|
|
|
/* Copyright Joyent, Inc. and other Node contributors. All rights reserved.
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to
|
|
|
|
* deal in the Software without restriction, including without limitation the
|
|
|
|
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
|
|
|
|
* sell copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
|
|
* IN THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* See uv_loop_new for an introduction. */
|
|
|
|
|
|
|
|
#ifndef UV_H
|
|
|
|
#define UV_H
|
|
|
|
#ifdef __cplusplus
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
/* Windows - set up dll import/export decorators. */
|
|
|
|
# if defined(BUILDING_UV_SHARED)
|
|
|
|
/* Building shared library. Export everything from c-ares as well. */
|
|
|
|
# define UV_EXTERN __declspec(dllexport)
|
|
|
|
# define CARES_BUILDING_LIBRARY 1
|
|
|
|
# elif defined(USING_UV_SHARED)
|
|
|
|
/* Using shared library. Use shared c-ares as well. */
|
|
|
|
# define UV_EXTERN __declspec(dllimport)
|
|
|
|
# else
|
|
|
|
/* Building static library. Build c-ares statically as well. */
|
|
|
|
# define UV_EXTERN /* nothing */
|
|
|
|
# define CARES_STATICLIB 1
|
|
|
|
# endif
|
|
|
|
#elif __GNUC__ >= 4
|
|
|
|
# define UV_EXTERN __attribute__((visibility("default")))
|
|
|
|
#else
|
|
|
|
# define UV_EXTERN /* nothing */
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#define UV_VERSION_MAJOR 0
|
|
|
|
#define UV_VERSION_MINOR 6
|
|
|
|
|
|
|
|
|
|
|
|
#include <stdint.h> /* int64_t */
|
|
|
|
#include <sys/types.h> /* size_t */
|
|
|
|
|
|
|
|
#include "ares.h"
|
|
|
|
|
|
|
|
#if !defined(_SSIZE_T_) && !defined(_SSIZE_T_DEFINED)
|
|
|
|
typedef intptr_t ssize_t;
|
|
|
|
# define _SSIZE_T_
|
|
|
|
# define _SSIZE_T_DEFINED
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__unix__) || defined(__POSIX__) || defined(__APPLE__)
|
|
|
|
# include "uv-private/uv-unix.h"
|
|
|
|
#else
|
|
|
|
# include "uv-private/uv-win.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* Expand this list if necessary. */
|
|
|
|
#define UV_ERRNO_MAP(XX) \
|
|
|
|
XX( -1, UNKNOWN, "unknown error") \
|
|
|
|
XX( 0, OK, "success") \
|
|
|
|
XX( 1, EOF, "end of file") \
|
|
|
|
XX( 2, EADDRINFO, "getaddrinfo error") \
|
|
|
|
XX( 3, EACCES, "permission denied") \
|
|
|
|
XX( 4, EAGAIN, "no more processes") \
|
|
|
|
XX( 5, EADDRINUSE, "address already in use") \
|
|
|
|
XX( 6, EADDRNOTAVAIL, "") \
|
|
|
|
XX( 7, EAFNOSUPPORT, "") \
|
|
|
|
XX( 8, EALREADY, "") \
|
|
|
|
XX( 9, EBADF, "bad file descriptor") \
|
|
|
|
XX( 10, EBUSY, "resource busy or locked") \
|
|
|
|
XX( 11, ECONNABORTED, "software caused connection abort") \
|
|
|
|
XX( 12, ECONNREFUSED, "connection refused") \
|
|
|
|
XX( 13, ECONNRESET, "connection reset by peer") \
|
|
|
|
XX( 14, EDESTADDRREQ, "destination address required") \
|
|
|
|
XX( 15, EFAULT, "bad address in system call argument") \
|
|
|
|
XX( 16, EHOSTUNREACH, "host is unreachable") \
|
|
|
|
XX( 17, EINTR, "interrupted system call") \
|
|
|
|
XX( 18, EINVAL, "invalid argument") \
|
|
|
|
XX( 19, EISCONN, "socket is already connected") \
|
|
|
|
XX( 20, EMFILE, "too many open files") \
|
|
|
|
XX( 21, EMSGSIZE, "message too long") \
|
|
|
|
XX( 22, ENETDOWN, "network is down") \
|
|
|
|
XX( 23, ENETUNREACH, "network is unreachable") \
|
|
|
|
XX( 24, ENFILE, "file table overflow") \
|
|
|
|
XX( 25, ENOBUFS, "no buffer space available") \
|
|
|
|
XX( 26, ENOMEM, "not enough memory") \
|
|
|
|
XX( 27, ENOTDIR, "not a directory") \
|
|
|
|
XX( 28, EISDIR, "illegal operation on a directory") \
|
|
|
|
XX( 29, ENONET, "machine is not on the network") \
|
|
|
|
XX( 31, ENOTCONN, "socket is not connected") \
|
|
|
|
XX( 32, ENOTSOCK, "socket operation on non-socket") \
|
|
|
|
XX( 33, ENOTSUP, "operation not supported on socket") \
|
|
|
|
XX( 34, ENOENT, "no such file or directory") \
|
|
|
|
XX( 35, ENOSYS, "function not implemented") \
|
|
|
|
XX( 36, EPIPE, "broken pipe") \
|
|
|
|
XX( 37, EPROTO, "protocol error") \
|
|
|
|
XX( 38, EPROTONOSUPPORT, "protocol not supported") \
|
|
|
|
XX( 39, EPROTOTYPE, "protocol wrong type for socket") \
|
|
|
|
XX( 40, ETIMEDOUT, "connection timed out") \
|
|
|
|
XX( 41, ECHARSET, "") \
|
|
|
|
XX( 42, EAIFAMNOSUPPORT, "") \
|
|
|
|
XX( 44, EAISERVICE, "") \
|
|
|
|
XX( 45, EAISOCKTYPE, "") \
|
|
|
|
XX( 46, ESHUTDOWN, "") \
|
|
|
|
XX( 47, EEXIST, "file already exists") \
|
|
|
|
XX( 48, ESRCH, "no such process") \
|
|
|
|
XX( 49, ENAMETOOLONG, "name too long") \
|
|
|
|
XX( 50, EPERM, "operation not permitted") \
|
|
|
|
XX( 51, ELOOP, "too many symbolic links encountered") \
|
|
|
|
XX( 52, EXDEV, "cross-device link not permitted") \
|
|
|
|
XX( 53, ENOTEMPTY, "directory not empty") \
|
|
|
|
XX( 54, ENOSPC, "no space left on device") \
|
|
|
|
XX( 55, EIO, "i/o error") \
|
|
|
|
XX( 56, EROFS, "read-only file system" )
|
|
|
|
|
|
|
|
|
|
|
|
#define UV_ERRNO_GEN(val, name, s) UV_##name = val,
|
|
|
|
typedef enum {
|
|
|
|
UV_ERRNO_MAP(UV_ERRNO_GEN)
|
|
|
|
UV_MAX_ERRORS
|
|
|
|
} uv_err_code;
|
|
|
|
#undef UV_ERRNO_GEN
|
|
|
|
|
|
|
|
#define UV_HANDLE_TYPE_MAP(XX) \
|
|
|
|
XX(ASYNC, async) \
|
|
|
|
XX(CHECK, check) \
|
|
|
|
XX(FS_EVENT, fs_event) \
|
|
|
|
XX(IDLE, idle) \
|
|
|
|
XX(NAMED_PIPE, pipe) \
|
|
|
|
XX(POLL, poll) \
|
|
|
|
XX(PREPARE, prepare) \
|
|
|
|
XX(PROCESS, process) \
|
|
|
|
XX(TCP, tcp) \
|
|
|
|
XX(TIMER, timer) \
|
|
|
|
XX(TTY, tty) \
|
|
|
|
XX(UDP, udp) \
|
|
|
|
|
|
|
|
#define UV_REQ_TYPE_MAP(XX) \
|
|
|
|
XX(CONNECT, connect) \
|
|
|
|
XX(WRITE, write) \
|
|
|
|
XX(SHUTDOWN, shutdown) \
|
|
|
|
XX(UDP_SEND, udp_send) \
|
|
|
|
XX(FS, fs) \
|
|
|
|
XX(WORK, work) \
|
|
|
|
XX(GETADDRINFO, getaddrinfo) \
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
UV_UNKNOWN_HANDLE = 0,
|
|
|
|
#define XX(uc, lc) UV_##uc,
|
|
|
|
UV_HANDLE_TYPE_MAP(XX)
|
|
|
|
#undef XX
|
|
|
|
UV_ARES_TASK,
|
|
|
|
UV_FILE,
|
|
|
|
UV_HANDLE_TYPE_MAX
|
|
|
|
} uv_handle_type;
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
UV_UNKNOWN_REQ = 0,
|
|
|
|
#define XX(uc, lc) UV_##uc,
|
|
|
|
UV_REQ_TYPE_MAP(XX)
|
|
|
|
#undef XX
|
|
|
|
UV_REQ_TYPE_PRIVATE
|
|
|
|
UV_REQ_TYPE_MAX
|
|
|
|
} uv_req_type;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
typedef struct uv_loop_s uv_loop_t;
|
|
|
|
typedef struct uv_ares_task_s uv_ares_task_t;
|
|
|
|
typedef struct uv_err_s uv_err_t;
|
|
|
|
typedef struct uv_handle_s uv_handle_t;
|
|
|
|
typedef struct uv_stream_s uv_stream_t;
|
|
|
|
typedef struct uv_tcp_s uv_tcp_t;
|
|
|
|
typedef struct uv_udp_s uv_udp_t;
|
|
|
|
typedef struct uv_pipe_s uv_pipe_t;
|
|
|
|
typedef struct uv_tty_s uv_tty_t;
|
|
|
|
typedef struct uv_poll_s uv_poll_t;
|
|
|
|
typedef struct uv_timer_s uv_timer_t;
|
|
|
|
typedef struct uv_prepare_s uv_prepare_t;
|
|
|
|
typedef struct uv_check_s uv_check_t;
|
|
|
|
typedef struct uv_idle_s uv_idle_t;
|
|
|
|
typedef struct uv_async_s uv_async_t;
|
|
|
|
typedef struct uv_getaddrinfo_s uv_getaddrinfo_t;
|
|
|
|
typedef struct uv_process_s uv_process_t;
|
|
|
|
typedef struct uv_counters_s uv_counters_t;
|
|
|
|
typedef struct uv_cpu_info_s uv_cpu_info_t;
|
|
|
|
typedef struct uv_interface_address_s uv_interface_address_t;
|
|
|
|
/* Request types */
|
|
|
|
typedef struct uv_req_s uv_req_t;
|
|
|
|
typedef struct uv_shutdown_s uv_shutdown_t;
|
|
|
|
typedef struct uv_write_s uv_write_t;
|
|
|
|
typedef struct uv_connect_s uv_connect_t;
|
|
|
|
typedef struct uv_udp_send_s uv_udp_send_t;
|
|
|
|
typedef struct uv_fs_s uv_fs_t;
|
|
|
|
/* uv_fs_event_t is a subclass of uv_handle_t. */
|
|
|
|
typedef struct uv_fs_event_s uv_fs_event_t;
|
|
|
|
typedef struct uv_work_s uv_work_t;
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function must be called before any other functions in libuv.
|
|
|
|
*
|
|
|
|
* All functions besides uv_run() are non-blocking.
|
|
|
|
*
|
|
|
|
* All callbacks in libuv are made asynchronously. That is they are never
|
|
|
|
* made by the function that takes them as a parameter.
|
|
|
|
*/
|
|
|
|
UV_EXTERN uv_loop_t* uv_loop_new(void);
|
|
|
|
UV_EXTERN void uv_loop_delete(uv_loop_t*);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns the default loop.
|
|
|
|
*/
|
|
|
|
UV_EXTERN uv_loop_t* uv_default_loop(void);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This function starts the event loop. It blocks until the reference count
|
|
|
|
* of the loop drops to zero. Always returns zero.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_run(uv_loop_t*);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Poll for new events once. Note that this function blocks if there are no
|
|
|
|
* pending events. Returns zero when done (no active handles or requests left),
|
|
|
|
* or non-zero if more events are expected (meaning you should call
|
|
|
|
* uv_run_once() again sometime in the future).
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_run_once(uv_loop_t*);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Manually modify the event loop's reference count. Useful if the user wants
|
|
|
|
* to have a handle or timeout that doesn't keep the loop alive.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_ref(uv_handle_t*);
|
|
|
|
UV_EXTERN void uv_unref(uv_handle_t*);
|
|
|
|
|
|
|
|
UV_EXTERN void uv_update_time(uv_loop_t*);
|
|
|
|
UV_EXTERN int64_t uv_now(uv_loop_t*);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Should return a buffer that libuv can use to read data into.
|
|
|
|
*
|
|
|
|
* `suggested_size` is a hint. Returning a buffer that is smaller is perfectly
|
|
|
|
* okay as long as `buf.len > 0`.
|
|
|
|
*/
|
|
|
|
typedef uv_buf_t (*uv_alloc_cb)(uv_handle_t* handle, size_t suggested_size);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* `nread` is > 0 if there is data available, 0 if libuv is done reading for now
|
|
|
|
* or -1 on error.
|
|
|
|
*
|
|
|
|
* Error details can be obtained by calling uv_last_error(). UV_EOF indicates
|
|
|
|
* that the stream has been closed.
|
|
|
|
*
|
|
|
|
* The callee is responsible for closing the stream when an error happens.
|
|
|
|
* Trying to read from the stream again is undefined.
|
|
|
|
*
|
|
|
|
* The callee is responsible for freeing the buffer, libuv does not reuse it.
|
|
|
|
*/
|
|
|
|
typedef void (*uv_read_cb)(uv_stream_t* stream, ssize_t nread, uv_buf_t buf);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Just like the uv_read_cb except that if the pending parameter is true
|
|
|
|
* then you can use uv_accept() to pull the new handle into the process.
|
|
|
|
* If no handle is pending then pending will be UV_UNKNOWN_HANDLE.
|
|
|
|
*/
|
|
|
|
typedef void (*uv_read2_cb)(uv_pipe_t* pipe, ssize_t nread, uv_buf_t buf,
|
|
|
|
uv_handle_type pending);
|
|
|
|
|
|
|
|
typedef void (*uv_write_cb)(uv_write_t* req, int status);
|
|
|
|
typedef void (*uv_connect_cb)(uv_connect_t* req, int status);
|
|
|
|
typedef void (*uv_shutdown_cb)(uv_shutdown_t* req, int status);
|
|
|
|
typedef void (*uv_connection_cb)(uv_stream_t* server, int status);
|
|
|
|
typedef void (*uv_close_cb)(uv_handle_t* handle);
|
|
|
|
typedef void (*uv_poll_cb)(uv_poll_t* handle, int status, int events);
|
|
|
|
typedef void (*uv_timer_cb)(uv_timer_t* handle, int status);
|
|
|
|
/* TODO: do these really need a status argument? */
|
|
|
|
typedef void (*uv_async_cb)(uv_async_t* handle, int status);
|
|
|
|
typedef void (*uv_prepare_cb)(uv_prepare_t* handle, int status);
|
|
|
|
typedef void (*uv_check_cb)(uv_check_t* handle, int status);
|
|
|
|
typedef void (*uv_idle_cb)(uv_idle_t* handle, int status);
|
|
|
|
typedef void (*uv_getaddrinfo_cb)(uv_getaddrinfo_t* handle, int status,
|
|
|
|
struct addrinfo* res);
|
|
|
|
typedef void (*uv_exit_cb)(uv_process_t*, int exit_status, int term_signal);
|
|
|
|
typedef void (*uv_fs_cb)(uv_fs_t* req);
|
|
|
|
typedef void (*uv_work_cb)(uv_work_t* req);
|
|
|
|
typedef void (*uv_after_work_cb)(uv_work_t* req);
|
|
|
|
typedef void (*uv_walk_cb)(uv_handle_t* handle, void* arg);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This will be called repeatedly after the uv_fs_event_t is initialized.
|
|
|
|
* If uv_fs_event_t was initialized with a directory the filename parameter
|
|
|
|
* will be a relative path to a file contained in the directory.
|
|
|
|
* The events parameter is an ORed mask of enum uv_fs_event elements.
|
|
|
|
*/
|
|
|
|
typedef void (*uv_fs_event_cb)(uv_fs_event_t* handle, const char* filename,
|
|
|
|
int events, int status);
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
UV_LEAVE_GROUP = 0,
|
|
|
|
UV_JOIN_GROUP
|
|
|
|
} uv_membership;
|
|
|
|
|
|
|
|
|
|
|
|
struct uv_err_s {
|
|
|
|
/* read-only */
|
|
|
|
uv_err_code code;
|
|
|
|
/* private */
|
|
|
|
int sys_errno_;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Most functions return boolean: 0 for success and -1 for failure.
|
|
|
|
* On error the user should then call uv_last_error() to determine
|
|
|
|
* the error code.
|
|
|
|
*/
|
|
|
|
UV_EXTERN uv_err_t uv_last_error(uv_loop_t*);
|
|
|
|
UV_EXTERN const char* uv_strerror(uv_err_t err);
|
|
|
|
UV_EXTERN const char* uv_err_name(uv_err_t err);
|
|
|
|
|
|
|
|
|
|
|
|
#define UV_REQ_FIELDS \
|
|
|
|
/* public */ \
|
|
|
|
void* data; \
|
|
|
|
/* private */ \
|
|
|
|
ngx_queue_t active_queue; \
|
|
|
|
UV_REQ_PRIVATE_FIELDS \
|
|
|
|
/* read-only */ \
|
|
|
|
uv_req_type type; \
|
|
|
|
|
|
|
|
/* Abstract base class of all requests. */
|
|
|
|
struct uv_req_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/* Platform-specific request types */
|
|
|
|
UV_PRIVATE_REQ_TYPES
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_shutdown_t is a subclass of uv_req_t
|
|
|
|
*
|
|
|
|
* Shutdown the outgoing (write) side of a duplex stream. It waits for
|
|
|
|
* pending write requests to complete. The handle should refer to a
|
|
|
|
* initialized stream. req should be an uninitialized shutdown request
|
|
|
|
* struct. The cb is called after shutdown is complete.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_shutdown(uv_shutdown_t* req, uv_stream_t* handle,
|
|
|
|
uv_shutdown_cb cb);
|
|
|
|
|
|
|
|
struct uv_shutdown_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
uv_stream_t* handle;
|
|
|
|
uv_shutdown_cb cb;
|
|
|
|
UV_SHUTDOWN_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#define UV_HANDLE_FIELDS \
|
|
|
|
/* read-only */ \
|
|
|
|
uv_loop_t* loop; \
|
|
|
|
/* public */ \
|
|
|
|
uv_close_cb close_cb; \
|
|
|
|
void* data; \
|
|
|
|
/* read-only */ \
|
|
|
|
uv_handle_type type; \
|
|
|
|
/* private */ \
|
|
|
|
ngx_queue_t handle_queue; \
|
|
|
|
UV_HANDLE_PRIVATE_FIELDS \
|
|
|
|
|
|
|
|
/* The abstract base class of all handles. */
|
|
|
|
struct uv_handle_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns size of various handle types, useful for FFI
|
|
|
|
* bindings to allocate correct memory without copying struct
|
|
|
|
* definitions
|
|
|
|
*/
|
|
|
|
UV_EXTERN size_t uv_handle_size(uv_handle_type type);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns size of request types, useful for dynamic lookup with FFI
|
|
|
|
*/
|
|
|
|
UV_EXTERN size_t uv_req_size(uv_req_type type);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns 1 if the prepare/check/idle/timer handle has been started, 0
|
|
|
|
* otherwise. For other handle types this always returns 1.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_is_active(const uv_handle_t* handle);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Walk the list of open handles.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_walk(uv_loop_t* loop, uv_walk_cb walk_cb, void* arg);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Request handle to be closed. close_cb will be called asynchronously after
|
|
|
|
* this call. This MUST be called on each handle before memory is released.
|
|
|
|
*
|
|
|
|
* Note that handles that wrap file descriptors are closed immediately but
|
|
|
|
* close_cb will still be deferred to the next iteration of the event loop.
|
|
|
|
* It gives you a chance to free up any resources associated with the handle.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_close(uv_handle_t* handle, uv_close_cb close_cb);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Constructor for uv_buf_t.
|
|
|
|
* Due to platform differences the user cannot rely on the ordering of the
|
|
|
|
* base and len members of the uv_buf_t struct. The user is responsible for
|
|
|
|
* freeing base after the uv_buf_t is done. Return struct passed by value.
|
|
|
|
*/
|
|
|
|
UV_EXTERN uv_buf_t uv_buf_init(char* base, unsigned int len);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Utility function. Copies up to `size` characters from `src` to `dst`
|
|
|
|
* and ensures that `dst` is properly NUL terminated unless `size` is zero.
|
|
|
|
*/
|
|
|
|
UV_EXTERN size_t uv_strlcpy(char* dst, const char* src, size_t size);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Utility function. Appends `src` to `dst` and ensures that `dst` is
|
|
|
|
* properly NUL terminated unless `size` is zero or `dst` does not
|
|
|
|
* contain a NUL byte. `size` is the total length of `dst` so at most
|
|
|
|
* `size - strlen(dst) - 1` characters will be copied from `src`.
|
|
|
|
*/
|
|
|
|
UV_EXTERN size_t uv_strlcat(char* dst, const char* src, size_t size);
|
|
|
|
|
|
|
|
|
|
|
|
#define UV_STREAM_FIELDS \
|
|
|
|
/* number of bytes queued for writing */ \
|
|
|
|
size_t write_queue_size; \
|
|
|
|
uv_alloc_cb alloc_cb; \
|
|
|
|
uv_read_cb read_cb; \
|
|
|
|
uv_read2_cb read2_cb; \
|
|
|
|
/* private */ \
|
|
|
|
UV_STREAM_PRIVATE_FIELDS
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_stream_t is a subclass of uv_handle_t
|
|
|
|
*
|
|
|
|
* uv_stream is an abstract class.
|
|
|
|
*
|
|
|
|
* uv_stream_t is the parent class of uv_tcp_t, uv_pipe_t, uv_tty_t, and
|
|
|
|
* soon uv_file_t.
|
|
|
|
*/
|
|
|
|
struct uv_stream_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_STREAM_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN int uv_listen(uv_stream_t* stream, int backlog, uv_connection_cb cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This call is used in conjunction with uv_listen() to accept incoming
|
|
|
|
* connections. Call uv_accept after receiving a uv_connection_cb to accept
|
|
|
|
* the connection. Before calling uv_accept use uv_*_init() must be
|
|
|
|
* called on the client. Non-zero return value indicates an error.
|
|
|
|
*
|
|
|
|
* When the uv_connection_cb is called it is guaranteed that uv_accept will
|
|
|
|
* complete successfully the first time. If you attempt to use it more than
|
|
|
|
* once, it may fail. It is suggested to only call uv_accept once per
|
|
|
|
* uv_connection_cb call.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_accept(uv_stream_t* server, uv_stream_t* client);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Read data from an incoming stream. The callback will be made several
|
|
|
|
* several times until there is no more data to read or uv_read_stop is
|
|
|
|
* called. When we've reached EOF nread will be set to -1 and the error is
|
|
|
|
* set to UV_EOF. When nread == -1 the buf parameter might not point to a
|
|
|
|
* valid buffer; in that case buf.len and buf.base are both set to 0.
|
|
|
|
* Note that nread might also be 0, which does *not* indicate an error or
|
|
|
|
* eof; it happens when libuv requested a buffer through the alloc callback
|
|
|
|
* but then decided that it didn't need that buffer.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_read_start(uv_stream_t*, uv_alloc_cb alloc_cb,
|
|
|
|
uv_read_cb read_cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_read_stop(uv_stream_t*);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extended read methods for receiving handles over a pipe. The pipe must be
|
|
|
|
* initialized with ipc == 1.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_read2_start(uv_stream_t*, uv_alloc_cb alloc_cb,
|
|
|
|
uv_read2_cb read_cb);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Write data to stream. Buffers are written in order. Example:
|
|
|
|
*
|
|
|
|
* uv_buf_t a[] = {
|
|
|
|
* { .base = "1", .len = 1 },
|
|
|
|
* { .base = "2", .len = 1 }
|
|
|
|
* };
|
|
|
|
*
|
|
|
|
* uv_buf_t b[] = {
|
|
|
|
* { .base = "3", .len = 1 },
|
|
|
|
* { .base = "4", .len = 1 }
|
|
|
|
* };
|
|
|
|
*
|
|
|
|
* // writes "1234"
|
|
|
|
* uv_write(req, stream, a, 2);
|
|
|
|
* uv_write(req, stream, b, 2);
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_write(uv_write_t* req, uv_stream_t* handle,
|
|
|
|
uv_buf_t bufs[], int bufcnt, uv_write_cb cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Extended write function for sending handles over a pipe. The pipe must be
|
|
|
|
* initialized with ipc == 1.
|
|
|
|
* send_handle must be a TCP socket or pipe, which is a server or a connection
|
|
|
|
* (listening or connected state). Bound sockets or pipes will be assumed to
|
|
|
|
* be servers.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_write2(uv_write_t* req, uv_stream_t* handle, uv_buf_t bufs[],
|
|
|
|
int bufcnt, uv_stream_t* send_handle, uv_write_cb cb);
|
|
|
|
|
|
|
|
/* uv_write_t is a subclass of uv_req_t */
|
|
|
|
struct uv_write_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
uv_write_cb cb;
|
|
|
|
uv_stream_t* send_handle;
|
|
|
|
uv_stream_t* handle;
|
|
|
|
UV_WRITE_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used to determine whether a stream is readable or writable.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_is_readable(const uv_stream_t* handle);
|
|
|
|
UV_EXTERN int uv_is_writable(const uv_stream_t* handle);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used to determine whether a stream is closing or closed.
|
|
|
|
*
|
|
|
|
* N.B. is only valid between the initialization of the handle
|
|
|
|
* and the arrival of the close callback, and cannot be used
|
|
|
|
* to validate the handle.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_is_closing(const uv_handle_t* handle);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_tcp_t is a subclass of uv_stream_t
|
|
|
|
*
|
|
|
|
* Represents a TCP stream or TCP server.
|
|
|
|
*/
|
|
|
|
struct uv_tcp_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_STREAM_FIELDS
|
|
|
|
UV_TCP_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN int uv_tcp_init(uv_loop_t*, uv_tcp_t* handle);
|
|
|
|
|
|
|
|
/* Enable/disable Nagle's algorithm. */
|
|
|
|
UV_EXTERN int uv_tcp_nodelay(uv_tcp_t* handle, int enable);
|
|
|
|
|
|
|
|
/* Enable/disable TCP keep-alive.
|
|
|
|
*
|
|
|
|
* `ms` is the initial delay in seconds, ignored when `enable` is zero.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_tcp_keepalive(uv_tcp_t* handle, int enable,
|
|
|
|
unsigned int delay);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This setting applies to Windows only.
|
|
|
|
* Enable/disable simultaneous asynchronous accept requests that are
|
|
|
|
* queued by the operating system when listening for new tcp connections.
|
|
|
|
* This setting is used to tune a tcp server for the desired performance.
|
|
|
|
* Having simultaneous accepts can significantly improve the rate of
|
|
|
|
* accepting connections (which is why it is enabled by default).
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_tcp_simultaneous_accepts(uv_tcp_t* handle, int enable);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_tcp_bind(uv_tcp_t* handle, struct sockaddr_in);
|
|
|
|
UV_EXTERN int uv_tcp_bind6(uv_tcp_t* handle, struct sockaddr_in6);
|
|
|
|
UV_EXTERN int uv_tcp_getsockname(uv_tcp_t* handle, struct sockaddr* name,
|
|
|
|
int* namelen);
|
|
|
|
UV_EXTERN int uv_tcp_getpeername(uv_tcp_t* handle, struct sockaddr* name,
|
|
|
|
int* namelen);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_tcp_connect, uv_tcp_connect6
|
|
|
|
* These functions establish IPv4 and IPv6 TCP connections. Provide an
|
|
|
|
* initialized TCP handle and an uninitialized uv_connect_t*. The callback
|
|
|
|
* will be made when the connection is established.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_tcp_connect(uv_connect_t* req, uv_tcp_t* handle,
|
|
|
|
struct sockaddr_in address, uv_connect_cb cb);
|
|
|
|
UV_EXTERN int uv_tcp_connect6(uv_connect_t* req, uv_tcp_t* handle,
|
|
|
|
struct sockaddr_in6 address, uv_connect_cb cb);
|
|
|
|
|
|
|
|
/* uv_connect_t is a subclass of uv_req_t */
|
|
|
|
struct uv_connect_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
uv_connect_cb cb;
|
|
|
|
uv_stream_t* handle;
|
|
|
|
UV_CONNECT_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* UDP support.
|
|
|
|
*/
|
|
|
|
|
|
|
|
enum uv_udp_flags {
|
|
|
|
/* Disables dual stack mode. Used with uv_udp_bind6(). */
|
|
|
|
UV_UDP_IPV6ONLY = 1,
|
|
|
|
/*
|
|
|
|
* Indicates message was truncated because read buffer was too small. The
|
|
|
|
* remainder was discarded by the OS. Used in uv_udp_recv_cb.
|
|
|
|
*/
|
|
|
|
UV_UDP_PARTIAL = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Called after a uv_udp_send() or uv_udp_send6(). status 0 indicates
|
|
|
|
* success otherwise error.
|
|
|
|
*/
|
|
|
|
typedef void (*uv_udp_send_cb)(uv_udp_send_t* req, int status);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Callback that is invoked when a new UDP datagram is received.
|
|
|
|
*
|
|
|
|
* handle UDP handle.
|
|
|
|
* nread Number of bytes that have been received.
|
|
|
|
* 0 if there is no more data to read. You may
|
|
|
|
* discard or repurpose the read buffer.
|
|
|
|
* -1 if a transmission error was detected.
|
|
|
|
* buf uv_buf_t with the received data.
|
|
|
|
* addr struct sockaddr_in or struct sockaddr_in6.
|
|
|
|
* Valid for the duration of the callback only.
|
|
|
|
* flags One or more OR'ed UV_UDP_* constants.
|
|
|
|
* Right now only UV_UDP_PARTIAL is used.
|
|
|
|
*/
|
|
|
|
typedef void (*uv_udp_recv_cb)(uv_udp_t* handle, ssize_t nread, uv_buf_t buf,
|
|
|
|
struct sockaddr* addr, unsigned flags);
|
|
|
|
|
|
|
|
/* uv_udp_t is a subclass of uv_handle_t */
|
|
|
|
struct uv_udp_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_UDP_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
/* uv_udp_send_t is a subclass of uv_req_t */
|
|
|
|
struct uv_udp_send_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
uv_udp_t* handle;
|
|
|
|
uv_udp_send_cb cb;
|
|
|
|
UV_UDP_SEND_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize a new UDP handle. The actual socket is created lazily.
|
|
|
|
* Returns 0 on success.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_init(uv_loop_t*, uv_udp_t* handle);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bind to a IPv4 address and port.
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with `uv_udp_init`.
|
|
|
|
* addr struct sockaddr_in with the address and port to bind to.
|
|
|
|
* flags Unused.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_bind(uv_udp_t* handle, struct sockaddr_in addr,
|
|
|
|
unsigned flags);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Bind to a IPv6 address and port.
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with `uv_udp_init`.
|
|
|
|
* addr struct sockaddr_in with the address and port to bind to.
|
|
|
|
* flags Should be 0 or UV_UDP_IPV6ONLY.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_bind6(uv_udp_t* handle, struct sockaddr_in6 addr,
|
|
|
|
unsigned flags);
|
|
|
|
UV_EXTERN int uv_udp_getsockname(uv_udp_t* handle, struct sockaddr* name,
|
|
|
|
int* namelen);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set membership for a multicast address
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with
|
|
|
|
* `uv_udp_init`.
|
|
|
|
* multicast_addr multicast address to set membership for
|
|
|
|
* interface_addr interface address
|
|
|
|
* membership Should be UV_JOIN_GROUP or UV_LEAVE_GROUP
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_set_membership(uv_udp_t* handle,
|
|
|
|
const char* multicast_addr, const char* interface_addr,
|
|
|
|
uv_membership membership);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set IP multicast loop flag. Makes multicast packets loop back to
|
|
|
|
* local sockets.
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with
|
|
|
|
* `uv_udp_init`.
|
|
|
|
* on 1 for on, 0 for off
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_set_multicast_loop(uv_udp_t* handle, int on);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the multicast ttl
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with
|
|
|
|
* `uv_udp_init`.
|
|
|
|
* ttl 1 through 255
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_set_multicast_ttl(uv_udp_t* handle, int ttl);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set broadcast on or off
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with
|
|
|
|
* `uv_udp_init`.
|
|
|
|
* on 1 for on, 0 for off
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_set_broadcast(uv_udp_t* handle, int on);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the time to live
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with
|
|
|
|
* `uv_udp_init`.
|
|
|
|
* ttl 1 through 255
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_set_ttl(uv_udp_t* handle, int ttl);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send data. If the socket has not previously been bound with `uv_udp_bind`
|
|
|
|
* or `uv_udp_bind6`, it is bound to 0.0.0.0 (the "all interfaces" address)
|
|
|
|
* and a random port number.
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* req UDP request handle. Need not be initialized.
|
|
|
|
* handle UDP handle. Should have been initialized with `uv_udp_init`.
|
|
|
|
* bufs List of buffers to send.
|
|
|
|
* bufcnt Number of buffers in `bufs`.
|
|
|
|
* addr Address of the remote peer. See `uv_ip4_addr`.
|
|
|
|
* send_cb Callback to invoke when the data has been sent out.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_send(uv_udp_send_t* req, uv_udp_t* handle,
|
|
|
|
uv_buf_t bufs[], int bufcnt, struct sockaddr_in addr,
|
|
|
|
uv_udp_send_cb send_cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Send data. If the socket has not previously been bound with `uv_udp_bind6`,
|
|
|
|
* it is bound to ::0 (the "all interfaces" address) and a random port number.
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* req UDP request handle. Need not be initialized.
|
|
|
|
* handle UDP handle. Should have been initialized with `uv_udp_init`.
|
|
|
|
* bufs List of buffers to send.
|
|
|
|
* bufcnt Number of buffers in `bufs`.
|
|
|
|
* addr Address of the remote peer. See `uv_ip6_addr`.
|
|
|
|
* send_cb Callback to invoke when the data has been sent out.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_send6(uv_udp_send_t* req, uv_udp_t* handle,
|
|
|
|
uv_buf_t bufs[], int bufcnt, struct sockaddr_in6 addr,
|
|
|
|
uv_udp_send_cb send_cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Receive data. If the socket has not previously been bound with `uv_udp_bind`
|
|
|
|
* or `uv_udp_bind6`, it is bound to 0.0.0.0 (the "all interfaces" address)
|
|
|
|
* and a random port number.
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with `uv_udp_init`.
|
|
|
|
* alloc_cb Callback to invoke when temporary storage is needed.
|
|
|
|
* recv_cb Callback to invoke with received data.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_recv_start(uv_udp_t* handle, uv_alloc_cb alloc_cb,
|
|
|
|
uv_udp_recv_cb recv_cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop listening for incoming datagrams.
|
|
|
|
*
|
|
|
|
* Arguments:
|
|
|
|
* handle UDP handle. Should have been initialized with `uv_udp_init`.
|
|
|
|
*
|
|
|
|
* Returns:
|
|
|
|
* 0 on success, -1 on error.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_udp_recv_stop(uv_udp_t* handle);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_tty_t is a subclass of uv_stream_t
|
|
|
|
*
|
|
|
|
* Representing a stream for the console.
|
|
|
|
*/
|
|
|
|
struct uv_tty_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_STREAM_FIELDS
|
|
|
|
UV_TTY_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize a new TTY stream with the given file descriptor. Usually the
|
|
|
|
* file descriptor will be
|
|
|
|
* 0 = stdin
|
|
|
|
* 1 = stdout
|
|
|
|
* 2 = stderr
|
|
|
|
* The last argument, readable, specifies if you plan on calling
|
|
|
|
* uv_read_start with this stream. stdin is readable, stdout is not.
|
|
|
|
*
|
|
|
|
* TTY streams which are not readable have blocking writes.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_tty_init(uv_loop_t*, uv_tty_t*, uv_file fd, int readable);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set mode. 0 for normal, 1 for raw.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_tty_set_mode(uv_tty_t*, int mode);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* To be called when the program exits. Resets TTY settings to default
|
|
|
|
* values for the next process to take over.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_tty_reset_mode(void);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Gets the current Window size. On success zero is returned.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_tty_get_winsize(uv_tty_t*, int* width, int* height);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Used to detect what type of stream should be used with a given file
|
|
|
|
* descriptor. Usually this will be used during initialization to guess the
|
|
|
|
* type of the stdio streams.
|
|
|
|
* For isatty() functionality use this function and test for UV_TTY.
|
|
|
|
*/
|
|
|
|
UV_EXTERN uv_handle_type uv_guess_handle(uv_file file);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_pipe_t is a subclass of uv_stream_t
|
|
|
|
*
|
|
|
|
* Representing a pipe stream or pipe server. On Windows this is a Named
|
|
|
|
* Pipe. On Unix this is a UNIX domain socket.
|
|
|
|
*/
|
|
|
|
struct uv_pipe_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_STREAM_FIELDS
|
|
|
|
UV_PIPE_PRIVATE_FIELDS
|
|
|
|
int ipc; /* non-zero if this pipe is used for passing handles */
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Initialize a pipe. The last argument is a boolean to indicate if
|
|
|
|
* this pipe will be used for handle passing between processes.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_pipe_init(uv_loop_t*, uv_pipe_t* handle, int ipc);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Opens an existing file descriptor or HANDLE as a pipe.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_pipe_open(uv_pipe_t*, uv_file file);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_pipe_bind(uv_pipe_t* handle, const char* name);
|
|
|
|
|
|
|
|
UV_EXTERN void uv_pipe_connect(uv_connect_t* req, uv_pipe_t* handle,
|
|
|
|
const char* name, uv_connect_cb cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This setting applies to Windows only.
|
|
|
|
* Set the number of pending pipe instance handles when the pipe server
|
|
|
|
* is waiting for connections.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_pipe_pending_instances(uv_pipe_t* handle, int count);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_poll_t is a subclass of uv_handle_t.
|
|
|
|
*
|
|
|
|
* The uv_poll watcher is used to watch file descriptors for readability and
|
|
|
|
* writability, similar to the purpose of poll(2).
|
|
|
|
*
|
|
|
|
* The purpose of uv_poll is to enable integrating external libraries that
|
|
|
|
* rely on the event loop to signal it about the socket status changes, like
|
|
|
|
* c-ares or libssh2. Using uv_poll_t for any other other purpose is not
|
|
|
|
* recommended; uv_tcp_t, uv_udp_t, etc. provide an implementation that is
|
|
|
|
* much faster and more scalable than what can be achieved with uv_poll_t,
|
|
|
|
* especially on Windows.
|
|
|
|
*
|
|
|
|
* It is possible that uv_poll occasionally signals that a file descriptor is
|
|
|
|
* readable or writable even when it isn't. The user should therefore always
|
|
|
|
* be prepared to handle EAGAIN or equivalent when it attempts to read from or
|
|
|
|
* write to the fd.
|
|
|
|
*
|
|
|
|
* It is not okay to have multiple active uv_poll watchers for the same socket.
|
|
|
|
* This can cause libuv to busyloop or otherwise malfunction.
|
|
|
|
*
|
|
|
|
* The user should not close a file descriptor while it is being polled by an
|
|
|
|
* active uv_poll watcher. This can cause the poll watcher to report an error,
|
|
|
|
* but it might also start polling another socket. However the fd can be safely
|
|
|
|
* closed immediately after a call to uv_poll_stop() or uv_close().
|
|
|
|
*
|
|
|
|
* On windows only sockets can be polled with uv_poll. On unix any file
|
|
|
|
* descriptor that would be accepted by poll(2) can be used with uv_poll.
|
|
|
|
*/
|
|
|
|
struct uv_poll_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
uv_poll_cb poll_cb;
|
|
|
|
UV_POLL_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
enum uv_poll_event {
|
|
|
|
UV_READABLE = 1,
|
|
|
|
UV_WRITABLE = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Initialize the poll watcher using a file descriptor. */
|
|
|
|
UV_EXTERN int uv_poll_init(uv_loop_t* loop, uv_poll_t* handle, int fd);
|
|
|
|
|
|
|
|
/* Initialize the poll watcher using a socket descriptor. On unix this is */
|
|
|
|
/* identical to uv_poll_init. On windows it takes a SOCKET handle. */
|
|
|
|
UV_EXTERN int uv_poll_init_socket(uv_loop_t* loop, uv_poll_t* handle,
|
|
|
|
uv_os_sock_t socket);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Starts polling the file descriptor. `events` is a bitmask consisting made up
|
|
|
|
* of UV_READABLE and UV_WRITABLE. As soon as an event is detected the callback
|
|
|
|
* will be called with `status` set to 0, and the detected events set en the
|
|
|
|
* `events` field.
|
|
|
|
*
|
|
|
|
* If an error happens while polling status may be set to -1 and the error
|
|
|
|
* code can be retrieved with uv_last_error. The user should not close the
|
|
|
|
* socket while uv_poll is active. If the user does that anyway, the callback
|
|
|
|
* *may* be called reporting an error status, but this is not guaranteed.
|
|
|
|
*
|
|
|
|
* Calling uv_poll_start on an uv_poll watcher that is already active is fine.
|
|
|
|
* Doing so will update the events mask that is being watched for.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_poll_start(uv_poll_t* handle, int events, uv_poll_cb cb);
|
|
|
|
|
|
|
|
/* Stops polling the file descriptor. */
|
|
|
|
UV_EXTERN int uv_poll_stop(uv_poll_t* handle);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_prepare_t is a subclass of uv_handle_t.
|
|
|
|
*
|
|
|
|
* libev wrapper. Every active prepare handle gets its callback called
|
|
|
|
* exactly once per loop iteration, just before the system blocks to wait
|
|
|
|
* for completed i/o.
|
|
|
|
*/
|
|
|
|
struct uv_prepare_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_PREPARE_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN int uv_prepare_init(uv_loop_t*, uv_prepare_t* prepare);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_prepare_start(uv_prepare_t* prepare, uv_prepare_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_prepare_stop(uv_prepare_t* prepare);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_check_t is a subclass of uv_handle_t.
|
|
|
|
*
|
|
|
|
* libev wrapper. Every active check handle gets its callback called exactly
|
|
|
|
* once per loop iteration, just after the system returns from blocking.
|
|
|
|
*/
|
|
|
|
struct uv_check_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_CHECK_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN int uv_check_init(uv_loop_t*, uv_check_t* check);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_check_start(uv_check_t* check, uv_check_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_check_stop(uv_check_t* check);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_idle_t is a subclass of uv_handle_t.
|
|
|
|
*
|
|
|
|
* libev wrapper. Every active idle handle gets its callback called
|
|
|
|
* repeatedly until it is stopped. This happens after all other types of
|
|
|
|
* callbacks are processed. When there are multiple "idle" handles active,
|
|
|
|
* their callbacks are called in turn.
|
|
|
|
*/
|
|
|
|
struct uv_idle_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_IDLE_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN int uv_idle_init(uv_loop_t*, uv_idle_t* idle);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_idle_start(uv_idle_t* idle, uv_idle_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_idle_stop(uv_idle_t* idle);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_async_t is a subclass of uv_handle_t.
|
|
|
|
*
|
|
|
|
* libev wrapper. uv_async_send wakes up the event
|
|
|
|
* loop and calls the async handle's callback There is no guarantee that
|
|
|
|
* every uv_async_send call leads to exactly one invocation of the callback;
|
|
|
|
* The only guarantee is that the callback function is called at least once
|
|
|
|
* after the call to async_send. Unlike all other libuv functions,
|
|
|
|
* uv_async_send can be called from another thread.
|
|
|
|
*/
|
|
|
|
struct uv_async_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_ASYNC_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN int uv_async_init(uv_loop_t*, uv_async_t* async,
|
|
|
|
uv_async_cb async_cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This can be called from other threads to wake up a libuv thread.
|
|
|
|
*
|
|
|
|
* libuv is single threaded at the moment.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_async_send(uv_async_t* async);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_timer_t is a subclass of uv_handle_t.
|
|
|
|
*
|
|
|
|
* Wraps libev's ev_timer watcher. Used to get woken up at a specified time
|
|
|
|
* in the future.
|
|
|
|
*/
|
|
|
|
struct uv_timer_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
UV_TIMER_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN int uv_timer_init(uv_loop_t*, uv_timer_t* timer);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_timer_start(uv_timer_t* timer, uv_timer_cb cb,
|
|
|
|
int64_t timeout, int64_t repeat);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_timer_stop(uv_timer_t* timer);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Stop the timer, and if it is repeating restart it using the repeat value
|
|
|
|
* as the timeout. If the timer has never been started before it returns -1 and
|
|
|
|
* sets the error to UV_EINVAL.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_timer_again(uv_timer_t* timer);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Set the repeat value. Note that if the repeat value is set from a timer
|
|
|
|
* callback it does not immediately take effect. If the timer was non-repeating
|
|
|
|
* before, it will have been stopped. If it was repeating, then the old repeat
|
|
|
|
* value will have been used to schedule the next timeout.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_timer_set_repeat(uv_timer_t* timer, int64_t repeat);
|
|
|
|
|
|
|
|
UV_EXTERN int64_t uv_timer_get_repeat(uv_timer_t* timer);
|
|
|
|
|
|
|
|
|
|
|
|
/* c-ares integration initialize and terminate */
|
|
|
|
UV_EXTERN int uv_ares_init_options(uv_loop_t*,
|
|
|
|
ares_channel *channelptr, struct ares_options *options, int optmask);
|
|
|
|
|
|
|
|
/* TODO remove the loop argument from this function? */
|
|
|
|
UV_EXTERN void uv_ares_destroy(uv_loop_t*, ares_channel channel);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_getaddrinfo_t is a subclass of uv_req_t
|
|
|
|
*
|
|
|
|
* Request object for uv_getaddrinfo.
|
|
|
|
*/
|
|
|
|
struct uv_getaddrinfo_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
/* read-only */
|
|
|
|
uv_loop_t* loop;
|
|
|
|
UV_GETADDRINFO_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Asynchronous getaddrinfo(3).
|
|
|
|
*
|
|
|
|
* Return code 0 means that request is accepted and callback will be called
|
|
|
|
* with result. Other return codes mean that there will not be a callback.
|
|
|
|
* Input arguments may be released after return from this call.
|
|
|
|
*
|
|
|
|
* uv_freeaddrinfo() must be called after completion to free the addrinfo
|
|
|
|
* structure.
|
|
|
|
*
|
|
|
|
* On error NXDOMAIN the status code will be non-zero and UV_ENOENT returned.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_getaddrinfo(uv_loop_t*, uv_getaddrinfo_t* handle,
|
|
|
|
uv_getaddrinfo_cb getaddrinfo_cb, const char* node, const char* service,
|
|
|
|
const struct addrinfo* hints);
|
|
|
|
|
|
|
|
UV_EXTERN void uv_freeaddrinfo(struct addrinfo* ai);
|
|
|
|
|
|
|
|
/* uv_spawn() options */
|
|
|
|
typedef enum {
|
|
|
|
UV_IGNORE = 0x00,
|
|
|
|
UV_CREATE_PIPE = 0x01,
|
|
|
|
UV_INHERIT_FD = 0x02,
|
|
|
|
UV_INHERIT_STREAM = 0x04,
|
|
|
|
|
|
|
|
/* When UV_CREATE_PIPE is specified, UV_READABLE_PIPE and UV_WRITABLE_PIPE
|
|
|
|
* determine the direction of flow, from the child process' perspective. Both
|
|
|
|
* flags may be specified to create a duplex data stream.
|
|
|
|
*/
|
|
|
|
UV_READABLE_PIPE = 0x10,
|
|
|
|
UV_WRITABLE_PIPE = 0x20
|
|
|
|
} uv_stdio_flags;
|
|
|
|
|
|
|
|
typedef struct uv_stdio_container_s {
|
|
|
|
uv_stdio_flags flags;
|
|
|
|
|
|
|
|
union {
|
|
|
|
uv_stream_t* stream;
|
|
|
|
int fd;
|
|
|
|
} data;
|
|
|
|
} uv_stdio_container_t;
|
|
|
|
|
|
|
|
typedef struct uv_process_options_s {
|
|
|
|
uv_exit_cb exit_cb; /* Called after the process exits. */
|
|
|
|
const char* file; /* Path to program to execute. */
|
|
|
|
/*
|
|
|
|
* Command line arguments. args[0] should be the path to the program. On
|
|
|
|
* Windows this uses CreateProcess which concatenates the arguments into a
|
|
|
|
* string this can cause some strange errors. See the note at
|
|
|
|
* windows_verbatim_arguments.
|
|
|
|
*/
|
|
|
|
char** args;
|
|
|
|
/*
|
|
|
|
* This will be set as the environ variable in the subprocess. If this is
|
|
|
|
* NULL then the parents environ will be used.
|
|
|
|
*/
|
|
|
|
char** env;
|
|
|
|
/*
|
|
|
|
* If non-null this represents a directory the subprocess should execute
|
|
|
|
* in. Stands for current working directory.
|
|
|
|
*/
|
|
|
|
char* cwd;
|
|
|
|
/*
|
|
|
|
* Various flags that control how uv_spawn() behaves. See the definition of
|
|
|
|
* `enum uv_process_flags` below.
|
|
|
|
*/
|
|
|
|
unsigned int flags;
|
|
|
|
/*
|
|
|
|
* Libuv can change the child process' user/group id. This happens only when
|
|
|
|
* the appropriate bits are set in the flags fields. This is not supported on
|
|
|
|
* windows; uv_spawn() will fail and set the error to UV_ENOTSUP.
|
|
|
|
*/
|
|
|
|
uv_uid_t uid;
|
|
|
|
uv_gid_t gid;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The `stdio` field points to an array of uv_stdio_container_t structs that
|
|
|
|
* describe the file descriptors that will be made available to the child
|
|
|
|
* process. The convention is that stdio[0] points to stdin, fd 1 is used for
|
|
|
|
* stdout, and fd 2 is stderr.
|
|
|
|
*
|
|
|
|
* Note that on windows file descriptors greater than 2 are available to the
|
|
|
|
* child process only if the child processes uses the MSVCRT runtime.
|
|
|
|
*/
|
|
|
|
int stdio_count;
|
|
|
|
uv_stdio_container_t* stdio;
|
|
|
|
} uv_process_options_t;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* These are the flags that can be used for the uv_process_options.flags field.
|
|
|
|
*/
|
|
|
|
enum uv_process_flags {
|
|
|
|
/*
|
|
|
|
* Set the child process' user id. The user id is supplied in the `uid` field
|
|
|
|
* of the options struct. This does not work on windows; setting this flag
|
|
|
|
* will cause uv_spawn() to fail.
|
|
|
|
*/
|
|
|
|
UV_PROCESS_SETUID = (1 << 0),
|
|
|
|
/*
|
|
|
|
* Set the child process' group id. The user id is supplied in the `gid`
|
|
|
|
* field of the options struct. This does not work on windows; setting this
|
|
|
|
* flag will cause uv_spawn() to fail.
|
|
|
|
*/
|
|
|
|
UV_PROCESS_SETGID = (1 << 1),
|
|
|
|
/*
|
|
|
|
* Do not wrap any arguments in quotes, or perform any other escaping, when
|
|
|
|
* converting the argument list into a command line string. This option is
|
|
|
|
* only meaningful on Windows systems. On unix it is silently ignored.
|
|
|
|
*/
|
|
|
|
UV_PROCESS_WINDOWS_VERBATIM_ARGUMENTS = (1 << 2),
|
|
|
|
/*
|
|
|
|
* Spawn the child process in a detached state - this will make it a process
|
|
|
|
* group leader, and will effectively enable the child to keep running after
|
|
|
|
* the parent exits. Note that the child process will still keep the
|
|
|
|
* parent's event loop alive unless the parent process calls uv_unref() on
|
|
|
|
* the child's process handle.
|
|
|
|
*/
|
|
|
|
UV_PROCESS_DETACHED = (1 << 3)
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_process_t is a subclass of uv_handle_t
|
|
|
|
*/
|
|
|
|
struct uv_process_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
uv_exit_cb exit_cb;
|
|
|
|
int pid;
|
|
|
|
UV_PROCESS_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Initializes uv_process_t and starts the process. */
|
|
|
|
UV_EXTERN int uv_spawn(uv_loop_t*, uv_process_t*,
|
|
|
|
uv_process_options_t options);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Kills the process with the specified signal. The user must still
|
|
|
|
* call uv_close on the process.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_process_kill(uv_process_t*, int signum);
|
|
|
|
|
|
|
|
|
|
|
|
/* Kills the process with the specified signal. */
|
|
|
|
UV_EXTERN uv_err_t uv_kill(int pid, int signum);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* uv_work_t is a subclass of uv_req_t
|
|
|
|
*/
|
|
|
|
struct uv_work_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
uv_loop_t* loop;
|
|
|
|
uv_work_cb work_cb;
|
|
|
|
uv_after_work_cb after_work_cb;
|
|
|
|
UV_WORK_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
/* Queues a work request to execute asynchronously on the thread pool. */
|
|
|
|
UV_EXTERN int uv_queue_work(uv_loop_t* loop, uv_work_t* req,
|
|
|
|
uv_work_cb work_cb, uv_after_work_cb after_work_cb);
|
|
|
|
|
|
|
|
|
|
|
|
struct uv_cpu_info_s {
|
|
|
|
char* model;
|
|
|
|
int speed;
|
|
|
|
struct uv_cpu_times_s {
|
|
|
|
uint64_t user;
|
|
|
|
uint64_t nice;
|
|
|
|
uint64_t sys;
|
|
|
|
uint64_t idle;
|
|
|
|
uint64_t irq;
|
|
|
|
} cpu_times;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct uv_interface_address_s {
|
|
|
|
char* name;
|
|
|
|
int is_internal;
|
|
|
|
union {
|
|
|
|
struct sockaddr_in address4;
|
|
|
|
struct sockaddr_in6 address6;
|
|
|
|
} address;
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN char** uv_setup_args(int argc, char** argv);
|
|
|
|
UV_EXTERN uv_err_t uv_get_process_title(char* buffer, size_t size);
|
|
|
|
UV_EXTERN uv_err_t uv_set_process_title(const char* title);
|
|
|
|
UV_EXTERN uv_err_t uv_resident_set_memory(size_t* rss);
|
|
|
|
UV_EXTERN uv_err_t uv_uptime(double* uptime);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This allocates cpu_infos array, and sets count. The array
|
|
|
|
* is freed using uv_free_cpu_info().
|
|
|
|
*/
|
|
|
|
UV_EXTERN uv_err_t uv_cpu_info(uv_cpu_info_t** cpu_infos, int* count);
|
|
|
|
UV_EXTERN void uv_free_cpu_info(uv_cpu_info_t* cpu_infos, int count);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This allocates addresses array, and sets count. The array
|
|
|
|
* is freed using uv_free_interface_addresses().
|
|
|
|
*/
|
|
|
|
UV_EXTERN uv_err_t uv_interface_addresses(uv_interface_address_t** addresses,
|
|
|
|
int* count);
|
|
|
|
UV_EXTERN void uv_free_interface_addresses(uv_interface_address_t* addresses,
|
|
|
|
int count);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* File System Methods.
|
|
|
|
*
|
|
|
|
* The uv_fs_* functions execute a blocking system call asynchronously (in a
|
|
|
|
* thread pool) and call the specified callback in the specified loop after
|
|
|
|
* completion. If the user gives NULL as the callback the blocking system
|
|
|
|
* call will be called synchronously. req should be a pointer to an
|
|
|
|
* uninitialized uv_fs_t object.
|
|
|
|
*
|
|
|
|
* uv_fs_req_cleanup() must be called after completion of the uv_fs_
|
|
|
|
* function to free any internal memory allocations associated with the
|
|
|
|
* request.
|
|
|
|
*/
|
|
|
|
|
|
|
|
typedef enum {
|
|
|
|
UV_FS_UNKNOWN = -1,
|
|
|
|
UV_FS_CUSTOM,
|
|
|
|
UV_FS_OPEN,
|
|
|
|
UV_FS_CLOSE,
|
|
|
|
UV_FS_READ,
|
|
|
|
UV_FS_WRITE,
|
|
|
|
UV_FS_SENDFILE,
|
|
|
|
UV_FS_STAT,
|
|
|
|
UV_FS_LSTAT,
|
|
|
|
UV_FS_FSTAT,
|
|
|
|
UV_FS_FTRUNCATE,
|
|
|
|
UV_FS_UTIME,
|
|
|
|
UV_FS_FUTIME,
|
|
|
|
UV_FS_CHMOD,
|
|
|
|
UV_FS_FCHMOD,
|
|
|
|
UV_FS_FSYNC,
|
|
|
|
UV_FS_FDATASYNC,
|
|
|
|
UV_FS_UNLINK,
|
|
|
|
UV_FS_RMDIR,
|
|
|
|
UV_FS_MKDIR,
|
|
|
|
UV_FS_RENAME,
|
|
|
|
UV_FS_READDIR,
|
|
|
|
UV_FS_LINK,
|
|
|
|
UV_FS_SYMLINK,
|
|
|
|
UV_FS_READLINK,
|
|
|
|
UV_FS_CHOWN,
|
|
|
|
UV_FS_FCHOWN
|
|
|
|
} uv_fs_type;
|
|
|
|
|
|
|
|
/* uv_fs_t is a subclass of uv_req_t */
|
|
|
|
struct uv_fs_s {
|
|
|
|
UV_REQ_FIELDS
|
|
|
|
uv_fs_type fs_type;
|
|
|
|
uv_loop_t* loop;
|
|
|
|
uv_fs_cb cb;
|
|
|
|
ssize_t result;
|
|
|
|
void* ptr;
|
|
|
|
char* path;
|
|
|
|
int errorno;
|
|
|
|
UV_FS_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
UV_EXTERN void uv_fs_req_cleanup(uv_fs_t* req);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_close(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_open(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
int flags, int mode, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_read(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
void* buf, size_t length, int64_t offset, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_unlink(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_write(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
void* buf, size_t length, int64_t offset, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_mkdir(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
int mode, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_rmdir(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_readdir(uv_loop_t* loop, uv_fs_t* req,
|
|
|
|
const char* path, int flags, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_stat(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_fstat(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_rename(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
const char* new_path, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_fsync(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_fdatasync(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_ftruncate(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
int64_t offset, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_sendfile(uv_loop_t* loop, uv_fs_t* req, uv_file out_fd,
|
|
|
|
uv_file in_fd, int64_t in_offset, size_t length, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_chmod(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
int mode, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_utime(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
double atime, double mtime, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_futime(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
double atime, double mtime, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_lstat(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_link(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
const char* new_path, uv_fs_cb cb);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This flag can be used with uv_fs_symlink on Windows
|
|
|
|
* to specify whether path argument points to a directory.
|
|
|
|
*/
|
|
|
|
#define UV_FS_SYMLINK_DIR 0x0001
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This flag can be used with uv_fs_symlink on Windows
|
|
|
|
* to specify whether the symlink is to be created using junction points.
|
|
|
|
*/
|
|
|
|
#define UV_FS_SYMLINK_JUNCTION 0x0002
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_symlink(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
const char* new_path, int flags, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_readlink(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_fchmod(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
int mode, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_chown(uv_loop_t* loop, uv_fs_t* req, const char* path,
|
|
|
|
int uid, int gid, uv_fs_cb cb);
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_fchown(uv_loop_t* loop, uv_fs_t* req, uv_file file,
|
|
|
|
int uid, int gid, uv_fs_cb cb);
|
|
|
|
|
|
|
|
|
|
|
|
enum uv_fs_event {
|
|
|
|
UV_RENAME = 1,
|
|
|
|
UV_CHANGE = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct uv_fs_event_s {
|
|
|
|
UV_HANDLE_FIELDS
|
|
|
|
char* filename;
|
|
|
|
UV_FS_EVENT_PRIVATE_FIELDS
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Gets load avg
|
|
|
|
* See: http://en.wikipedia.org/wiki/Load_(computing)
|
|
|
|
* (Returns [0,0,0] for windows and cygwin)
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_loadavg(double avg[3]);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Flags to be passed to uv_fs_event_init.
|
|
|
|
*/
|
|
|
|
enum uv_fs_event_flags {
|
|
|
|
/*
|
|
|
|
* By default, if the fs event watcher is given a directory name, we will
|
|
|
|
* watch for all events in that directory. This flags overrides this behavior
|
|
|
|
* and makes fs_event report only changes to the directory entry itself. This
|
|
|
|
* flag does not affect individual files watched.
|
|
|
|
* This flag is currently not implemented yet on any backend.
|
|
|
|
*/
|
|
|
|
UV_FS_EVENT_WATCH_ENTRY = 1,
|
|
|
|
|
|
|
|
/*
|
|
|
|
* By default uv_fs_event will try to use a kernel interface such as inotify
|
|
|
|
* or kqueue to detect events. This may not work on remote filesystems such
|
|
|
|
* as NFS mounts. This flag makes fs_event fall back to calling stat() on a
|
|
|
|
* regular interval.
|
|
|
|
* This flag is currently not implemented yet on any backend.
|
|
|
|
*/
|
|
|
|
UV_FS_EVENT_STAT = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
UV_EXTERN int uv_fs_event_init(uv_loop_t* loop, uv_fs_event_t* handle,
|
|
|
|
const char* filename, uv_fs_event_cb cb, int flags);
|
|
|
|
|
|
|
|
/* Utility */
|
|
|
|
|
|
|
|
/* Convert string ip addresses to binary structures */
|
|
|
|
UV_EXTERN struct sockaddr_in uv_ip4_addr(const char* ip, int port);
|
|
|
|
UV_EXTERN struct sockaddr_in6 uv_ip6_addr(const char* ip, int port);
|
|
|
|
|
|
|
|
/* Convert binary addresses to strings */
|
|
|
|
UV_EXTERN int uv_ip4_name(struct sockaddr_in* src, char* dst, size_t size);
|
|
|
|
UV_EXTERN int uv_ip6_name(struct sockaddr_in6* src, char* dst, size_t size);
|
|
|
|
|
|
|
|
/* Gets the executable path */
|
|
|
|
UV_EXTERN int uv_exepath(char* buffer, size_t* size);
|
|
|
|
|
|
|
|
/* Gets the current working directory */
|
|
|
|
UV_EXTERN uv_err_t uv_cwd(char* buffer, size_t size);
|
|
|
|
|
|
|
|
/* Changes the current working directory */
|
|
|
|
UV_EXTERN uv_err_t uv_chdir(const char* dir);
|
|
|
|
|
|
|
|
/* Gets memory info in bytes */
|
|
|
|
UV_EXTERN uint64_t uv_get_free_memory(void);
|
|
|
|
UV_EXTERN uint64_t uv_get_total_memory(void);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns the current high-resolution real time. This is expressed in
|
|
|
|
* nanoseconds. It is relative to an arbitrary time in the past. It is not
|
|
|
|
* related to the time of day and therefore not subject to clock drift. The
|
|
|
|
* primary use is for measuring performance between intervals.
|
|
|
|
*
|
|
|
|
* Note not every platform can support nanosecond resolution; however, this
|
|
|
|
* value will always be in nanoseconds.
|
|
|
|
*/
|
|
|
|
UV_EXTERN extern uint64_t uv_hrtime(void);
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Opens a shared library. The filename is in utf-8. Returns 0 on success and
|
|
|
|
* -1 on error. Call `uv_dlerror(uv_lib_t*)` to get the error message.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_dlopen(const char* filename, uv_lib_t* lib);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Close the shared libary.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_dlclose(uv_lib_t* lib);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Retrieves a data pointer from a dynamic library. It is legal for a symbol to
|
|
|
|
* map to NULL. Returns 0 on success and -1 if the symbol was not found.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_dlsym(uv_lib_t* lib, const char* name, void** ptr);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Returns the last uv_dlopen() or uv_dlsym() error message.
|
|
|
|
*/
|
|
|
|
UV_EXTERN const char* uv_dlerror(uv_lib_t* lib);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The mutex functions return 0 on success, -1 on error
|
|
|
|
* (unless the return type is void, of course).
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_mutex_init(uv_mutex_t* handle);
|
|
|
|
UV_EXTERN void uv_mutex_destroy(uv_mutex_t* handle);
|
|
|
|
UV_EXTERN void uv_mutex_lock(uv_mutex_t* handle);
|
|
|
|
UV_EXTERN int uv_mutex_trylock(uv_mutex_t* handle);
|
|
|
|
UV_EXTERN void uv_mutex_unlock(uv_mutex_t* handle);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Same goes for the read/write lock functions.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_rwlock_init(uv_rwlock_t* rwlock);
|
|
|
|
UV_EXTERN void uv_rwlock_destroy(uv_rwlock_t* rwlock);
|
|
|
|
UV_EXTERN void uv_rwlock_rdlock(uv_rwlock_t* rwlock);
|
|
|
|
UV_EXTERN int uv_rwlock_tryrdlock(uv_rwlock_t* rwlock);
|
|
|
|
UV_EXTERN void uv_rwlock_rdunlock(uv_rwlock_t* rwlock);
|
|
|
|
UV_EXTERN void uv_rwlock_wrlock(uv_rwlock_t* rwlock);
|
|
|
|
UV_EXTERN int uv_rwlock_trywrlock(uv_rwlock_t* rwlock);
|
|
|
|
UV_EXTERN void uv_rwlock_wrunlock(uv_rwlock_t* rwlock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Same goes for the semaphore functions.
|
|
|
|
*/
|
|
|
|
UV_EXTERN int uv_sem_init(uv_sem_t* sem, unsigned int value);
|
|
|
|
UV_EXTERN void uv_sem_destroy(uv_sem_t* sem);
|
|
|
|
UV_EXTERN void uv_sem_post(uv_sem_t* sem);
|
|
|
|
UV_EXTERN void uv_sem_wait(uv_sem_t* sem);
|
|
|
|
UV_EXTERN int uv_sem_trywait(uv_sem_t* sem);
|
|
|
|
|
|
|
|
/* Runs a function once and only once. Concurrent calls to uv_once() with the
|
|
|
|
* same guard will block all callers except one (it's unspecified which one).
|
|
|
|
* The guard should be initialized statically with the UV_ONCE_INIT macro.
|
|
|
|
*/
|
|
|
|
UV_EXTERN void uv_once(uv_once_t* guard, void (*callback)(void));
|
|
|
|
|
|
|
|
UV_EXTERN int uv_thread_create(uv_thread_t *tid,
|
|
|
|
void (*entry)(void *arg), void *arg);
|
|
|
|
UV_EXTERN int uv_thread_join(uv_thread_t *tid);
|
|
|
|
|
|
|
|
/* the presence of these unions force similar struct layout */
|
|
|
|
union uv_any_handle {
|
|
|
|
uv_tcp_t tcp;
|
|
|
|
uv_pipe_t pipe;
|
|
|
|
uv_prepare_t prepare;
|
|
|
|
uv_check_t check;
|
|
|
|
uv_idle_t idle;
|
|
|
|
uv_async_t async;
|
|
|
|
uv_timer_t timer;
|
|
|
|
uv_getaddrinfo_t getaddrinfo;
|
|
|
|
uv_fs_event_t fs_event;
|
|
|
|
};
|
|
|
|
|
|
|
|
union uv_any_req {
|
|
|
|
uv_req_t req;
|
|
|
|
uv_write_t write;
|
|
|
|
uv_connect_t connect;
|
|
|
|
uv_shutdown_t shutdown;
|
|
|
|
uv_fs_t fs_req;
|
|
|
|
uv_work_t work_req;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct uv_counters_s {
|
|
|
|
uint64_t eio_init;
|
|
|
|
uint64_t req_init;
|
|
|
|
uint64_t handle_init;
|
|
|
|
uint64_t stream_init;
|
|
|
|
uint64_t tcp_init;
|
|
|
|
uint64_t udp_init;
|
|
|
|
uint64_t pipe_init;
|
|
|
|
uint64_t tty_init;
|
|
|
|
uint64_t poll_init;
|
|
|
|
uint64_t prepare_init;
|
|
|
|
uint64_t check_init;
|
|
|
|
uint64_t idle_init;
|
|
|
|
uint64_t async_init;
|
|
|
|
uint64_t timer_init;
|
|
|
|
uint64_t process_init;
|
|
|
|
uint64_t fs_event_init;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct uv_loop_s {
|
|
|
|
UV_LOOP_PRIVATE_FIELDS
|
|
|
|
ares_channel channel;
|
|
|
|
/* While the channel is active this timer is called once per second to be */
|
|
|
|
/* sure that we're always calling ares_process. See the warning above the */
|
|
|
|
/* definition of ares_timeout(). */
|
|
|
|
uv_timer_t ares_timer; \
|
|
|
|
/* RB_HEAD(uv__ares_tasks, uv_ares_task_t) */
|
|
|
|
struct uv__ares_tasks { uv_ares_task_t* rbh_root; } ares_handles;
|
|
|
|
/* Diagnostic counters */
|
|
|
|
uv_counters_t counters;
|
|
|
|
/* The last error */
|
|
|
|
uv_err_t last_err;
|
|
|
|
/* Loop reference counting */
|
|
|
|
unsigned int active_handles;
|
|
|
|
ngx_queue_t handle_queue;
|
|
|
|
ngx_queue_t active_reqs;
|
|
|
|
/* User data - use this for whatever. */
|
|
|
|
void* data;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/* Don't export the private CPP symbols. */
|
|
|
|
#undef UV_HANDLE_TYPE_PRIVATE
|
|
|
|
#undef UV_REQ_TYPE_PRIVATE
|
|
|
|
#undef UV_REQ_PRIVATE_FIELDS
|
|
|
|
#undef UV_STREAM_PRIVATE_FIELDS
|
|
|
|
#undef UV_TCP_PRIVATE_FIELDS
|
|
|
|
#undef UV_PREPARE_PRIVATE_FIELDS
|
|
|
|
#undef UV_CHECK_PRIVATE_FIELDS
|
|
|
|
#undef UV_IDLE_PRIVATE_FIELDS
|
|
|
|
#undef UV_ASYNC_PRIVATE_FIELDS
|
|
|
|
#undef UV_TIMER_PRIVATE_FIELDS
|
|
|
|
#undef UV_GETADDRINFO_PRIVATE_FIELDS
|
|
|
|
#undef UV_FS_REQ_PRIVATE_FIELDS
|
|
|
|
#undef UV_WORK_PRIVATE_FIELDS
|
|
|
|
#undef UV_FS_EVENT_PRIVATE_FIELDS
|
|
|
|
#undef UV_LOOP_PRIVATE_FIELDS
|
|
|
|
#undef UV_LOOP_PRIVATE_PLATFORM_FIELDS
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif /* UV_H */
|