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// Generators for inline runtime functions.
|
||
|
// Support for types.
|
||
|
void HGraphBuilder::GenerateIsSmi(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
PushAndAdd(new HIsSmi(value));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsSpecObject(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HHasInstanceType* test =
|
||
|
new HHasInstanceType(value, FIRST_JS_OBJECT_TYPE, LAST_TYPE);
|
||
|
PushAndAdd(test);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsFunction(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HHasInstanceType* test =
|
||
|
new HHasInstanceType(value, JS_FUNCTION_TYPE);
|
||
|
PushAndAdd(test);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateHasCachedArrayIndex(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HHasCachedArrayIndex* spec_test = new HHasCachedArrayIndex(value);
|
||
|
PushAndAdd(spec_test);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsArray(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HHasInstanceType* test =
|
||
|
new HHasInstanceType(value, JS_ARRAY_TYPE);
|
||
|
PushAndAdd(test);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsRegExp(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HHasInstanceType* test =
|
||
|
new HHasInstanceType(value, JS_REGEXP_TYPE);
|
||
|
PushAndAdd(test);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsNonNegativeSmi(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: IsNonNegativeSmi");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsObject(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: IsObject");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsUndetectableObject(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: IsUndetectableObject");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
|
||
|
int argument_count) {
|
||
|
BAILOUT("inlined runtime function: IsStringWrapperSafeForDefaultValueOf");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for construct call checks.
|
||
|
void HGraphBuilder::GenerateIsConstructCall(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: IsConstructCall");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for arguments.length and arguments[?].
|
||
|
void HGraphBuilder::GenerateArgumentsLength(int argument_count) {
|
||
|
ASSERT(argument_count == 0);
|
||
|
HInstruction* elements = AddInstruction(new HArgumentsElements);
|
||
|
PushAndAdd(new HArgumentsLength(elements));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateArguments(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
HValue* index = Pop();
|
||
|
HInstruction* elements = AddInstruction(new HArgumentsElements);
|
||
|
HInstruction* length = AddInstruction(new HArgumentsLength(elements));
|
||
|
PushAndAdd(new HAccessArgumentsAt(elements, length, index));
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for accessing the class and value fields of an object.
|
||
|
void HGraphBuilder::GenerateClassOf(int argument_count) {
|
||
|
// The special form detected by IsClassOfTest is detected before we get here
|
||
|
// and does not cause a bailout.
|
||
|
BAILOUT("inlined runtime function: ClassOf");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateValueOf(int argument_count) {
|
||
|
ASSERT(argument_count == 1);
|
||
|
|
||
|
HValue* value = Pop();
|
||
|
HValueOf* op = new HValueOf(value);
|
||
|
PushAndAdd(op);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateSetValueOf(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: SetValueOf");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for charCodeAt(n).
|
||
|
void HGraphBuilder::GenerateStringCharCodeAt(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: StringCharCodeAt");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for string.charAt(n) and string[n].
|
||
|
void HGraphBuilder::GenerateStringCharFromCode(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: StringCharFromCode");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for string.charAt(n) and string[n].
|
||
|
void HGraphBuilder::GenerateStringCharAt(int argument_count) {
|
||
|
ASSERT_EQ(2, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::StringCharAt, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for object equality testing.
|
||
|
void HGraphBuilder::GenerateObjectEquals(int argument_count) {
|
||
|
ASSERT(argument_count == 2);
|
||
|
|
||
|
HValue* right = Pop();
|
||
|
HValue* left = Pop();
|
||
|
PushAndAdd(new HCompareJSObjectEq(left, right));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateLog(int argument_count) {
|
||
|
UNREACHABLE(); // We caught this in VisitCallRuntime.
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for Math.random().
|
||
|
void HGraphBuilder::GenerateRandomHeapNumber(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: RandomHeapNumber");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for StringAdd.
|
||
|
void HGraphBuilder::GenerateStringAdd(int argument_count) {
|
||
|
ASSERT_EQ(2, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::StringAdd, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for SubString.
|
||
|
void HGraphBuilder::GenerateSubString(int argument_count) {
|
||
|
ASSERT_EQ(3, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::SubString, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for StringCompare.
|
||
|
void HGraphBuilder::GenerateStringCompare(int argument_count) {
|
||
|
ASSERT_EQ(2, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::StringCompare, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for direct calls from JavaScript to native RegExp code.
|
||
|
void HGraphBuilder::GenerateRegExpExec(int argument_count) {
|
||
|
ASSERT_EQ(4, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::RegExpExec, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Construct a RegExp exec result with two in-object properties.
|
||
|
void HGraphBuilder::GenerateRegExpConstructResult(int argument_count) {
|
||
|
ASSERT_EQ(3, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::RegExpConstructResult, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Support for fast native caches.
|
||
|
void HGraphBuilder::GenerateGetFromCache(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: GetFromCache");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast support for number to string.
|
||
|
void HGraphBuilder::GenerateNumberToString(int argument_count) {
|
||
|
ASSERT_EQ(1, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::NumberToString, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast swapping of elements. Takes three expressions, the object and two
|
||
|
// indices. This should only be used if the indices are known to be
|
||
|
// non-negative and within bounds of the elements array at the call site.
|
||
|
void HGraphBuilder::GenerateSwapElements(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: SwapElements");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast call for custom callbacks.
|
||
|
void HGraphBuilder::GenerateCallFunction(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: CallFunction");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Fast call to math functions.
|
||
|
void HGraphBuilder::GenerateMathPow(int argument_count) {
|
||
|
ASSERT_EQ(2, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
PushAndAdd(new HCallStub(CodeStub::MathPow, argument_count),
|
||
|
RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateMathSin(int argument_count) {
|
||
|
ASSERT_EQ(1, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
HCallStub* instr =
|
||
|
new HCallStub(CodeStub::TranscendentalCache, argument_count);
|
||
|
instr->set_transcendental_type(TranscendentalCache::SIN);
|
||
|
PushAndAdd(instr, RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateMathCos(int argument_count) {
|
||
|
ASSERT_EQ(1, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
HCallStub* instr =
|
||
|
new HCallStub(CodeStub::TranscendentalCache, argument_count);
|
||
|
instr->set_transcendental_type(TranscendentalCache::COS);
|
||
|
PushAndAdd(instr, RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateMathLog(int argument_count) {
|
||
|
ASSERT_EQ(1, argument_count);
|
||
|
PushArgumentsForStubCall(argument_count);
|
||
|
HCallStub* instr =
|
||
|
new HCallStub(CodeStub::TranscendentalCache, argument_count);
|
||
|
instr->set_transcendental_type(TranscendentalCache::LOG);
|
||
|
PushAndAdd(instr, RelocInfo::kNoPosition);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateMathSqrt(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: MathSqrt");
|
||
|
}
|
||
|
|
||
|
|
||
|
// Check whether two RegExps are equivalent
|
||
|
void HGraphBuilder::GenerateIsRegExpEquivalent(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: IsRegExpEquivalent");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateGetCachedArrayIndex(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: GetCachedArrayIndex");
|
||
|
}
|
||
|
|
||
|
|
||
|
void HGraphBuilder::GenerateFastAsciiArrayJoin(int argument_count) {
|
||
|
BAILOUT("inlined runtime function: FastAsciiArrayJoin");
|
||
|
}
|
||
|
|
||
|
|
||
|
#undef BAILOUT
|
||
|
#undef CHECK_BAILOUT
|
||
|
#undef VISIT_FOR_EFFECT
|
||
|
#undef VISIT_FOR_VALUE
|
||
|
#undef ADD_TO_SUBGRAPH
|
||
|
|
||
|
|
||
|
HEnvironment::HEnvironment(HEnvironment* outer,
|
||
|
Scope* scope,
|
||
|
Handle<JSFunction> closure)
|
||
|
: closure_(closure),
|
||
|
values_(0),
|
||
|
assigned_variables_(4),
|
||
|
parameter_count_(0),
|
||
|
local_count_(0),
|
||
|
outer_(outer),
|
||
|
pop_count_(0),
|
||
|
push_count_(0),
|
||
|
ast_id_(AstNode::kNoNumber) {
|
||
|
Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
|
||
|
}
|
||
|
|
||
|
|
||
|
HEnvironment::HEnvironment(const HEnvironment* other)
|
||
|
: values_(0),
|
||
|
assigned_variables_(0),
|
||
|
parameter_count_(0),
|
||
|
local_count_(0),
|
||
|
outer_(NULL),
|
||
|
pop_count_(0),
|
||
|
push_count_(0),
|
||
|
ast_id_(other->ast_id()) {
|
||
|
Initialize(other);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HEnvironment::Initialize(int parameter_count,
|
||
|
int local_count,
|
||
|
int stack_height) {
|
||
|
parameter_count_ = parameter_count;
|
||
|
local_count_ = local_count;
|
||
|
|
||
|
// Avoid reallocating the temporaries' backing store on the first Push.
|
||
|
int total = parameter_count + local_count + stack_height;
|
||
|
values_.Initialize(total + 4);
|
||
|
for (int i = 0; i < total; ++i) values_.Add(NULL);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
|
||
|
ASSERT(!block->IsLoopHeader());
|
||
|
ASSERT(values_.length() == other->values_.length());
|
||
|
|
||
|
int length = values_.length();
|
||
|
for (int i = 0; i < length; ++i) {
|
||
|
HValue* value = values_[i];
|
||
|
if (value != NULL && value->IsPhi() && value->block() == block) {
|
||
|
// There is already a phi for the i'th value.
|
||
|
HPhi* phi = HPhi::cast(value);
|
||
|
// Assert index is correct and that we haven't missed an incoming edge.
|
||
|
ASSERT(phi->merged_index() == i);
|
||
|
ASSERT(phi->OperandCount() == block->predecessors()->length());
|
||
|
phi->AddInput(other->values_[i]);
|
||
|
} else if (values_[i] != other->values_[i]) {
|
||
|
// There is a fresh value on the incoming edge, a phi is needed.
|
||
|
ASSERT(values_[i] != NULL && other->values_[i] != NULL);
|
||
|
HPhi* phi = new HPhi(i);
|
||
|
HValue* old_value = values_[i];
|
||
|
for (int j = 0; j < block->predecessors()->length(); j++) {
|
||
|
phi->AddInput(old_value);
|
||
|
}
|
||
|
phi->AddInput(other->values_[i]);
|
||
|
this->values_[i] = phi;
|
||
|
block->AddPhi(phi);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HEnvironment::Initialize(const HEnvironment* other) {
|
||
|
closure_ = other->closure();
|
||
|
values_.AddAll(other->values_);
|
||
|
assigned_variables_.AddAll(other->assigned_variables_);
|
||
|
parameter_count_ = other->parameter_count_;
|
||
|
local_count_ = other->local_count_;
|
||
|
if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
|
||
|
pop_count_ = other->pop_count_;
|
||
|
push_count_ = other->push_count_;
|
||
|
ast_id_ = other->ast_id_;
|
||
|
}
|
||
|
|
||
|
|
||
|
int HEnvironment::IndexFor(Variable* variable) const {
|
||
|
Slot* slot = variable->AsSlot();
|
||
|
ASSERT(slot != NULL && slot->IsStackAllocated());
|
||
|
if (slot->type() == Slot::PARAMETER) {
|
||
|
return slot->index() + 1;
|
||
|
} else {
|
||
|
return parameter_count_ + slot->index();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
HEnvironment* HEnvironment::Copy() const {
|
||
|
return new HEnvironment(this);
|
||
|
}
|
||
|
|
||
|
|
||
|
HEnvironment* HEnvironment::CopyWithoutHistory() const {
|
||
|
HEnvironment* result = Copy();
|
||
|
result->ClearHistory();
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
|
||
|
HEnvironment* new_env = Copy();
|
||
|
for (int i = 0; i < values_.length(); ++i) {
|
||
|
HPhi* phi = new HPhi(i);
|
||
|
phi->AddInput(values_[i]);
|
||
|
new_env->values_[i] = phi;
|
||
|
loop_header->AddPhi(phi);
|
||
|
}
|
||
|
new_env->ClearHistory();
|
||
|
return new_env;
|
||
|
}
|
||
|
|
||
|
|
||
|
HEnvironment* HEnvironment::CopyForInlining(Handle<JSFunction> target,
|
||
|
FunctionLiteral* function,
|
||
|
bool is_speculative,
|
||
|
HConstant* undefined) const {
|
||
|
// Outer environment is a copy of this one without the arguments.
|
||
|
int arity = function->scope()->num_parameters();
|
||
|
HEnvironment* outer = Copy();
|
||
|
outer->Drop(arity + 1); // Including receiver.
|
||
|
outer->ClearHistory();
|
||
|
HEnvironment* inner = new HEnvironment(outer, function->scope(), target);
|
||
|
// Get the argument values from the original environment.
|
||
|
if (is_speculative) {
|
||
|
for (int i = 0; i <= arity; ++i) { // Include receiver.
|
||
|
HValue* push = ExpressionStackAt(arity - i);
|
||
|
inner->SetValueAt(i, push);
|
||
|
}
|
||
|
} else {
|
||
|
for (int i = 0; i <= arity; ++i) { // Include receiver.
|
||
|
inner->SetValueAt(i, ExpressionStackAt(arity - i));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Initialize the stack-allocated locals to undefined.
|
||
|
int local_base = arity + 1;
|
||
|
int local_count = function->scope()->num_stack_slots();
|
||
|
for (int i = 0; i < local_count; ++i) {
|
||
|
inner->SetValueAt(local_base + i, undefined);
|
||
|
}
|
||
|
|
||
|
inner->set_ast_id(function->id());
|
||
|
return inner;
|
||
|
}
|
||
|
|
||
|
|
||
|
void HEnvironment::PrintTo(StringStream* stream) {
|
||
|
for (int i = 0; i < total_count(); i++) {
|
||
|
if (i == 0) stream->Add("parameters\n");
|
||
|
if (i == parameter_count()) stream->Add("locals\n");
|
||
|
if (i == parameter_count() + local_count()) stream->Add("expressions");
|
||
|
HValue* val = values_.at(i);
|
||
|
stream->Add("%d: ", i);
|
||
|
if (val != NULL) {
|
||
|
val->PrintNameTo(stream);
|
||
|
} else {
|
||
|
stream->Add("NULL");
|
||
|
}
|
||
|
stream->Add("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HEnvironment::PrintToStd() {
|
||
|
HeapStringAllocator string_allocator;
|
||
|
StringStream trace(&string_allocator);
|
||
|
PrintTo(&trace);
|
||
|
PrintF("%s", *trace.ToCString());
|
||
|
}
|
||
|
|
||
|
|
||
|
void HTracer::TraceCompilation(FunctionLiteral* function) {
|
||
|
Tag tag(this, "compilation");
|
||
|
Handle<String> name = function->debug_name();
|
||
|
PrintStringProperty("name", *name->ToCString());
|
||
|
PrintStringProperty("method", *name->ToCString());
|
||
|
PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
|
||
|
}
|
||
|
|
||
|
|
||
|
void HTracer::TraceLithium(const char* name, LChunk* chunk) {
|
||
|
Trace(name, chunk->graph(), chunk);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
|
||
|
Trace(name, graph, NULL);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
|
||
|
Tag tag(this, "cfg");
|
||
|
PrintStringProperty("name", name);
|
||
|
const ZoneList<HBasicBlock*>* blocks = graph->blocks();
|
||
|
for (int i = 0; i < blocks->length(); i++) {
|
||
|
HBasicBlock* current = blocks->at(i);
|
||
|
Tag block_tag(this, "block");
|
||
|
PrintBlockProperty("name", current->block_id());
|
||
|
PrintIntProperty("from_bci", -1);
|
||
|
PrintIntProperty("to_bci", -1);
|
||
|
|
||
|
if (!current->predecessors()->is_empty()) {
|
||
|
PrintIndent();
|
||
|
trace_.Add("predecessors");
|
||
|
for (int j = 0; j < current->predecessors()->length(); ++j) {
|
||
|
trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
|
||
|
}
|
||
|
trace_.Add("\n");
|
||
|
} else {
|
||
|
PrintEmptyProperty("predecessors");
|
||
|
}
|
||
|
|
||
|
if (current->end() == NULL || current->end()->FirstSuccessor() == NULL) {
|
||
|
PrintEmptyProperty("successors");
|
||
|
} else if (current->end()->SecondSuccessor() == NULL) {
|
||
|
PrintBlockProperty("successors",
|
||
|
current->end()->FirstSuccessor()->block_id());
|
||
|
} else {
|
||
|
PrintBlockProperty("successors",
|
||
|
current->end()->FirstSuccessor()->block_id(),
|
||
|
current->end()->SecondSuccessor()->block_id());
|
||
|
}
|
||
|
|
||
|
PrintEmptyProperty("xhandlers");
|
||
|
PrintEmptyProperty("flags");
|
||
|
|
||
|
if (current->dominator() != NULL) {
|
||
|
PrintBlockProperty("dominator", current->dominator()->block_id());
|
||
|
}
|
||
|
|
||
|
if (chunk != NULL) {
|
||
|
int first_index = current->first_instruction_index();
|
||
|
int last_index = current->last_instruction_index();
|
||
|
PrintIntProperty(
|
||
|
"first_lir_id",
|
||
|
LifetimePosition::FromInstructionIndex(first_index).Value());
|
||
|
PrintIntProperty(
|
||
|
"last_lir_id",
|
||
|
LifetimePosition::FromInstructionIndex(last_index).Value());
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tag states_tag(this, "states");
|
||
|
Tag locals_tag(this, "locals");
|
||
|
int total = current->phis()->length();
|
||
|
trace_.Add("size %d\n", total);
|
||
|
trace_.Add("method \"None\"");
|
||
|
for (int j = 0; j < total; ++j) {
|
||
|
HPhi* phi = current->phis()->at(j);
|
||
|
trace_.Add("%d ", phi->merged_index());
|
||
|
phi->PrintNameTo(&trace_);
|
||
|
trace_.Add(" ");
|
||
|
phi->PrintTo(&trace_);
|
||
|
trace_.Add("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
{
|
||
|
Tag HIR_tag(this, "HIR");
|
||
|
HInstruction* instruction = current->first();
|
||
|
while (instruction != NULL) {
|
||
|
int bci = 0;
|
||
|
int uses = instruction->uses()->length();
|
||
|
trace_.Add("%d %d ", bci, uses);
|
||
|
instruction->PrintNameTo(&trace_);
|
||
|
trace_.Add(" ");
|
||
|
instruction->PrintTo(&trace_);
|
||
|
trace_.Add(" <|@\n");
|
||
|
instruction = instruction->next();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
if (chunk != NULL) {
|
||
|
Tag LIR_tag(this, "LIR");
|
||
|
int first_index = current->first_instruction_index();
|
||
|
int last_index = current->last_instruction_index();
|
||
|
if (first_index != -1 && last_index != -1) {
|
||
|
const ZoneList<LInstruction*>* instructions = chunk->instructions();
|
||
|
for (int i = first_index; i <= last_index; ++i) {
|
||
|
LInstruction* linstr = instructions->at(i);
|
||
|
if (linstr != NULL) {
|
||
|
trace_.Add("%d ",
|
||
|
LifetimePosition::FromInstructionIndex(i).Value());
|
||
|
linstr->PrintTo(&trace_);
|
||
|
trace_.Add(" <|@\n");
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
|
||
|
Tag tag(this, "intervals");
|
||
|
PrintStringProperty("name", name);
|
||
|
|
||
|
const ZoneList<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
|
||
|
for (int i = 0; i < fixed_d->length(); ++i) {
|
||
|
TraceLiveRange(fixed_d->at(i), "fixed");
|
||
|
}
|
||
|
|
||
|
const ZoneList<LiveRange*>* fixed = allocator->fixed_live_ranges();
|
||
|
for (int i = 0; i < fixed->length(); ++i) {
|
||
|
TraceLiveRange(fixed->at(i), "fixed");
|
||
|
}
|
||
|
|
||
|
const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
|
||
|
for (int i = 0; i < live_ranges->length(); ++i) {
|
||
|
TraceLiveRange(live_ranges->at(i), "object");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HTracer::TraceLiveRange(LiveRange* range, const char* type) {
|
||
|
if (range != NULL && !range->IsEmpty()) {
|
||
|
trace_.Add("%d %s", range->id(), type);
|
||
|
if (range->HasRegisterAssigned()) {
|
||
|
LOperand* op = range->CreateAssignedOperand();
|
||
|
int assigned_reg = op->index();
|
||
|
if (op->IsDoubleRegister()) {
|
||
|
trace_.Add(" \"%s\"",
|
||
|
DoubleRegister::AllocationIndexToString(assigned_reg));
|
||
|
} else {
|
||
|
ASSERT(op->IsRegister());
|
||
|
trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
|
||
|
}
|
||
|
} else if (range->IsSpilled()) {
|
||
|
LOperand* op = range->TopLevel()->GetSpillOperand();
|
||
|
if (op->IsDoubleStackSlot()) {
|
||
|
trace_.Add(" \"double_stack:%d\"", op->index());
|
||
|
} else {
|
||
|
ASSERT(op->IsStackSlot());
|
||
|
trace_.Add(" \"stack:%d\"", op->index());
|
||
|
}
|
||
|
}
|
||
|
int parent_index = -1;
|
||
|
if (range->IsChild()) {
|
||
|
parent_index = range->parent()->id();
|
||
|
} else {
|
||
|
parent_index = range->id();
|
||
|
}
|
||
|
LOperand* op = range->FirstHint();
|
||
|
int hint_index = -1;
|
||
|
if (op != NULL && op->IsUnallocated()) hint_index = op->VirtualRegister();
|
||
|
trace_.Add(" %d %d", parent_index, hint_index);
|
||
|
UseInterval* cur_interval = range->first_interval();
|
||
|
while (cur_interval != NULL) {
|
||
|
trace_.Add(" [%d, %d[",
|
||
|
cur_interval->start().Value(),
|
||
|
cur_interval->end().Value());
|
||
|
cur_interval = cur_interval->next();
|
||
|
}
|
||
|
|
||
|
UsePosition* current_pos = range->first_pos();
|
||
|
while (current_pos != NULL) {
|
||
|
if (current_pos->RegisterIsBeneficial()) {
|
||
|
trace_.Add(" %d M", current_pos->pos().Value());
|
||
|
}
|
||
|
current_pos = current_pos->next();
|
||
|
}
|
||
|
|
||
|
trace_.Add(" \"\"\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void HTracer::FlushToFile() {
|
||
|
AppendChars(filename_, *trace_.ToCString(), trace_.length(), false);
|
||
|
trace_.Reset();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HStatistics::Print() {
|
||
|
PrintF("Timing results:\n");
|
||
|
int64_t sum = 0;
|
||
|
for (int i = 0; i < timing_.length(); ++i) {
|
||
|
sum += timing_[i];
|
||
|
}
|
||
|
|
||
|
for (int i = 0; i < names_.length(); ++i) {
|
||
|
PrintF("%30s", names_[i]);
|
||
|
double ms = static_cast<double>(timing_[i]) / 1000;
|
||
|
double percent = static_cast<double>(timing_[i]) * 100 / sum;
|
||
|
PrintF(" - %0.3f ms / %0.3f %% \n", ms, percent);
|
||
|
}
|
||
|
PrintF("%30s - %0.3f ms \n", "Sum", static_cast<double>(sum) / 1000);
|
||
|
PrintF("---------------------------------------------------------------\n");
|
||
|
PrintF("%30s - %0.3f ms (%0.1f times slower than full code gen)\n",
|
||
|
"Total",
|
||
|
static_cast<double>(total_) / 1000,
|
||
|
static_cast<double>(total_) / full_code_gen_);
|
||
|
}
|
||
|
|
||
|
|
||
|
void HStatistics::SaveTiming(const char* name, int64_t ticks) {
|
||
|
if (name == HPhase::kFullCodeGen) {
|
||
|
full_code_gen_ += ticks;
|
||
|
} else if (name == HPhase::kTotal) {
|
||
|
total_ += ticks;
|
||
|
} else {
|
||
|
for (int i = 0; i < names_.length(); ++i) {
|
||
|
if (names_[i] == name) {
|
||
|
timing_[i] += ticks;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
names_.Add(name);
|
||
|
timing_.Add(ticks);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
const char* const HPhase::kFullCodeGen = "Full code generator";
|
||
|
const char* const HPhase::kTotal = "Total";
|
||
|
|
||
|
|
||
|
void HPhase::Begin(const char* name,
|
||
|
HGraph* graph,
|
||
|
LChunk* chunk,
|
||
|
LAllocator* allocator) {
|
||
|
name_ = name;
|
||
|
graph_ = graph;
|
||
|
chunk_ = chunk;
|
||
|
allocator_ = allocator;
|
||
|
if (allocator != NULL && chunk_ == NULL) {
|
||
|
chunk_ = allocator->chunk();
|
||
|
}
|
||
|
if (FLAG_time_hydrogen) start_ = OS::Ticks();
|
||
|
}
|
||
|
|
||
|
|
||
|
void HPhase::End() const {
|
||
|
if (FLAG_time_hydrogen) {
|
||
|
int64_t end = OS::Ticks();
|
||
|
HStatistics::Instance()->SaveTiming(name_, end - start_);
|
||
|
}
|
||
|
|
||
|
if (FLAG_trace_hydrogen) {
|
||
|
if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_);
|
||
|
if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_);
|
||
|
if (allocator_ != NULL) {
|
||
|
HTracer::Instance()->TraceLiveRanges(name_, allocator_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifdef DEBUG
|
||
|
if (graph_ != NULL) graph_->Verify();
|
||
|
if (chunk_ != NULL) chunk_->Verify();
|
||
|
if (allocator_ != NULL) allocator_->Verify();
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
} } // namespace v8::internal
|