|
|
|
// Copyright Joyent, Inc. and other Node contributors.
|
|
|
|
//
|
|
|
|
// Permission is hereby granted, free of charge, to any person obtaining a
|
|
|
|
// copy of this software and associated documentation files (the
|
|
|
|
// "Software"), to deal in the Software without restriction, including
|
|
|
|
// without limitation the rights to use, copy, modify, merge, publish,
|
|
|
|
// distribute, sublicense, and/or sell copies of the Software, and to permit
|
|
|
|
// persons to whom the Software is furnished to do so, subject to the
|
|
|
|
// following conditions:
|
|
|
|
//
|
|
|
|
// The above copyright notice and this permission notice shall be included
|
|
|
|
// in all copies or substantial portions of the Software.
|
|
|
|
//
|
|
|
|
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
|
|
|
|
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
|
|
// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN
|
|
|
|
// NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
|
|
|
|
// DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
|
|
|
|
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
|
|
|
|
// USE OR OTHER DEALINGS IN THE SOFTWARE.
|
|
|
|
|
|
|
|
'use strict';
|
|
|
|
const common = require('../common');
|
|
|
|
const assert = require('assert');
|
|
|
|
const stream = require('stream');
|
|
|
|
const str = 'asdfasdfasdfasdfasdf';
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
|
|
|
|
const r = new stream.Readable({
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
highWaterMark: 5,
|
|
|
|
encoding: 'utf8'
|
|
|
|
});
|
|
|
|
|
|
|
|
let reads = 0;
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
|
|
|
|
function _read() {
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
if (reads === 0) {
|
|
|
|
setTimeout(function() {
|
stream: There is no _read cb, there is only push
This makes it so that `stream.push(chunk)` is the only way to signal the
end of reading, removing the confusing disparity between the
callback-style _read method, and the fact that most real-world streams
do not have a 1:1 corollation between the "please give me data" event,
and the actual arrival of a chunk of data.
It is still possible, of course, to implement a `CallbackReadable` on
top of this. Simply provide a method like this as the callback:
function readCallback(er, chunk) {
if (er)
stream.emit('error', er);
else
stream.push(chunk);
}
However, *only* fs streams actually would behave in this way, so it
makes not a lot of sense to make TCP, TLS, HTTP, and all the rest have
to bend into this uncomfortable paradigm.
12 years ago
|
|
|
r.push(str);
|
|
|
|
}, 1);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
reads++;
|
|
|
|
} else if (reads === 1) {
|
|
|
|
const ret = r.push(str);
|
|
|
|
assert.strictEqual(ret, false);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
reads++;
|
|
|
|
} else {
|
stream: There is no _read cb, there is only push
This makes it so that `stream.push(chunk)` is the only way to signal the
end of reading, removing the confusing disparity between the
callback-style _read method, and the fact that most real-world streams
do not have a 1:1 corollation between the "please give me data" event,
and the actual arrival of a chunk of data.
It is still possible, of course, to implement a `CallbackReadable` on
top of this. Simply provide a method like this as the callback:
function readCallback(er, chunk) {
if (er)
stream.emit('error', er);
else
stream.push(chunk);
}
However, *only* fs streams actually would behave in this way, so it
makes not a lot of sense to make TCP, TLS, HTTP, and all the rest have
to bend into this uncomfortable paradigm.
12 years ago
|
|
|
r.push(null);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
}
|
|
|
|
}
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
|
|
|
|
r._read = common.mustCall(_read, 3);
|
|
|
|
|
|
|
|
r.on('end', common.mustCall());
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
|
|
|
|
// push some data in to start.
|
|
|
|
// we've never gotten any read event at this point.
|
|
|
|
const ret = r.push(str);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
// should be false. > hwm
|
|
|
|
assert(!ret);
|
|
|
|
let chunk = r.read();
|
|
|
|
assert.strictEqual(chunk, str);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
chunk = r.read();
|
|
|
|
assert.strictEqual(chunk, null);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
|
|
|
|
r.once('readable', function() {
|
|
|
|
// this time, we'll get *all* the remaining data, because
|
|
|
|
// it's been added synchronously, as the read WOULD take
|
|
|
|
// us below the hwm, and so it triggered a _read() again,
|
|
|
|
// which synchronously added more, which we then return.
|
|
|
|
chunk = r.read();
|
|
|
|
assert.strictEqual(chunk, str + str);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
|
|
|
|
chunk = r.read();
|
|
|
|
assert.strictEqual(chunk, null);
|
stream: Return false from push() more properly
There are cases where a push() call would return true, even though
the thing being pushed was in fact way way larger than the high
water mark, simply because the 'needReadable' was already set, and
would not get unset until nextTick.
In some cases, this could lead to an infinite loop of pushing data
into the buffer, never getting to the 'readable' event which would
unset the needReadable flag.
Fix by splitting up the emitReadable function, so that it always
sets the flag on this tick, even if it defers until nextTick to
actually emit the event.
Also, if we're not ending or already in the process of reading, it
now calls read(0) if we're below the high water mark. Thus, the
highWaterMark value is the intended amount to buffer up to, and it
is smarter about hitting the target.
12 years ago
|
|
|
});
|