|
|
|
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are
|
|
|
|
// met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright
|
|
|
|
// notice, this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above
|
|
|
|
// copyright notice, this list of conditions and the following
|
|
|
|
// disclaimer in the documentation and/or other materials provided
|
|
|
|
// with the distribution.
|
|
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
|
|
// contributors may be used to endorse or promote products derived
|
|
|
|
// from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#include "v8.h"
|
|
|
|
|
|
|
|
#if defined(V8_TARGET_ARCH_MIPS)
|
|
|
|
|
|
|
|
#include "bootstrapper.h"
|
|
|
|
#include "code-stubs.h"
|
|
|
|
#include "codegen.h"
|
|
|
|
#include "regexp-macro-assembler.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
|
|
|
|
#define __ ACCESS_MASM(masm)
|
|
|
|
|
|
|
|
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
|
|
|
Label* slow,
|
|
|
|
Condition cc,
|
|
|
|
bool never_nan_nan);
|
|
|
|
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
|
|
|
Register lhs,
|
|
|
|
Register rhs,
|
|
|
|
Label* rhs_not_nan,
|
|
|
|
Label* slow,
|
|
|
|
bool strict);
|
|
|
|
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc);
|
|
|
|
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
|
|
|
Register lhs,
|
|
|
|
Register rhs);
|
|
|
|
|
|
|
|
|
|
|
|
// Check if the operand is a heap number.
|
|
|
|
static void EmitCheckForHeapNumber(MacroAssembler* masm, Register operand,
|
|
|
|
Register scratch1, Register scratch2,
|
|
|
|
Label* not_a_heap_number) {
|
|
|
|
__ lw(scratch1, FieldMemOperand(operand, HeapObject::kMapOffset));
|
|
|
|
__ LoadRoot(scratch2, Heap::kHeapNumberMapRootIndex);
|
|
|
|
__ Branch(not_a_heap_number, ne, scratch1, Operand(scratch2));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ToNumberStub::Generate(MacroAssembler* masm) {
|
|
|
|
// The ToNumber stub takes one argument in a0.
|
|
|
|
Label check_heap_number, call_builtin;
|
|
|
|
__ JumpIfNotSmi(a0, &check_heap_number);
|
|
|
|
__ mov(v0, a0);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&check_heap_number);
|
|
|
|
EmitCheckForHeapNumber(masm, a0, a1, t0, &call_builtin);
|
|
|
|
__ mov(v0, a0);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&call_builtin);
|
|
|
|
__ push(a0);
|
|
|
|
__ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FastNewClosureStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Create a new closure from the given function info in new
|
|
|
|
// space. Set the context to the current context in cp.
|
|
|
|
Label gc;
|
|
|
|
|
|
|
|
// Pop the function info from the stack.
|
|
|
|
__ pop(a3);
|
|
|
|
|
|
|
|
// Attempt to allocate new JSFunction in new space.
|
|
|
|
__ AllocateInNewSpace(JSFunction::kSize,
|
|
|
|
v0,
|
|
|
|
a1,
|
|
|
|
a2,
|
|
|
|
&gc,
|
|
|
|
TAG_OBJECT);
|
|
|
|
|
|
|
|
int map_index = (language_mode_ == CLASSIC_MODE)
|
|
|
|
? Context::FUNCTION_MAP_INDEX
|
|
|
|
: Context::STRICT_MODE_FUNCTION_MAP_INDEX;
|
|
|
|
|
|
|
|
// Compute the function map in the current global context and set that
|
|
|
|
// as the map of the allocated object.
|
|
|
|
__ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
|
|
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
|
|
|
|
__ lw(a2, MemOperand(a2, Context::SlotOffset(map_index)));
|
|
|
|
__ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
|
|
|
|
|
|
|
|
// Initialize the rest of the function. We don't have to update the
|
|
|
|
// write barrier because the allocated object is in new space.
|
|
|
|
__ LoadRoot(a1, Heap::kEmptyFixedArrayRootIndex);
|
|
|
|
__ LoadRoot(a2, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ sw(a1, FieldMemOperand(v0, JSObject::kPropertiesOffset));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, JSObject::kElementsOffset));
|
|
|
|
__ sw(a2, FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset));
|
|
|
|
__ sw(a3, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
|
|
|
|
__ sw(cp, FieldMemOperand(v0, JSFunction::kContextOffset));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, JSFunction::kLiteralsOffset));
|
|
|
|
__ sw(t0, FieldMemOperand(v0, JSFunction::kNextFunctionLinkOffset));
|
|
|
|
|
|
|
|
// Initialize the code pointer in the function to be the one
|
|
|
|
// found in the shared function info object.
|
|
|
|
__ lw(a3, FieldMemOperand(a3, SharedFunctionInfo::kCodeOffset));
|
|
|
|
__ Addu(a3, a3, Operand(Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ sw(a3, FieldMemOperand(v0, JSFunction::kCodeEntryOffset));
|
|
|
|
|
|
|
|
// Return result. The argument function info has been popped already.
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Create a new closure through the slower runtime call.
|
|
|
|
__ bind(&gc);
|
|
|
|
__ LoadRoot(t0, Heap::kFalseValueRootIndex);
|
|
|
|
__ Push(cp, a3, t0);
|
|
|
|
__ TailCallRuntime(Runtime::kNewClosure, 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FastNewContextStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Try to allocate the context in new space.
|
|
|
|
Label gc;
|
|
|
|
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
|
|
|
|
|
|
|
|
// Attempt to allocate the context in new space.
|
|
|
|
__ AllocateInNewSpace(FixedArray::SizeFor(length),
|
|
|
|
v0,
|
|
|
|
a1,
|
|
|
|
a2,
|
|
|
|
&gc,
|
|
|
|
TAG_OBJECT);
|
|
|
|
|
|
|
|
// Load the function from the stack.
|
|
|
|
__ lw(a3, MemOperand(sp, 0));
|
|
|
|
|
|
|
|
// Setup the object header.
|
|
|
|
__ LoadRoot(a2, Heap::kFunctionContextMapRootIndex);
|
|
|
|
__ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
|
|
|
|
__ li(a2, Operand(Smi::FromInt(length)));
|
|
|
|
__ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
|
|
|
|
|
|
|
|
// Setup the fixed slots.
|
|
|
|
__ li(a1, Operand(Smi::FromInt(0)));
|
|
|
|
__ sw(a3, MemOperand(v0, Context::SlotOffset(Context::CLOSURE_INDEX)));
|
|
|
|
__ sw(cp, MemOperand(v0, Context::SlotOffset(Context::PREVIOUS_INDEX)));
|
|
|
|
__ sw(a1, MemOperand(v0, Context::SlotOffset(Context::EXTENSION_INDEX)));
|
|
|
|
|
|
|
|
// Copy the global object from the previous context.
|
|
|
|
__ lw(a1, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
|
|
__ sw(a1, MemOperand(v0, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
|
|
|
|
|
|
// Initialize the rest of the slots to undefined.
|
|
|
|
__ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
|
|
|
|
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
|
|
|
|
__ sw(a1, MemOperand(v0, Context::SlotOffset(i)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove the on-stack argument and return.
|
|
|
|
__ mov(cp, v0);
|
|
|
|
__ Pop();
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Need to collect. Call into runtime system.
|
|
|
|
__ bind(&gc);
|
|
|
|
__ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FastNewBlockContextStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Stack layout on entry:
|
|
|
|
//
|
|
|
|
// [sp]: function.
|
|
|
|
// [sp + kPointerSize]: serialized scope info
|
|
|
|
|
|
|
|
// Try to allocate the context in new space.
|
|
|
|
Label gc;
|
|
|
|
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
|
|
|
|
__ AllocateInNewSpace(FixedArray::SizeFor(length),
|
|
|
|
v0, a1, a2, &gc, TAG_OBJECT);
|
|
|
|
|
|
|
|
// Load the function from the stack.
|
|
|
|
__ lw(a3, MemOperand(sp, 0));
|
|
|
|
|
|
|
|
// Load the serialized scope info from the stack.
|
|
|
|
__ lw(a1, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
|
|
|
|
// Setup the object header.
|
|
|
|
__ LoadRoot(a2, Heap::kBlockContextMapRootIndex);
|
|
|
|
__ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
|
|
|
|
__ li(a2, Operand(Smi::FromInt(length)));
|
|
|
|
__ sw(a2, FieldMemOperand(v0, FixedArray::kLengthOffset));
|
|
|
|
|
|
|
|
// If this block context is nested in the global context we get a smi
|
|
|
|
// sentinel instead of a function. The block context should get the
|
|
|
|
// canonical empty function of the global context as its closure which
|
|
|
|
// we still have to look up.
|
|
|
|
Label after_sentinel;
|
|
|
|
__ JumpIfNotSmi(a3, &after_sentinel);
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
const char* message = "Expected 0 as a Smi sentinel";
|
|
|
|
__ Assert(eq, message, a3, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
__ lw(a3, GlobalObjectOperand());
|
|
|
|
__ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
|
|
|
|
__ lw(a3, ContextOperand(a3, Context::CLOSURE_INDEX));
|
|
|
|
__ bind(&after_sentinel);
|
|
|
|
|
|
|
|
// Setup the fixed slots.
|
|
|
|
__ sw(a3, ContextOperand(v0, Context::CLOSURE_INDEX));
|
|
|
|
__ sw(cp, ContextOperand(v0, Context::PREVIOUS_INDEX));
|
|
|
|
__ sw(a1, ContextOperand(v0, Context::EXTENSION_INDEX));
|
|
|
|
|
|
|
|
// Copy the global object from the previous context.
|
|
|
|
__ lw(a1, ContextOperand(cp, Context::GLOBAL_INDEX));
|
|
|
|
__ sw(a1, ContextOperand(v0, Context::GLOBAL_INDEX));
|
|
|
|
|
|
|
|
// Initialize the rest of the slots to the hole value.
|
|
|
|
__ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
|
|
|
|
for (int i = 0; i < slots_; i++) {
|
|
|
|
__ sw(a1, ContextOperand(v0, i + Context::MIN_CONTEXT_SLOTS));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Remove the on-stack argument and return.
|
|
|
|
__ mov(cp, v0);
|
|
|
|
__ Addu(sp, sp, Operand(2 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Need to collect. Call into runtime system.
|
|
|
|
__ bind(&gc);
|
|
|
|
__ TailCallRuntime(Runtime::kPushBlockContext, 2, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void GenerateFastCloneShallowArrayCommon(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
int length,
|
|
|
|
FastCloneShallowArrayStub::Mode mode,
|
|
|
|
Label* fail) {
|
|
|
|
// Registers on entry:
|
|
|
|
// a3: boilerplate literal array.
|
|
|
|
ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS);
|
|
|
|
|
|
|
|
// All sizes here are multiples of kPointerSize.
|
|
|
|
int elements_size = 0;
|
|
|
|
if (length > 0) {
|
|
|
|
elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS
|
|
|
|
? FixedDoubleArray::SizeFor(length)
|
|
|
|
: FixedArray::SizeFor(length);
|
|
|
|
}
|
|
|
|
int size = JSArray::kSize + elements_size;
|
|
|
|
|
|
|
|
// Allocate both the JS array and the elements array in one big
|
|
|
|
// allocation. This avoids multiple limit checks.
|
|
|
|
__ AllocateInNewSpace(size,
|
|
|
|
v0,
|
|
|
|
a1,
|
|
|
|
a2,
|
|
|
|
fail,
|
|
|
|
TAG_OBJECT);
|
|
|
|
|
|
|
|
// Copy the JS array part.
|
|
|
|
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
|
|
|
|
if ((i != JSArray::kElementsOffset) || (length == 0)) {
|
|
|
|
__ lw(a1, FieldMemOperand(a3, i));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, i));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (length > 0) {
|
|
|
|
// Get hold of the elements array of the boilerplate and setup the
|
|
|
|
// elements pointer in the resulting object.
|
|
|
|
__ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
|
|
|
|
__ Addu(a2, v0, Operand(JSArray::kSize));
|
|
|
|
__ sw(a2, FieldMemOperand(v0, JSArray::kElementsOffset));
|
|
|
|
|
|
|
|
// Copy the elements array.
|
|
|
|
ASSERT((elements_size % kPointerSize) == 0);
|
|
|
|
__ CopyFields(a2, a3, a1.bit(), elements_size / kPointerSize);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Stack layout on entry:
|
|
|
|
//
|
|
|
|
// [sp]: constant elements.
|
|
|
|
// [sp + kPointerSize]: literal index.
|
|
|
|
// [sp + (2 * kPointerSize)]: literals array.
|
|
|
|
|
|
|
|
// Load boilerplate object into r3 and check if we need to create a
|
|
|
|
// boilerplate.
|
|
|
|
Label slow_case;
|
|
|
|
__ lw(a3, MemOperand(sp, 2 * kPointerSize));
|
|
|
|
__ lw(a0, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
__ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(t0, a3, t0);
|
|
|
|
__ lw(a3, MemOperand(t0));
|
|
|
|
__ LoadRoot(t1, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ Branch(&slow_case, eq, a3, Operand(t1));
|
|
|
|
|
|
|
|
FastCloneShallowArrayStub::Mode mode = mode_;
|
|
|
|
if (mode == CLONE_ANY_ELEMENTS) {
|
|
|
|
Label double_elements, check_fast_elements;
|
|
|
|
__ lw(v0, FieldMemOperand(a3, JSArray::kElementsOffset));
|
|
|
|
__ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
|
|
|
|
__ LoadRoot(t1, Heap::kFixedCOWArrayMapRootIndex);
|
|
|
|
__ Branch(&check_fast_elements, ne, v0, Operand(t1));
|
|
|
|
GenerateFastCloneShallowArrayCommon(masm, 0,
|
|
|
|
COPY_ON_WRITE_ELEMENTS, &slow_case);
|
|
|
|
// Return and remove the on-stack parameters.
|
|
|
|
__ DropAndRet(3);
|
|
|
|
|
|
|
|
__ bind(&check_fast_elements);
|
|
|
|
__ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
|
|
|
|
__ Branch(&double_elements, ne, v0, Operand(t1));
|
|
|
|
GenerateFastCloneShallowArrayCommon(masm, length_,
|
|
|
|
CLONE_ELEMENTS, &slow_case);
|
|
|
|
// Return and remove the on-stack parameters.
|
|
|
|
__ DropAndRet(3);
|
|
|
|
|
|
|
|
__ bind(&double_elements);
|
|
|
|
mode = CLONE_DOUBLE_ELEMENTS;
|
|
|
|
// Fall through to generate the code to handle double elements.
|
|
|
|
}
|
|
|
|
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
const char* message;
|
|
|
|
Heap::RootListIndex expected_map_index;
|
|
|
|
if (mode == CLONE_ELEMENTS) {
|
|
|
|
message = "Expected (writable) fixed array";
|
|
|
|
expected_map_index = Heap::kFixedArrayMapRootIndex;
|
|
|
|
} else if (mode == CLONE_DOUBLE_ELEMENTS) {
|
|
|
|
message = "Expected (writable) fixed double array";
|
|
|
|
expected_map_index = Heap::kFixedDoubleArrayMapRootIndex;
|
|
|
|
} else {
|
|
|
|
ASSERT(mode == COPY_ON_WRITE_ELEMENTS);
|
|
|
|
message = "Expected copy-on-write fixed array";
|
|
|
|
expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
|
|
|
|
}
|
|
|
|
__ push(a3);
|
|
|
|
__ lw(a3, FieldMemOperand(a3, JSArray::kElementsOffset));
|
|
|
|
__ lw(a3, FieldMemOperand(a3, HeapObject::kMapOffset));
|
|
|
|
__ LoadRoot(at, expected_map_index);
|
|
|
|
__ Assert(eq, message, a3, Operand(at));
|
|
|
|
__ pop(a3);
|
|
|
|
}
|
|
|
|
|
|
|
|
GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case);
|
|
|
|
|
|
|
|
// Return and remove the on-stack parameters.
|
|
|
|
__ Addu(sp, sp, Operand(3 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&slow_case);
|
|
|
|
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Stack layout on entry:
|
|
|
|
//
|
|
|
|
// [sp]: object literal flags.
|
|
|
|
// [sp + kPointerSize]: constant properties.
|
|
|
|
// [sp + (2 * kPointerSize)]: literal index.
|
|
|
|
// [sp + (3 * kPointerSize)]: literals array.
|
|
|
|
|
|
|
|
// Load boilerplate object into a3 and check if we need to create a
|
|
|
|
// boilerplate.
|
|
|
|
Label slow_case;
|
|
|
|
__ lw(a3, MemOperand(sp, 3 * kPointerSize));
|
|
|
|
__ lw(a0, MemOperand(sp, 2 * kPointerSize));
|
|
|
|
__ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(a3, t0, a3);
|
|
|
|
__ lw(a3, MemOperand(a3));
|
|
|
|
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ Branch(&slow_case, eq, a3, Operand(t0));
|
|
|
|
|
|
|
|
// Check that the boilerplate contains only fast properties and we can
|
|
|
|
// statically determine the instance size.
|
|
|
|
int size = JSObject::kHeaderSize + length_ * kPointerSize;
|
|
|
|
__ lw(a0, FieldMemOperand(a3, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceSizeOffset));
|
|
|
|
__ Branch(&slow_case, ne, a0, Operand(size >> kPointerSizeLog2));
|
|
|
|
|
|
|
|
// Allocate the JS object and copy header together with all in-object
|
|
|
|
// properties from the boilerplate.
|
|
|
|
__ AllocateInNewSpace(size, a0, a1, a2, &slow_case, TAG_OBJECT);
|
|
|
|
for (int i = 0; i < size; i += kPointerSize) {
|
|
|
|
__ lw(a1, FieldMemOperand(a3, i));
|
|
|
|
__ sw(a1, FieldMemOperand(a0, i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Return and remove the on-stack parameters.
|
|
|
|
__ Drop(4);
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ mov(v0, a0);
|
|
|
|
|
|
|
|
__ bind(&slow_case);
|
|
|
|
__ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Takes a Smi and converts to an IEEE 64 bit floating point value in two
|
|
|
|
// registers. The format is 1 sign bit, 11 exponent bits (biased 1023) and
|
|
|
|
// 52 fraction bits (20 in the first word, 32 in the second). Zeros is a
|
|
|
|
// scratch register. Destroys the source register. No GC occurs during this
|
|
|
|
// stub so you don't have to set up the frame.
|
|
|
|
class ConvertToDoubleStub : public CodeStub {
|
|
|
|
public:
|
|
|
|
ConvertToDoubleStub(Register result_reg_1,
|
|
|
|
Register result_reg_2,
|
|
|
|
Register source_reg,
|
|
|
|
Register scratch_reg)
|
|
|
|
: result1_(result_reg_1),
|
|
|
|
result2_(result_reg_2),
|
|
|
|
source_(source_reg),
|
|
|
|
zeros_(scratch_reg) { }
|
|
|
|
|
|
|
|
private:
|
|
|
|
Register result1_;
|
|
|
|
Register result2_;
|
|
|
|
Register source_;
|
|
|
|
Register zeros_;
|
|
|
|
|
|
|
|
// Minor key encoding in 16 bits.
|
|
|
|
class ModeBits: public BitField<OverwriteMode, 0, 2> {};
|
|
|
|
class OpBits: public BitField<Token::Value, 2, 14> {};
|
|
|
|
|
|
|
|
Major MajorKey() { return ConvertToDouble; }
|
|
|
|
int MinorKey() {
|
|
|
|
// Encode the parameters in a unique 16 bit value.
|
|
|
|
return result1_.code() +
|
|
|
|
(result2_.code() << 4) +
|
|
|
|
(source_.code() << 8) +
|
|
|
|
(zeros_.code() << 12);
|
|
|
|
}
|
|
|
|
|
|
|
|
void Generate(MacroAssembler* masm);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void ConvertToDoubleStub::Generate(MacroAssembler* masm) {
|
|
|
|
#ifndef BIG_ENDIAN_FLOATING_POINT
|
|
|
|
Register exponent = result1_;
|
|
|
|
Register mantissa = result2_;
|
|
|
|
#else
|
|
|
|
Register exponent = result2_;
|
|
|
|
Register mantissa = result1_;
|
|
|
|
#endif
|
|
|
|
Label not_special;
|
|
|
|
// Convert from Smi to integer.
|
|
|
|
__ sra(source_, source_, kSmiTagSize);
|
|
|
|
// Move sign bit from source to destination. This works because the sign bit
|
|
|
|
// in the exponent word of the double has the same position and polarity as
|
|
|
|
// the 2's complement sign bit in a Smi.
|
|
|
|
STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
|
|
|
__ And(exponent, source_, Operand(HeapNumber::kSignMask));
|
|
|
|
// Subtract from 0 if source was negative.
|
|
|
|
__ subu(at, zero_reg, source_);
|
|
|
|
__ movn(source_, at, exponent);
|
|
|
|
|
|
|
|
// We have -1, 0 or 1, which we treat specially. Register source_ contains
|
|
|
|
// absolute value: it is either equal to 1 (special case of -1 and 1),
|
|
|
|
// greater than 1 (not a special case) or less than 1 (special case of 0).
|
|
|
|
__ Branch(¬_special, gt, source_, Operand(1));
|
|
|
|
|
|
|
|
// For 1 or -1 we need to or in the 0 exponent (biased to 1023).
|
|
|
|
static const uint32_t exponent_word_for_1 =
|
|
|
|
HeapNumber::kExponentBias << HeapNumber::kExponentShift;
|
|
|
|
// Safe to use 'at' as dest reg here.
|
|
|
|
__ Or(at, exponent, Operand(exponent_word_for_1));
|
|
|
|
__ movn(exponent, at, source_); // Write exp when source not 0.
|
|
|
|
// 1, 0 and -1 all have 0 for the second word.
|
|
|
|
__ mov(mantissa, zero_reg);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(¬_special);
|
|
|
|
// Count leading zeros.
|
|
|
|
// Gets the wrong answer for 0, but we already checked for that case above.
|
|
|
|
__ clz(zeros_, source_);
|
|
|
|
// Compute exponent and or it into the exponent register.
|
|
|
|
// We use mantissa as a scratch register here.
|
|
|
|
__ li(mantissa, Operand(31 + HeapNumber::kExponentBias));
|
|
|
|
__ subu(mantissa, mantissa, zeros_);
|
|
|
|
__ sll(mantissa, mantissa, HeapNumber::kExponentShift);
|
|
|
|
__ Or(exponent, exponent, mantissa);
|
|
|
|
|
|
|
|
// Shift up the source chopping the top bit off.
|
|
|
|
__ Addu(zeros_, zeros_, Operand(1));
|
|
|
|
// This wouldn't work for 1.0 or -1.0 as the shift would be 32 which means 0.
|
|
|
|
__ sllv(source_, source_, zeros_);
|
|
|
|
// Compute lower part of fraction (last 12 bits).
|
|
|
|
__ sll(mantissa, source_, HeapNumber::kMantissaBitsInTopWord);
|
|
|
|
// And the top (top 20 bits).
|
|
|
|
__ srl(source_, source_, 32 - HeapNumber::kMantissaBitsInTopWord);
|
|
|
|
__ or_(exponent, exponent, source_);
|
|
|
|
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::LoadSmis(MacroAssembler* masm,
|
|
|
|
FloatingPointHelper::Destination destination,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2) {
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ sra(scratch1, a0, kSmiTagSize);
|
|
|
|
__ mtc1(scratch1, f14);
|
|
|
|
__ cvt_d_w(f14, f14);
|
|
|
|
__ sra(scratch1, a1, kSmiTagSize);
|
|
|
|
__ mtc1(scratch1, f12);
|
|
|
|
__ cvt_d_w(f12, f12);
|
|
|
|
if (destination == kCoreRegisters) {
|
|
|
|
__ Move(a2, a3, f14);
|
|
|
|
__ Move(a0, a1, f12);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ASSERT(destination == kCoreRegisters);
|
|
|
|
// Write Smi from a0 to a3 and a2 in double format.
|
|
|
|
__ mov(scratch1, a0);
|
|
|
|
ConvertToDoubleStub stub1(a3, a2, scratch1, scratch2);
|
|
|
|
__ push(ra);
|
|
|
|
__ Call(stub1.GetCode());
|
|
|
|
// Write Smi from a1 to a1 and a0 in double format.
|
|
|
|
__ mov(scratch1, a1);
|
|
|
|
ConvertToDoubleStub stub2(a1, a0, scratch1, scratch2);
|
|
|
|
__ Call(stub2.GetCode());
|
|
|
|
__ pop(ra);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::LoadOperands(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
FloatingPointHelper::Destination destination,
|
|
|
|
Register heap_number_map,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* slow) {
|
|
|
|
|
|
|
|
// Load right operand (a0) to f12 or a2/a3.
|
|
|
|
LoadNumber(masm, destination,
|
|
|
|
a0, f14, a2, a3, heap_number_map, scratch1, scratch2, slow);
|
|
|
|
|
|
|
|
// Load left operand (a1) to f14 or a0/a1.
|
|
|
|
LoadNumber(masm, destination,
|
|
|
|
a1, f12, a0, a1, heap_number_map, scratch1, scratch2, slow);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::LoadNumber(MacroAssembler* masm,
|
|
|
|
Destination destination,
|
|
|
|
Register object,
|
|
|
|
FPURegister dst,
|
|
|
|
Register dst1,
|
|
|
|
Register dst2,
|
|
|
|
Register heap_number_map,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* not_number) {
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ AbortIfNotRootValue(heap_number_map,
|
|
|
|
Heap::kHeapNumberMapRootIndex,
|
|
|
|
"HeapNumberMap register clobbered.");
|
|
|
|
}
|
|
|
|
|
|
|
|
Label is_smi, done;
|
|
|
|
|
|
|
|
__ JumpIfSmi(object, &is_smi);
|
|
|
|
__ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_number);
|
|
|
|
|
|
|
|
// Handle loading a double from a heap number.
|
|
|
|
if (CpuFeatures::IsSupported(FPU) &&
|
|
|
|
destination == kFPURegisters) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Load the double from tagged HeapNumber to double register.
|
|
|
|
|
|
|
|
// ARM uses a workaround here because of the unaligned HeapNumber
|
|
|
|
// kValueOffset. On MIPS this workaround is built into ldc1 so there's no
|
|
|
|
// point in generating even more instructions.
|
|
|
|
__ ldc1(dst, FieldMemOperand(object, HeapNumber::kValueOffset));
|
|
|
|
} else {
|
|
|
|
ASSERT(destination == kCoreRegisters);
|
|
|
|
// Load the double from heap number to dst1 and dst2 in double format.
|
|
|
|
__ lw(dst1, FieldMemOperand(object, HeapNumber::kValueOffset));
|
|
|
|
__ lw(dst2, FieldMemOperand(object,
|
|
|
|
HeapNumber::kValueOffset + kPointerSize));
|
|
|
|
}
|
|
|
|
__ Branch(&done);
|
|
|
|
|
|
|
|
// Handle loading a double from a smi.
|
|
|
|
__ bind(&is_smi);
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Convert smi to double using FPU instructions.
|
|
|
|
__ SmiUntag(scratch1, object);
|
|
|
|
__ mtc1(scratch1, dst);
|
|
|
|
__ cvt_d_w(dst, dst);
|
|
|
|
if (destination == kCoreRegisters) {
|
|
|
|
// Load the converted smi to dst1 and dst2 in double format.
|
|
|
|
__ Move(dst1, dst2, dst);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
ASSERT(destination == kCoreRegisters);
|
|
|
|
// Write smi to dst1 and dst2 double format.
|
|
|
|
__ mov(scratch1, object);
|
|
|
|
ConvertToDoubleStub stub(dst2, dst1, scratch1, scratch2);
|
|
|
|
__ push(ra);
|
|
|
|
__ Call(stub.GetCode());
|
|
|
|
__ pop(ra);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::ConvertNumberToInt32(MacroAssembler* masm,
|
|
|
|
Register object,
|
|
|
|
Register dst,
|
|
|
|
Register heap_number_map,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
FPURegister double_scratch,
|
|
|
|
Label* not_number) {
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ AbortIfNotRootValue(heap_number_map,
|
|
|
|
Heap::kHeapNumberMapRootIndex,
|
|
|
|
"HeapNumberMap register clobbered.");
|
|
|
|
}
|
|
|
|
Label is_smi;
|
|
|
|
Label done;
|
|
|
|
Label not_in_int32_range;
|
|
|
|
|
|
|
|
__ JumpIfSmi(object, &is_smi);
|
|
|
|
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kMapOffset));
|
|
|
|
__ Branch(not_number, ne, scratch1, Operand(heap_number_map));
|
|
|
|
__ ConvertToInt32(object,
|
|
|
|
dst,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
double_scratch,
|
|
|
|
¬_in_int32_range);
|
|
|
|
__ jmp(&done);
|
|
|
|
|
|
|
|
__ bind(¬_in_int32_range);
|
|
|
|
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
|
|
|
|
__ lw(scratch2, FieldMemOperand(object, HeapNumber::kMantissaOffset));
|
|
|
|
|
|
|
|
__ EmitOutOfInt32RangeTruncate(dst,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
scratch3);
|
|
|
|
|
|
|
|
__ jmp(&done);
|
|
|
|
|
|
|
|
__ bind(&is_smi);
|
|
|
|
__ SmiUntag(dst, object);
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::ConvertIntToDouble(MacroAssembler* masm,
|
|
|
|
Register int_scratch,
|
|
|
|
Destination destination,
|
|
|
|
FPURegister double_dst,
|
|
|
|
Register dst1,
|
|
|
|
Register dst2,
|
|
|
|
Register scratch2,
|
|
|
|
FPURegister single_scratch) {
|
|
|
|
ASSERT(!int_scratch.is(scratch2));
|
|
|
|
ASSERT(!int_scratch.is(dst1));
|
|
|
|
ASSERT(!int_scratch.is(dst2));
|
|
|
|
|
|
|
|
Label done;
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ mtc1(int_scratch, single_scratch);
|
|
|
|
__ cvt_d_w(double_dst, single_scratch);
|
|
|
|
if (destination == kCoreRegisters) {
|
|
|
|
__ Move(dst1, dst2, double_dst);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
Label fewer_than_20_useful_bits;
|
|
|
|
// Expected output:
|
|
|
|
// | dst2 | dst1 |
|
|
|
|
// | s | exp | mantissa |
|
|
|
|
|
|
|
|
// Check for zero.
|
|
|
|
__ mov(dst2, int_scratch);
|
|
|
|
__ mov(dst1, int_scratch);
|
|
|
|
__ Branch(&done, eq, int_scratch, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Preload the sign of the value.
|
|
|
|
__ And(dst2, int_scratch, Operand(HeapNumber::kSignMask));
|
|
|
|
// Get the absolute value of the object (as an unsigned integer).
|
|
|
|
Label skip_sub;
|
|
|
|
__ Branch(&skip_sub, ge, dst2, Operand(zero_reg));
|
|
|
|
__ Subu(int_scratch, zero_reg, int_scratch);
|
|
|
|
__ bind(&skip_sub);
|
|
|
|
|
|
|
|
// Get mantisssa[51:20].
|
|
|
|
|
|
|
|
// Get the position of the first set bit.
|
|
|
|
__ clz(dst1, int_scratch);
|
|
|
|
__ li(scratch2, 31);
|
|
|
|
__ Subu(dst1, scratch2, dst1);
|
|
|
|
|
|
|
|
// Set the exponent.
|
|
|
|
__ Addu(scratch2, dst1, Operand(HeapNumber::kExponentBias));
|
|
|
|
__ Ins(dst2, scratch2,
|
|
|
|
HeapNumber::kExponentShift, HeapNumber::kExponentBits);
|
|
|
|
|
|
|
|
// Clear the first non null bit.
|
|
|
|
__ li(scratch2, Operand(1));
|
|
|
|
__ sllv(scratch2, scratch2, dst1);
|
|
|
|
__ li(at, -1);
|
|
|
|
__ Xor(scratch2, scratch2, at);
|
|
|
|
__ And(int_scratch, int_scratch, scratch2);
|
|
|
|
|
|
|
|
// Get the number of bits to set in the lower part of the mantissa.
|
|
|
|
__ Subu(scratch2, dst1, Operand(HeapNumber::kMantissaBitsInTopWord));
|
|
|
|
__ Branch(&fewer_than_20_useful_bits, lt, scratch2, Operand(zero_reg));
|
|
|
|
// Set the higher 20 bits of the mantissa.
|
|
|
|
__ srlv(at, int_scratch, scratch2);
|
|
|
|
__ or_(dst2, dst2, at);
|
|
|
|
__ li(at, 32);
|
|
|
|
__ subu(scratch2, at, scratch2);
|
|
|
|
__ sllv(dst1, int_scratch, scratch2);
|
|
|
|
__ Branch(&done);
|
|
|
|
|
|
|
|
__ bind(&fewer_than_20_useful_bits);
|
|
|
|
__ li(at, HeapNumber::kMantissaBitsInTopWord);
|
|
|
|
__ subu(scratch2, at, dst1);
|
|
|
|
__ sllv(scratch2, int_scratch, scratch2);
|
|
|
|
__ Or(dst2, dst2, scratch2);
|
|
|
|
// Set dst1 to 0.
|
|
|
|
__ mov(dst1, zero_reg);
|
|
|
|
}
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::LoadNumberAsInt32Double(MacroAssembler* masm,
|
|
|
|
Register object,
|
|
|
|
Destination destination,
|
|
|
|
DoubleRegister double_dst,
|
|
|
|
Register dst1,
|
|
|
|
Register dst2,
|
|
|
|
Register heap_number_map,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
FPURegister single_scratch,
|
|
|
|
Label* not_int32) {
|
|
|
|
ASSERT(!scratch1.is(object) && !scratch2.is(object));
|
|
|
|
ASSERT(!scratch1.is(scratch2));
|
|
|
|
ASSERT(!heap_number_map.is(object) &&
|
|
|
|
!heap_number_map.is(scratch1) &&
|
|
|
|
!heap_number_map.is(scratch2));
|
|
|
|
|
|
|
|
Label done, obj_is_not_smi;
|
|
|
|
|
|
|
|
__ JumpIfNotSmi(object, &obj_is_not_smi);
|
|
|
|
__ SmiUntag(scratch1, object);
|
|
|
|
ConvertIntToDouble(masm, scratch1, destination, double_dst, dst1, dst2,
|
|
|
|
scratch2, single_scratch);
|
|
|
|
__ Branch(&done);
|
|
|
|
|
|
|
|
__ bind(&obj_is_not_smi);
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ AbortIfNotRootValue(heap_number_map,
|
|
|
|
Heap::kHeapNumberMapRootIndex,
|
|
|
|
"HeapNumberMap register clobbered.");
|
|
|
|
}
|
|
|
|
__ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
|
|
|
|
|
|
|
|
// Load the number.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Load the double value.
|
|
|
|
__ ldc1(double_dst, FieldMemOperand(object, HeapNumber::kValueOffset));
|
|
|
|
|
|
|
|
Register except_flag = scratch2;
|
|
|
|
__ EmitFPUTruncate(kRoundToZero,
|
|
|
|
single_scratch,
|
|
|
|
double_dst,
|
|
|
|
scratch1,
|
|
|
|
except_flag,
|
|
|
|
kCheckForInexactConversion);
|
|
|
|
|
|
|
|
// Jump to not_int32 if the operation did not succeed.
|
|
|
|
__ Branch(not_int32, ne, except_flag, Operand(zero_reg));
|
|
|
|
|
|
|
|
if (destination == kCoreRegisters) {
|
|
|
|
__ Move(dst1, dst2, double_dst);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
ASSERT(!scratch1.is(object) && !scratch2.is(object));
|
|
|
|
// Load the double value in the destination registers.
|
|
|
|
__ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
|
|
|
|
__ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
|
|
|
|
|
|
|
|
// Check for 0 and -0.
|
|
|
|
__ And(scratch1, dst1, Operand(~HeapNumber::kSignMask));
|
|
|
|
__ Or(scratch1, scratch1, Operand(dst2));
|
|
|
|
__ Branch(&done, eq, scratch1, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Check that the value can be exactly represented by a 32-bit integer.
|
|
|
|
// Jump to not_int32 if that's not the case.
|
|
|
|
DoubleIs32BitInteger(masm, dst1, dst2, scratch1, scratch2, not_int32);
|
|
|
|
|
|
|
|
// dst1 and dst2 were trashed. Reload the double value.
|
|
|
|
__ lw(dst2, FieldMemOperand(object, HeapNumber::kExponentOffset));
|
|
|
|
__ lw(dst1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::LoadNumberAsInt32(MacroAssembler* masm,
|
|
|
|
Register object,
|
|
|
|
Register dst,
|
|
|
|
Register heap_number_map,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
DoubleRegister double_scratch,
|
|
|
|
Label* not_int32) {
|
|
|
|
ASSERT(!dst.is(object));
|
|
|
|
ASSERT(!scratch1.is(object) && !scratch2.is(object) && !scratch3.is(object));
|
|
|
|
ASSERT(!scratch1.is(scratch2) &&
|
|
|
|
!scratch1.is(scratch3) &&
|
|
|
|
!scratch2.is(scratch3));
|
|
|
|
|
|
|
|
Label done;
|
|
|
|
|
|
|
|
// Untag the object into the destination register.
|
|
|
|
__ SmiUntag(dst, object);
|
|
|
|
// Just return if the object is a smi.
|
|
|
|
__ JumpIfSmi(object, &done);
|
|
|
|
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ AbortIfNotRootValue(heap_number_map,
|
|
|
|
Heap::kHeapNumberMapRootIndex,
|
|
|
|
"HeapNumberMap register clobbered.");
|
|
|
|
}
|
|
|
|
__ JumpIfNotHeapNumber(object, heap_number_map, scratch1, not_int32);
|
|
|
|
|
|
|
|
// Object is a heap number.
|
|
|
|
// Convert the floating point value to a 32-bit integer.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Load the double value.
|
|
|
|
__ ldc1(double_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
|
|
|
|
|
|
|
|
FPURegister single_scratch = double_scratch.low();
|
|
|
|
Register except_flag = scratch2;
|
|
|
|
__ EmitFPUTruncate(kRoundToZero,
|
|
|
|
single_scratch,
|
|
|
|
double_scratch,
|
|
|
|
scratch1,
|
|
|
|
except_flag,
|
|
|
|
kCheckForInexactConversion);
|
|
|
|
|
|
|
|
// Jump to not_int32 if the operation did not succeed.
|
|
|
|
__ Branch(not_int32, ne, except_flag, Operand(zero_reg));
|
|
|
|
// Get the result in the destination register.
|
|
|
|
__ mfc1(dst, single_scratch);
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// Load the double value in the destination registers.
|
|
|
|
__ lw(scratch2, FieldMemOperand(object, HeapNumber::kExponentOffset));
|
|
|
|
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kMantissaOffset));
|
|
|
|
|
|
|
|
// Check for 0 and -0.
|
|
|
|
__ And(dst, scratch1, Operand(~HeapNumber::kSignMask));
|
|
|
|
__ Or(dst, scratch2, Operand(dst));
|
|
|
|
__ Branch(&done, eq, dst, Operand(zero_reg));
|
|
|
|
|
|
|
|
DoubleIs32BitInteger(masm, scratch1, scratch2, dst, scratch3, not_int32);
|
|
|
|
|
|
|
|
// Registers state after DoubleIs32BitInteger.
|
|
|
|
// dst: mantissa[51:20].
|
|
|
|
// scratch2: 1
|
|
|
|
|
|
|
|
// Shift back the higher bits of the mantissa.
|
|
|
|
__ srlv(dst, dst, scratch3);
|
|
|
|
// Set the implicit first bit.
|
|
|
|
__ li(at, 32);
|
|
|
|
__ subu(scratch3, at, scratch3);
|
|
|
|
__ sllv(scratch2, scratch2, scratch3);
|
|
|
|
__ Or(dst, dst, scratch2);
|
|
|
|
// Set the sign.
|
|
|
|
__ lw(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset));
|
|
|
|
__ And(scratch1, scratch1, Operand(HeapNumber::kSignMask));
|
|
|
|
Label skip_sub;
|
|
|
|
__ Branch(&skip_sub, ge, scratch1, Operand(zero_reg));
|
|
|
|
__ Subu(dst, zero_reg, dst);
|
|
|
|
__ bind(&skip_sub);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::DoubleIs32BitInteger(MacroAssembler* masm,
|
|
|
|
Register src1,
|
|
|
|
Register src2,
|
|
|
|
Register dst,
|
|
|
|
Register scratch,
|
|
|
|
Label* not_int32) {
|
|
|
|
// Get exponent alone in scratch.
|
|
|
|
__ Ext(scratch,
|
|
|
|
src1,
|
|
|
|
HeapNumber::kExponentShift,
|
|
|
|
HeapNumber::kExponentBits);
|
|
|
|
|
|
|
|
// Substract the bias from the exponent.
|
|
|
|
__ Subu(scratch, scratch, Operand(HeapNumber::kExponentBias));
|
|
|
|
|
|
|
|
// src1: higher (exponent) part of the double value.
|
|
|
|
// src2: lower (mantissa) part of the double value.
|
|
|
|
// scratch: unbiased exponent.
|
|
|
|
|
|
|
|
// Fast cases. Check for obvious non 32-bit integer values.
|
|
|
|
// Negative exponent cannot yield 32-bit integers.
|
|
|
|
__ Branch(not_int32, lt, scratch, Operand(zero_reg));
|
|
|
|
// Exponent greater than 31 cannot yield 32-bit integers.
|
|
|
|
// Also, a positive value with an exponent equal to 31 is outside of the
|
|
|
|
// signed 32-bit integer range.
|
|
|
|
// Another way to put it is that if (exponent - signbit) > 30 then the
|
|
|
|
// number cannot be represented as an int32.
|
|
|
|
Register tmp = dst;
|
|
|
|
__ srl(at, src1, 31);
|
|
|
|
__ subu(tmp, scratch, at);
|
|
|
|
__ Branch(not_int32, gt, tmp, Operand(30));
|
|
|
|
// - Bits [21:0] in the mantissa are not null.
|
|
|
|
__ And(tmp, src2, 0x3fffff);
|
|
|
|
__ Branch(not_int32, ne, tmp, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Otherwise the exponent needs to be big enough to shift left all the
|
|
|
|
// non zero bits left. So we need the (30 - exponent) last bits of the
|
|
|
|
// 31 higher bits of the mantissa to be null.
|
|
|
|
// Because bits [21:0] are null, we can check instead that the
|
|
|
|
// (32 - exponent) last bits of the 32 higher bits of the mantisssa are null.
|
|
|
|
|
|
|
|
// Get the 32 higher bits of the mantissa in dst.
|
|
|
|
__ Ext(dst,
|
|
|
|
src2,
|
|
|
|
HeapNumber::kMantissaBitsInTopWord,
|
|
|
|
32 - HeapNumber::kMantissaBitsInTopWord);
|
|
|
|
__ sll(at, src1, HeapNumber::kNonMantissaBitsInTopWord);
|
|
|
|
__ or_(dst, dst, at);
|
|
|
|
|
|
|
|
// Create the mask and test the lower bits (of the higher bits).
|
|
|
|
__ li(at, 32);
|
|
|
|
__ subu(scratch, at, scratch);
|
|
|
|
__ li(src2, 1);
|
|
|
|
__ sllv(src1, src2, scratch);
|
|
|
|
__ Subu(src1, src1, Operand(1));
|
|
|
|
__ And(src1, dst, src1);
|
|
|
|
__ Branch(not_int32, ne, src1, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void FloatingPointHelper::CallCCodeForDoubleOperation(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Token::Value op,
|
|
|
|
Register heap_number_result,
|
|
|
|
Register scratch) {
|
|
|
|
// Using core registers:
|
|
|
|
// a0: Left value (least significant part of mantissa).
|
|
|
|
// a1: Left value (sign, exponent, top of mantissa).
|
|
|
|
// a2: Right value (least significant part of mantissa).
|
|
|
|
// a3: Right value (sign, exponent, top of mantissa).
|
|
|
|
|
|
|
|
// Assert that heap_number_result is saved.
|
|
|
|
// We currently always use s0 to pass it.
|
|
|
|
ASSERT(heap_number_result.is(s0));
|
|
|
|
|
|
|
|
// Push the current return address before the C call.
|
|
|
|
__ push(ra);
|
|
|
|
__ PrepareCallCFunction(4, scratch); // Two doubles are 4 arguments.
|
|
|
|
if (!IsMipsSoftFloatABI) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// We are not using MIPS FPU instructions, and parameters for the runtime
|
|
|
|
// function call are prepaired in a0-a3 registers, but function we are
|
|
|
|
// calling is compiled with hard-float flag and expecting hard float ABI
|
|
|
|
// (parameters in f12/f14 registers). We need to copy parameters from
|
|
|
|
// a0-a3 registers to f12/f14 register pairs.
|
|
|
|
__ Move(f12, a0, a1);
|
|
|
|
__ Move(f14, a2, a3);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::double_fp_operation(op, masm->isolate()), 0, 2);
|
|
|
|
}
|
|
|
|
// Store answer in the overwritable heap number.
|
|
|
|
if (!IsMipsSoftFloatABI) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Double returned in register f0.
|
|
|
|
__ sdc1(f0, FieldMemOperand(heap_number_result, HeapNumber::kValueOffset));
|
|
|
|
} else {
|
|
|
|
// Double returned in registers v0 and v1.
|
|
|
|
__ sw(v1, FieldMemOperand(heap_number_result, HeapNumber::kExponentOffset));
|
|
|
|
__ sw(v0, FieldMemOperand(heap_number_result, HeapNumber::kMantissaOffset));
|
|
|
|
}
|
|
|
|
// Place heap_number_result in v0 and return to the pushed return address.
|
|
|
|
__ mov(v0, heap_number_result);
|
|
|
|
__ pop(ra);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool WriteInt32ToHeapNumberStub::IsPregenerated() {
|
|
|
|
// These variants are compiled ahead of time. See next method.
|
|
|
|
if (the_int_.is(a1) &&
|
|
|
|
the_heap_number_.is(v0) &&
|
|
|
|
scratch_.is(a2) &&
|
|
|
|
sign_.is(a3)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
if (the_int_.is(a2) &&
|
|
|
|
the_heap_number_.is(v0) &&
|
|
|
|
scratch_.is(a3) &&
|
|
|
|
sign_.is(a0)) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
// Other register combinations are generated as and when they are needed,
|
|
|
|
// so it is unsafe to call them from stubs (we can't generate a stub while
|
|
|
|
// we are generating a stub).
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime() {
|
|
|
|
WriteInt32ToHeapNumberStub stub1(a1, v0, a2, a3);
|
|
|
|
WriteInt32ToHeapNumberStub stub2(a2, v0, a3, a0);
|
|
|
|
stub1.GetCode()->set_is_pregenerated(true);
|
|
|
|
stub2.GetCode()->set_is_pregenerated(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// See comment for class, this does NOT work for int32's that are in Smi range.
|
|
|
|
void WriteInt32ToHeapNumberStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label max_negative_int;
|
|
|
|
// the_int_ has the answer which is a signed int32 but not a Smi.
|
|
|
|
// We test for the special value that has a different exponent.
|
|
|
|
STATIC_ASSERT(HeapNumber::kSignMask == 0x80000000u);
|
|
|
|
// Test sign, and save for later conditionals.
|
|
|
|
__ And(sign_, the_int_, Operand(0x80000000u));
|
|
|
|
__ Branch(&max_negative_int, eq, the_int_, Operand(0x80000000u));
|
|
|
|
|
|
|
|
// Set up the correct exponent in scratch_. All non-Smi int32s have the same.
|
|
|
|
// A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased).
|
|
|
|
uint32_t non_smi_exponent =
|
|
|
|
(HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
|
|
|
|
__ li(scratch_, Operand(non_smi_exponent));
|
|
|
|
// Set the sign bit in scratch_ if the value was negative.
|
|
|
|
__ or_(scratch_, scratch_, sign_);
|
|
|
|
// Subtract from 0 if the value was negative.
|
|
|
|
__ subu(at, zero_reg, the_int_);
|
|
|
|
__ movn(the_int_, at, sign_);
|
|
|
|
// We should be masking the implict first digit of the mantissa away here,
|
|
|
|
// but it just ends up combining harmlessly with the last digit of the
|
|
|
|
// exponent that happens to be 1. The sign bit is 0 so we shift 10 to get
|
|
|
|
// the most significant 1 to hit the last bit of the 12 bit sign and exponent.
|
|
|
|
ASSERT(((1 << HeapNumber::kExponentShift) & non_smi_exponent) != 0);
|
|
|
|
const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
|
|
|
|
__ srl(at, the_int_, shift_distance);
|
|
|
|
__ or_(scratch_, scratch_, at);
|
|
|
|
__ sw(scratch_, FieldMemOperand(the_heap_number_,
|
|
|
|
HeapNumber::kExponentOffset));
|
|
|
|
__ sll(scratch_, the_int_, 32 - shift_distance);
|
|
|
|
__ sw(scratch_, FieldMemOperand(the_heap_number_,
|
|
|
|
HeapNumber::kMantissaOffset));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&max_negative_int);
|
|
|
|
// The max negative int32 is stored as a positive number in the mantissa of
|
|
|
|
// a double because it uses a sign bit instead of using two's complement.
|
|
|
|
// The actual mantissa bits stored are all 0 because the implicit most
|
|
|
|
// significant 1 bit is not stored.
|
|
|
|
non_smi_exponent += 1 << HeapNumber::kExponentShift;
|
|
|
|
__ li(scratch_, Operand(HeapNumber::kSignMask | non_smi_exponent));
|
|
|
|
__ sw(scratch_,
|
|
|
|
FieldMemOperand(the_heap_number_, HeapNumber::kExponentOffset));
|
|
|
|
__ mov(scratch_, zero_reg);
|
|
|
|
__ sw(scratch_,
|
|
|
|
FieldMemOperand(the_heap_number_, HeapNumber::kMantissaOffset));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Handle the case where the lhs and rhs are the same object.
|
|
|
|
// Equality is almost reflexive (everything but NaN), so this is a test
|
|
|
|
// for "identity and not NaN".
|
|
|
|
static void EmitIdenticalObjectComparison(MacroAssembler* masm,
|
|
|
|
Label* slow,
|
|
|
|
Condition cc,
|
|
|
|
bool never_nan_nan) {
|
|
|
|
Label not_identical;
|
|
|
|
Label heap_number, return_equal;
|
|
|
|
Register exp_mask_reg = t5;
|
|
|
|
|
|
|
|
__ Branch(¬_identical, ne, a0, Operand(a1));
|
|
|
|
|
|
|
|
// The two objects are identical. If we know that one of them isn't NaN then
|
|
|
|
// we now know they test equal.
|
|
|
|
if (cc != eq || !never_nan_nan) {
|
|
|
|
__ li(exp_mask_reg, Operand(HeapNumber::kExponentMask));
|
|
|
|
|
|
|
|
// Test for NaN. Sadly, we can't just compare to factory->nan_value(),
|
|
|
|
// so we do the second best thing - test it ourselves.
|
|
|
|
// They are both equal and they are not both Smis so both of them are not
|
|
|
|
// Smis. If it's not a heap number, then return equal.
|
|
|
|
if (cc == less || cc == greater) {
|
|
|
|
__ GetObjectType(a0, t4, t4);
|
|
|
|
__ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
|
|
|
|
} else {
|
|
|
|
__ GetObjectType(a0, t4, t4);
|
|
|
|
__ Branch(&heap_number, eq, t4, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
// Comparing JS objects with <=, >= is complicated.
|
|
|
|
if (cc != eq) {
|
|
|
|
__ Branch(slow, greater, t4, Operand(FIRST_SPEC_OBJECT_TYPE));
|
|
|
|
// Normally here we fall through to return_equal, but undefined is
|
|
|
|
// special: (undefined == undefined) == true, but
|
|
|
|
// (undefined <= undefined) == false! See ECMAScript 11.8.5.
|
|
|
|
if (cc == less_equal || cc == greater_equal) {
|
|
|
|
__ Branch(&return_equal, ne, t4, Operand(ODDBALL_TYPE));
|
|
|
|
__ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ Branch(&return_equal, ne, a0, Operand(t2));
|
|
|
|
if (cc == le) {
|
|
|
|
// undefined <= undefined should fail.
|
|
|
|
__ li(v0, Operand(GREATER));
|
|
|
|
} else {
|
|
|
|
// undefined >= undefined should fail.
|
|
|
|
__ li(v0, Operand(LESS));
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&return_equal);
|
|
|
|
if (cc == less) {
|
|
|
|
__ li(v0, Operand(GREATER)); // Things aren't less than themselves.
|
|
|
|
} else if (cc == greater) {
|
|
|
|
__ li(v0, Operand(LESS)); // Things aren't greater than themselves.
|
|
|
|
} else {
|
|
|
|
__ mov(v0, zero_reg); // Things are <=, >=, ==, === themselves.
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
if (cc != eq || !never_nan_nan) {
|
|
|
|
// For less and greater we don't have to check for NaN since the result of
|
|
|
|
// x < x is false regardless. For the others here is some code to check
|
|
|
|
// for NaN.
|
|
|
|
if (cc != lt && cc != gt) {
|
|
|
|
__ bind(&heap_number);
|
|
|
|
// It is a heap number, so return non-equal if it's NaN and equal if it's
|
|
|
|
// not NaN.
|
|
|
|
|
|
|
|
// The representation of NaN values has all exponent bits (52..62) set,
|
|
|
|
// and not all mantissa bits (0..51) clear.
|
|
|
|
// Read top bits of double representation (second word of value).
|
|
|
|
__ lw(t2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
|
|
|
|
// Test that exponent bits are all set.
|
|
|
|
__ And(t3, t2, Operand(exp_mask_reg));
|
|
|
|
// If all bits not set (ne cond), then not a NaN, objects are equal.
|
|
|
|
__ Branch(&return_equal, ne, t3, Operand(exp_mask_reg));
|
|
|
|
|
|
|
|
// Shift out flag and all exponent bits, retaining only mantissa.
|
|
|
|
__ sll(t2, t2, HeapNumber::kNonMantissaBitsInTopWord);
|
|
|
|
// Or with all low-bits of mantissa.
|
|
|
|
__ lw(t3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
|
|
|
|
__ Or(v0, t3, Operand(t2));
|
|
|
|
// For equal we already have the right value in v0: Return zero (equal)
|
|
|
|
// if all bits in mantissa are zero (it's an Infinity) and non-zero if
|
|
|
|
// not (it's a NaN). For <= and >= we need to load v0 with the failing
|
|
|
|
// value if it's a NaN.
|
|
|
|
if (cc != eq) {
|
|
|
|
// All-zero means Infinity means equal.
|
|
|
|
__ Ret(eq, v0, Operand(zero_reg));
|
|
|
|
if (cc == le) {
|
|
|
|
__ li(v0, Operand(GREATER)); // NaN <= NaN should fail.
|
|
|
|
} else {
|
|
|
|
__ li(v0, Operand(LESS)); // NaN >= NaN should fail.
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
// No fall through here.
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(¬_identical);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void EmitSmiNonsmiComparison(MacroAssembler* masm,
|
|
|
|
Register lhs,
|
|
|
|
Register rhs,
|
|
|
|
Label* both_loaded_as_doubles,
|
|
|
|
Label* slow,
|
|
|
|
bool strict) {
|
|
|
|
ASSERT((lhs.is(a0) && rhs.is(a1)) ||
|
|
|
|
(lhs.is(a1) && rhs.is(a0)));
|
|
|
|
|
|
|
|
Label lhs_is_smi;
|
|
|
|
__ JumpIfSmi(lhs, &lhs_is_smi);
|
|
|
|
// Rhs is a Smi.
|
|
|
|
// Check whether the non-smi is a heap number.
|
|
|
|
__ GetObjectType(lhs, t4, t4);
|
|
|
|
if (strict) {
|
|
|
|
// If lhs was not a number and rhs was a Smi then strict equality cannot
|
|
|
|
// succeed. Return non-equal (lhs is already not zero).
|
|
|
|
__ mov(v0, lhs);
|
|
|
|
__ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
} else {
|
|
|
|
// Smi compared non-strictly with a non-Smi non-heap-number. Call
|
|
|
|
// the runtime.
|
|
|
|
__ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Rhs is a smi, lhs is a number.
|
|
|
|
// Convert smi rhs to double.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ sra(at, rhs, kSmiTagSize);
|
|
|
|
__ mtc1(at, f14);
|
|
|
|
__ cvt_d_w(f14, f14);
|
|
|
|
__ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
|
|
|
} else {
|
|
|
|
// Load lhs to a double in a2, a3.
|
|
|
|
__ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
|
|
|
|
__ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
|
|
|
|
|
|
|
// Write Smi from rhs to a1 and a0 in double format. t5 is scratch.
|
|
|
|
__ mov(t6, rhs);
|
|
|
|
ConvertToDoubleStub stub1(a1, a0, t6, t5);
|
|
|
|
__ push(ra);
|
|
|
|
__ Call(stub1.GetCode());
|
|
|
|
|
|
|
|
__ pop(ra);
|
|
|
|
}
|
|
|
|
|
|
|
|
// We now have both loaded as doubles.
|
|
|
|
__ jmp(both_loaded_as_doubles);
|
|
|
|
|
|
|
|
__ bind(&lhs_is_smi);
|
|
|
|
// Lhs is a Smi. Check whether the non-smi is a heap number.
|
|
|
|
__ GetObjectType(rhs, t4, t4);
|
|
|
|
if (strict) {
|
|
|
|
// If lhs was not a number and rhs was a Smi then strict equality cannot
|
|
|
|
// succeed. Return non-equal.
|
|
|
|
__ li(v0, Operand(1));
|
|
|
|
__ Ret(ne, t4, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
} else {
|
|
|
|
// Smi compared non-strictly with a non-Smi non-heap-number. Call
|
|
|
|
// the runtime.
|
|
|
|
__ Branch(slow, ne, t4, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Lhs is a smi, rhs is a number.
|
|
|
|
// Convert smi lhs to double.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ sra(at, lhs, kSmiTagSize);
|
|
|
|
__ mtc1(at, f12);
|
|
|
|
__ cvt_d_w(f12, f12);
|
|
|
|
__ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
|
|
} else {
|
|
|
|
// Convert lhs to a double format. t5 is scratch.
|
|
|
|
__ mov(t6, lhs);
|
|
|
|
ConvertToDoubleStub stub2(a3, a2, t6, t5);
|
|
|
|
__ push(ra);
|
|
|
|
__ Call(stub2.GetCode());
|
|
|
|
__ pop(ra);
|
|
|
|
// Load rhs to a double in a1, a0.
|
|
|
|
if (rhs.is(a0)) {
|
|
|
|
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
|
|
|
|
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
|
|
} else {
|
|
|
|
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
|
|
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Fall through to both_loaded_as_doubles.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void EmitNanCheck(MacroAssembler* masm, Condition cc) {
|
|
|
|
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Lhs and rhs are already loaded to f12 and f14 register pairs.
|
|
|
|
__ Move(t0, t1, f14);
|
|
|
|
__ Move(t2, t3, f12);
|
|
|
|
} else {
|
|
|
|
// Lhs and rhs are already loaded to GP registers.
|
|
|
|
__ mov(t0, a0); // a0 has LS 32 bits of rhs.
|
|
|
|
__ mov(t1, a1); // a1 has MS 32 bits of rhs.
|
|
|
|
__ mov(t2, a2); // a2 has LS 32 bits of lhs.
|
|
|
|
__ mov(t3, a3); // a3 has MS 32 bits of lhs.
|
|
|
|
}
|
|
|
|
Register rhs_exponent = exp_first ? t0 : t1;
|
|
|
|
Register lhs_exponent = exp_first ? t2 : t3;
|
|
|
|
Register rhs_mantissa = exp_first ? t1 : t0;
|
|
|
|
Register lhs_mantissa = exp_first ? t3 : t2;
|
|
|
|
Label one_is_nan, neither_is_nan;
|
|
|
|
Label lhs_not_nan_exp_mask_is_loaded;
|
|
|
|
|
|
|
|
Register exp_mask_reg = t4;
|
|
|
|
__ li(exp_mask_reg, HeapNumber::kExponentMask);
|
|
|
|
__ and_(t5, lhs_exponent, exp_mask_reg);
|
|
|
|
__ Branch(&lhs_not_nan_exp_mask_is_loaded, ne, t5, Operand(exp_mask_reg));
|
|
|
|
|
|
|
|
__ sll(t5, lhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
|
|
|
|
__ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ Branch(&one_is_nan, ne, lhs_mantissa, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ li(exp_mask_reg, HeapNumber::kExponentMask);
|
|
|
|
__ bind(&lhs_not_nan_exp_mask_is_loaded);
|
|
|
|
__ and_(t5, rhs_exponent, exp_mask_reg);
|
|
|
|
|
|
|
|
__ Branch(&neither_is_nan, ne, t5, Operand(exp_mask_reg));
|
|
|
|
|
|
|
|
__ sll(t5, rhs_exponent, HeapNumber::kNonMantissaBitsInTopWord);
|
|
|
|
__ Branch(&one_is_nan, ne, t5, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ Branch(&neither_is_nan, eq, rhs_mantissa, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ bind(&one_is_nan);
|
|
|
|
// NaN comparisons always fail.
|
|
|
|
// Load whatever we need in v0 to make the comparison fail.
|
|
|
|
if (cc == lt || cc == le) {
|
|
|
|
__ li(v0, Operand(GREATER));
|
|
|
|
} else {
|
|
|
|
__ li(v0, Operand(LESS));
|
|
|
|
}
|
|
|
|
__ Ret(); // Return.
|
|
|
|
|
|
|
|
__ bind(&neither_is_nan);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void EmitTwoNonNanDoubleComparison(MacroAssembler* masm, Condition cc) {
|
|
|
|
// f12 and f14 have the two doubles. Neither is a NaN.
|
|
|
|
// Call a native function to do a comparison between two non-NaNs.
|
|
|
|
// Call C routine that may not cause GC or other trouble.
|
|
|
|
// We use a call_was and return manually because we need arguments slots to
|
|
|
|
// be freed.
|
|
|
|
|
|
|
|
Label return_result_not_equal, return_result_equal;
|
|
|
|
if (cc == eq) {
|
|
|
|
// Doubles are not equal unless they have the same bit pattern.
|
|
|
|
// Exception: 0 and -0.
|
|
|
|
bool exp_first = (HeapNumber::kExponentOffset == HeapNumber::kValueOffset);
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Lhs and rhs are already loaded to f12 and f14 register pairs.
|
|
|
|
__ Move(t0, t1, f14);
|
|
|
|
__ Move(t2, t3, f12);
|
|
|
|
} else {
|
|
|
|
// Lhs and rhs are already loaded to GP registers.
|
|
|
|
__ mov(t0, a0); // a0 has LS 32 bits of rhs.
|
|
|
|
__ mov(t1, a1); // a1 has MS 32 bits of rhs.
|
|
|
|
__ mov(t2, a2); // a2 has LS 32 bits of lhs.
|
|
|
|
__ mov(t3, a3); // a3 has MS 32 bits of lhs.
|
|
|
|
}
|
|
|
|
Register rhs_exponent = exp_first ? t0 : t1;
|
|
|
|
Register lhs_exponent = exp_first ? t2 : t3;
|
|
|
|
Register rhs_mantissa = exp_first ? t1 : t0;
|
|
|
|
Register lhs_mantissa = exp_first ? t3 : t2;
|
|
|
|
|
|
|
|
__ xor_(v0, rhs_mantissa, lhs_mantissa);
|
|
|
|
__ Branch(&return_result_not_equal, ne, v0, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ subu(v0, rhs_exponent, lhs_exponent);
|
|
|
|
__ Branch(&return_result_equal, eq, v0, Operand(zero_reg));
|
|
|
|
// 0, -0 case.
|
|
|
|
__ sll(rhs_exponent, rhs_exponent, kSmiTagSize);
|
|
|
|
__ sll(lhs_exponent, lhs_exponent, kSmiTagSize);
|
|
|
|
__ or_(t4, rhs_exponent, lhs_exponent);
|
|
|
|
__ or_(t4, t4, rhs_mantissa);
|
|
|
|
|
|
|
|
__ Branch(&return_result_not_equal, ne, t4, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ bind(&return_result_equal);
|
|
|
|
__ li(v0, Operand(EQUAL));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&return_result_not_equal);
|
|
|
|
|
|
|
|
if (!CpuFeatures::IsSupported(FPU)) {
|
|
|
|
__ push(ra);
|
|
|
|
__ PrepareCallCFunction(0, 2, t4);
|
|
|
|
if (!IsMipsSoftFloatABI) {
|
|
|
|
// We are not using MIPS FPU instructions, and parameters for the runtime
|
|
|
|
// function call are prepaired in a0-a3 registers, but function we are
|
|
|
|
// calling is compiled with hard-float flag and expecting hard float ABI
|
|
|
|
// (parameters in f12/f14 registers). We need to copy parameters from
|
|
|
|
// a0-a3 registers to f12/f14 register pairs.
|
|
|
|
__ Move(f12, a0, a1);
|
|
|
|
__ Move(f14, a2, a3);
|
|
|
|
}
|
|
|
|
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
__ CallCFunction(ExternalReference::compare_doubles(masm->isolate()),
|
|
|
|
0, 2);
|
|
|
|
__ pop(ra); // Because this function returns int, result is in v0.
|
|
|
|
__ Ret();
|
|
|
|
} else {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
Label equal, less_than;
|
|
|
|
__ BranchF(&equal, NULL, eq, f12, f14);
|
|
|
|
__ BranchF(&less_than, NULL, lt, f12, f14);
|
|
|
|
|
|
|
|
// Not equal, not less, not NaN, must be greater.
|
|
|
|
__ li(v0, Operand(GREATER));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&equal);
|
|
|
|
__ li(v0, Operand(EQUAL));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&less_than);
|
|
|
|
__ li(v0, Operand(LESS));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm,
|
|
|
|
Register lhs,
|
|
|
|
Register rhs) {
|
|
|
|
// If either operand is a JS object or an oddball value, then they are
|
|
|
|
// not equal since their pointers are different.
|
|
|
|
// There is no test for undetectability in strict equality.
|
|
|
|
STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE);
|
|
|
|
Label first_non_object;
|
|
|
|
// Get the type of the first operand into a2 and compare it with
|
|
|
|
// FIRST_SPEC_OBJECT_TYPE.
|
|
|
|
__ GetObjectType(lhs, a2, a2);
|
|
|
|
__ Branch(&first_non_object, less, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
|
|
|
|
|
|
|
|
// Return non-zero.
|
|
|
|
Label return_not_equal;
|
|
|
|
__ bind(&return_not_equal);
|
|
|
|
__ li(v0, Operand(1));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&first_non_object);
|
|
|
|
// Check for oddballs: true, false, null, undefined.
|
|
|
|
__ Branch(&return_not_equal, eq, a2, Operand(ODDBALL_TYPE));
|
|
|
|
|
|
|
|
__ GetObjectType(rhs, a3, a3);
|
|
|
|
__ Branch(&return_not_equal, greater, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
|
|
|
|
|
|
|
|
// Check for oddballs: true, false, null, undefined.
|
|
|
|
__ Branch(&return_not_equal, eq, a3, Operand(ODDBALL_TYPE));
|
|
|
|
|
|
|
|
// Now that we have the types we might as well check for symbol-symbol.
|
|
|
|
// Ensure that no non-strings have the symbol bit set.
|
|
|
|
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
|
|
|
|
STATIC_ASSERT(kSymbolTag != 0);
|
|
|
|
__ And(t2, a2, Operand(a3));
|
|
|
|
__ And(t0, t2, Operand(kIsSymbolMask));
|
|
|
|
__ Branch(&return_not_equal, ne, t0, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm,
|
|
|
|
Register lhs,
|
|
|
|
Register rhs,
|
|
|
|
Label* both_loaded_as_doubles,
|
|
|
|
Label* not_heap_numbers,
|
|
|
|
Label* slow) {
|
|
|
|
__ GetObjectType(lhs, a3, a2);
|
|
|
|
__ Branch(not_heap_numbers, ne, a2, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
__ lw(a2, FieldMemOperand(rhs, HeapObject::kMapOffset));
|
|
|
|
// If first was a heap number & second wasn't, go to slow case.
|
|
|
|
__ Branch(slow, ne, a3, Operand(a2));
|
|
|
|
|
|
|
|
// Both are heap numbers. Load them up then jump to the code we have
|
|
|
|
// for that.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ ldc1(f12, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
|
|
|
__ ldc1(f14, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
|
|
} else {
|
|
|
|
__ lw(a2, FieldMemOperand(lhs, HeapNumber::kValueOffset));
|
|
|
|
__ lw(a3, FieldMemOperand(lhs, HeapNumber::kValueOffset + 4));
|
|
|
|
if (rhs.is(a0)) {
|
|
|
|
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
|
|
|
|
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
|
|
} else {
|
|
|
|
__ lw(a0, FieldMemOperand(rhs, HeapNumber::kValueOffset));
|
|
|
|
__ lw(a1, FieldMemOperand(rhs, HeapNumber::kValueOffset + 4));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__ jmp(both_loaded_as_doubles);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Fast negative check for symbol-to-symbol equality.
|
|
|
|
static void EmitCheckForSymbolsOrObjects(MacroAssembler* masm,
|
|
|
|
Register lhs,
|
|
|
|
Register rhs,
|
|
|
|
Label* possible_strings,
|
|
|
|
Label* not_both_strings) {
|
|
|
|
ASSERT((lhs.is(a0) && rhs.is(a1)) ||
|
|
|
|
(lhs.is(a1) && rhs.is(a0)));
|
|
|
|
|
|
|
|
// a2 is object type of lhs.
|
|
|
|
// Ensure that no non-strings have the symbol bit set.
|
|
|
|
Label object_test;
|
|
|
|
STATIC_ASSERT(kSymbolTag != 0);
|
|
|
|
__ And(at, a2, Operand(kIsNotStringMask));
|
|
|
|
__ Branch(&object_test, ne, at, Operand(zero_reg));
|
|
|
|
__ And(at, a2, Operand(kIsSymbolMask));
|
|
|
|
__ Branch(possible_strings, eq, at, Operand(zero_reg));
|
|
|
|
__ GetObjectType(rhs, a3, a3);
|
|
|
|
__ Branch(not_both_strings, ge, a3, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
__ And(at, a3, Operand(kIsSymbolMask));
|
|
|
|
__ Branch(possible_strings, eq, at, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Both are symbols. We already checked they weren't the same pointer
|
|
|
|
// so they are not equal.
|
|
|
|
__ li(v0, Operand(1)); // Non-zero indicates not equal.
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&object_test);
|
|
|
|
__ Branch(not_both_strings, lt, a2, Operand(FIRST_SPEC_OBJECT_TYPE));
|
|
|
|
__ GetObjectType(rhs, a2, a3);
|
|
|
|
__ Branch(not_both_strings, lt, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
|
|
|
|
|
|
|
|
// If both objects are undetectable, they are equal. Otherwise, they
|
|
|
|
// are not equal, since they are different objects and an object is not
|
|
|
|
// equal to undefined.
|
|
|
|
__ lw(a3, FieldMemOperand(lhs, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a2, FieldMemOperand(a2, Map::kBitFieldOffset));
|
|
|
|
__ lbu(a3, FieldMemOperand(a3, Map::kBitFieldOffset));
|
|
|
|
__ and_(a0, a2, a3);
|
|
|
|
__ And(a0, a0, Operand(1 << Map::kIsUndetectable));
|
|
|
|
__ Xor(v0, a0, Operand(1 << Map::kIsUndetectable));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
|
|
|
|
Register object,
|
|
|
|
Register result,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
bool object_is_smi,
|
|
|
|
Label* not_found) {
|
|
|
|
// Use of registers. Register result is used as a temporary.
|
|
|
|
Register number_string_cache = result;
|
|
|
|
Register mask = scratch3;
|
|
|
|
|
|
|
|
// Load the number string cache.
|
|
|
|
__ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
|
|
|
|
|
|
|
|
// Make the hash mask from the length of the number string cache. It
|
|
|
|
// contains two elements (number and string) for each cache entry.
|
|
|
|
__ lw(mask, FieldMemOperand(number_string_cache, FixedArray::kLengthOffset));
|
|
|
|
// Divide length by two (length is a smi).
|
|
|
|
__ sra(mask, mask, kSmiTagSize + 1);
|
|
|
|
__ Addu(mask, mask, -1); // Make mask.
|
|
|
|
|
|
|
|
// Calculate the entry in the number string cache. The hash value in the
|
|
|
|
// number string cache for smis is just the smi value, and the hash for
|
|
|
|
// doubles is the xor of the upper and lower words. See
|
|
|
|
// Heap::GetNumberStringCache.
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
Label is_smi;
|
|
|
|
Label load_result_from_cache;
|
|
|
|
if (!object_is_smi) {
|
|
|
|
__ JumpIfSmi(object, &is_smi);
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ CheckMap(object,
|
|
|
|
scratch1,
|
|
|
|
Heap::kHeapNumberMapRootIndex,
|
|
|
|
not_found,
|
|
|
|
DONT_DO_SMI_CHECK);
|
|
|
|
|
|
|
|
STATIC_ASSERT(8 == kDoubleSize);
|
|
|
|
__ Addu(scratch1,
|
|
|
|
object,
|
|
|
|
Operand(HeapNumber::kValueOffset - kHeapObjectTag));
|
|
|
|
__ lw(scratch2, MemOperand(scratch1, kPointerSize));
|
|
|
|
__ lw(scratch1, MemOperand(scratch1, 0));
|
|
|
|
__ Xor(scratch1, scratch1, Operand(scratch2));
|
|
|
|
__ And(scratch1, scratch1, Operand(mask));
|
|
|
|
|
|
|
|
// Calculate address of entry in string cache: each entry consists
|
|
|
|
// of two pointer sized fields.
|
|
|
|
__ sll(scratch1, scratch1, kPointerSizeLog2 + 1);
|
|
|
|
__ Addu(scratch1, number_string_cache, scratch1);
|
|
|
|
|
|
|
|
Register probe = mask;
|
|
|
|
__ lw(probe,
|
|
|
|
FieldMemOperand(scratch1, FixedArray::kHeaderSize));
|
|
|
|
__ JumpIfSmi(probe, not_found);
|
|
|
|
__ ldc1(f12, FieldMemOperand(object, HeapNumber::kValueOffset));
|
|
|
|
__ ldc1(f14, FieldMemOperand(probe, HeapNumber::kValueOffset));
|
|
|
|
__ BranchF(&load_result_from_cache, NULL, eq, f12, f14);
|
|
|
|
__ Branch(not_found);
|
|
|
|
} else {
|
|
|
|
// Note that there is no cache check for non-FPU case, even though
|
|
|
|
// it seems there could be. May be a tiny opimization for non-FPU
|
|
|
|
// cores.
|
|
|
|
__ Branch(not_found);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&is_smi);
|
|
|
|
Register scratch = scratch1;
|
|
|
|
__ sra(scratch, object, 1); // Shift away the tag.
|
|
|
|
__ And(scratch, mask, Operand(scratch));
|
|
|
|
|
|
|
|
// Calculate address of entry in string cache: each entry consists
|
|
|
|
// of two pointer sized fields.
|
|
|
|
__ sll(scratch, scratch, kPointerSizeLog2 + 1);
|
|
|
|
__ Addu(scratch, number_string_cache, scratch);
|
|
|
|
|
|
|
|
// Check if the entry is the smi we are looking for.
|
|
|
|
Register probe = mask;
|
|
|
|
__ lw(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
|
|
|
|
__ Branch(not_found, ne, object, Operand(probe));
|
|
|
|
|
|
|
|
// Get the result from the cache.
|
|
|
|
__ bind(&load_result_from_cache);
|
|
|
|
__ lw(result,
|
|
|
|
FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
|
|
|
|
|
|
|
|
__ IncrementCounter(isolate->counters()->number_to_string_native(),
|
|
|
|
1,
|
|
|
|
scratch1,
|
|
|
|
scratch2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void NumberToStringStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label runtime;
|
|
|
|
|
|
|
|
__ lw(a1, MemOperand(sp, 0));
|
|
|
|
|
|
|
|
// Generate code to lookup number in the number string cache.
|
|
|
|
GenerateLookupNumberStringCache(masm, a1, v0, a2, a3, t0, false, &runtime);
|
|
|
|
__ Addu(sp, sp, Operand(1 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&runtime);
|
|
|
|
// Handle number to string in the runtime system if not found in the cache.
|
|
|
|
__ TailCallRuntime(Runtime::kNumberToString, 1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// On entry lhs_ (lhs) and rhs_ (rhs) are the things to be compared.
|
|
|
|
// On exit, v0 is 0, positive, or negative (smi) to indicate the result
|
|
|
|
// of the comparison.
|
|
|
|
void CompareStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label slow; // Call builtin.
|
|
|
|
Label not_smis, both_loaded_as_doubles;
|
|
|
|
|
|
|
|
|
|
|
|
if (include_smi_compare_) {
|
|
|
|
Label not_two_smis, smi_done;
|
|
|
|
__ Or(a2, a1, a0);
|
|
|
|
__ JumpIfNotSmi(a2, ¬_two_smis);
|
|
|
|
__ sra(a1, a1, 1);
|
|
|
|
__ sra(a0, a0, 1);
|
|
|
|
__ Subu(v0, a1, a0);
|
|
|
|
__ Ret();
|
|
|
|
__ bind(¬_two_smis);
|
|
|
|
} else if (FLAG_debug_code) {
|
|
|
|
__ Or(a2, a1, a0);
|
|
|
|
__ And(a2, a2, kSmiTagMask);
|
|
|
|
__ Assert(ne, "CompareStub: unexpected smi operands.",
|
|
|
|
a2, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// NOTICE! This code is only reached after a smi-fast-case check, so
|
|
|
|
// it is certain that at least one operand isn't a smi.
|
|
|
|
|
|
|
|
// Handle the case where the objects are identical. Either returns the answer
|
|
|
|
// or goes to slow. Only falls through if the objects were not identical.
|
|
|
|
EmitIdenticalObjectComparison(masm, &slow, cc_, never_nan_nan_);
|
|
|
|
|
|
|
|
// If either is a Smi (we know that not both are), then they can only
|
|
|
|
// be strictly equal if the other is a HeapNumber.
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
ASSERT_EQ(0, Smi::FromInt(0));
|
|
|
|
__ And(t2, lhs_, Operand(rhs_));
|
|
|
|
__ JumpIfNotSmi(t2, ¬_smis, t0);
|
|
|
|
// One operand is a smi. EmitSmiNonsmiComparison generates code that can:
|
|
|
|
// 1) Return the answer.
|
|
|
|
// 2) Go to slow.
|
|
|
|
// 3) Fall through to both_loaded_as_doubles.
|
|
|
|
// 4) Jump to rhs_not_nan.
|
|
|
|
// In cases 3 and 4 we have found out we were dealing with a number-number
|
|
|
|
// comparison and the numbers have been loaded into f12 and f14 as doubles,
|
|
|
|
// or in GP registers (a0, a1, a2, a3) depending on the presence of the FPU.
|
|
|
|
EmitSmiNonsmiComparison(masm, lhs_, rhs_,
|
|
|
|
&both_loaded_as_doubles, &slow, strict_);
|
|
|
|
|
|
|
|
__ bind(&both_loaded_as_doubles);
|
|
|
|
// f12, f14 are the double representations of the left hand side
|
|
|
|
// and the right hand side if we have FPU. Otherwise a2, a3 represent
|
|
|
|
// left hand side and a0, a1 represent right hand side.
|
|
|
|
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
Label nan;
|
|
|
|
__ li(t0, Operand(LESS));
|
|
|
|
__ li(t1, Operand(GREATER));
|
|
|
|
__ li(t2, Operand(EQUAL));
|
|
|
|
|
|
|
|
// Check if either rhs or lhs is NaN.
|
|
|
|
__ BranchF(NULL, &nan, eq, f12, f14);
|
|
|
|
|
|
|
|
// Check if LESS condition is satisfied. If true, move conditionally
|
|
|
|
// result to v0.
|
|
|
|
__ c(OLT, D, f12, f14);
|
|
|
|
__ movt(v0, t0);
|
|
|
|
// Use previous check to store conditionally to v0 oposite condition
|
|
|
|
// (GREATER). If rhs is equal to lhs, this will be corrected in next
|
|
|
|
// check.
|
|
|
|
__ movf(v0, t1);
|
|
|
|
// Check if EQUAL condition is satisfied. If true, move conditionally
|
|
|
|
// result to v0.
|
|
|
|
__ c(EQ, D, f12, f14);
|
|
|
|
__ movt(v0, t2);
|
|
|
|
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&nan);
|
|
|
|
// NaN comparisons always fail.
|
|
|
|
// Load whatever we need in v0 to make the comparison fail.
|
|
|
|
if (cc_ == lt || cc_ == le) {
|
|
|
|
__ li(v0, Operand(GREATER));
|
|
|
|
} else {
|
|
|
|
__ li(v0, Operand(LESS));
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
} else {
|
|
|
|
// Checks for NaN in the doubles we have loaded. Can return the answer or
|
|
|
|
// fall through if neither is a NaN. Also binds rhs_not_nan.
|
|
|
|
EmitNanCheck(masm, cc_);
|
|
|
|
|
|
|
|
// Compares two doubles that are not NaNs. Returns the answer.
|
|
|
|
// Never falls through.
|
|
|
|
EmitTwoNonNanDoubleComparison(masm, cc_);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(¬_smis);
|
|
|
|
// At this point we know we are dealing with two different objects,
|
|
|
|
// and neither of them is a Smi. The objects are in lhs_ and rhs_.
|
|
|
|
if (strict_) {
|
|
|
|
// This returns non-equal for some object types, or falls through if it
|
|
|
|
// was not lucky.
|
|
|
|
EmitStrictTwoHeapObjectCompare(masm, lhs_, rhs_);
|
|
|
|
}
|
|
|
|
|
|
|
|
Label check_for_symbols;
|
|
|
|
Label flat_string_check;
|
|
|
|
// Check for heap-number-heap-number comparison. Can jump to slow case,
|
|
|
|
// or load both doubles and jump to the code that handles
|
|
|
|
// that case. If the inputs are not doubles then jumps to check_for_symbols.
|
|
|
|
// In this case a2 will contain the type of lhs_.
|
|
|
|
EmitCheckForTwoHeapNumbers(masm,
|
|
|
|
lhs_,
|
|
|
|
rhs_,
|
|
|
|
&both_loaded_as_doubles,
|
|
|
|
&check_for_symbols,
|
|
|
|
&flat_string_check);
|
|
|
|
|
|
|
|
__ bind(&check_for_symbols);
|
|
|
|
if (cc_ == eq && !strict_) {
|
|
|
|
// Returns an answer for two symbols or two detectable objects.
|
|
|
|
// Otherwise jumps to string case or not both strings case.
|
|
|
|
// Assumes that a2 is the type of lhs_ on entry.
|
|
|
|
EmitCheckForSymbolsOrObjects(masm, lhs_, rhs_, &flat_string_check, &slow);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for both being sequential ASCII strings, and inline if that is the
|
|
|
|
// case.
|
|
|
|
__ bind(&flat_string_check);
|
|
|
|
|
|
|
|
__ JumpIfNonSmisNotBothSequentialAsciiStrings(lhs_, rhs_, a2, a3, &slow);
|
|
|
|
|
|
|
|
__ IncrementCounter(isolate->counters()->string_compare_native(), 1, a2, a3);
|
|
|
|
if (cc_ == eq) {
|
|
|
|
StringCompareStub::GenerateFlatAsciiStringEquals(masm,
|
|
|
|
lhs_,
|
|
|
|
rhs_,
|
|
|
|
a2,
|
|
|
|
a3,
|
|
|
|
t0);
|
|
|
|
} else {
|
|
|
|
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
|
|
|
|
lhs_,
|
|
|
|
rhs_,
|
|
|
|
a2,
|
|
|
|
a3,
|
|
|
|
t0,
|
|
|
|
t1);
|
|
|
|
}
|
|
|
|
// Never falls through to here.
|
|
|
|
|
|
|
|
__ bind(&slow);
|
|
|
|
// Prepare for call to builtin. Push object pointers, a0 (lhs) first,
|
|
|
|
// a1 (rhs) second.
|
|
|
|
__ Push(lhs_, rhs_);
|
|
|
|
// Figure out which native to call and setup the arguments.
|
|
|
|
Builtins::JavaScript native;
|
|
|
|
if (cc_ == eq) {
|
|
|
|
native = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
|
|
|
|
} else {
|
|
|
|
native = Builtins::COMPARE;
|
|
|
|
int ncr; // NaN compare result.
|
|
|
|
if (cc_ == lt || cc_ == le) {
|
|
|
|
ncr = GREATER;
|
|
|
|
} else {
|
|
|
|
ASSERT(cc_ == gt || cc_ == ge); // Remaining cases.
|
|
|
|
ncr = LESS;
|
|
|
|
}
|
|
|
|
__ li(a0, Operand(Smi::FromInt(ncr)));
|
|
|
|
__ push(a0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
|
|
|
|
// tagged as a small integer.
|
|
|
|
__ InvokeBuiltin(native, JUMP_FUNCTION);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// The stub expects its argument in the tos_ register and returns its result in
|
|
|
|
// it, too: zero for false, and a non-zero value for true.
|
|
|
|
void ToBooleanStub::Generate(MacroAssembler* masm) {
|
|
|
|
// This stub uses FPU instructions.
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
|
|
|
|
Label patch;
|
|
|
|
const Register map = t5.is(tos_) ? t3 : t5;
|
|
|
|
|
|
|
|
// undefined -> false.
|
|
|
|
CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false);
|
|
|
|
|
|
|
|
// Boolean -> its value.
|
|
|
|
CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false);
|
|
|
|
CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true);
|
|
|
|
|
|
|
|
// 'null' -> false.
|
|
|
|
CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false);
|
|
|
|
|
|
|
|
if (types_.Contains(SMI)) {
|
|
|
|
// Smis: 0 -> false, all other -> true
|
|
|
|
__ And(at, tos_, kSmiTagMask);
|
|
|
|
// tos_ contains the correct return value already
|
|
|
|
__ Ret(eq, at, Operand(zero_reg));
|
|
|
|
} else if (types_.NeedsMap()) {
|
|
|
|
// If we need a map later and have a Smi -> patch.
|
|
|
|
__ JumpIfSmi(tos_, &patch);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (types_.NeedsMap()) {
|
|
|
|
__ lw(map, FieldMemOperand(tos_, HeapObject::kMapOffset));
|
|
|
|
|
|
|
|
if (types_.CanBeUndetectable()) {
|
|
|
|
__ lbu(at, FieldMemOperand(map, Map::kBitFieldOffset));
|
|
|
|
__ And(at, at, Operand(1 << Map::kIsUndetectable));
|
|
|
|
// Undetectable -> false.
|
|
|
|
__ movn(tos_, zero_reg, at);
|
|
|
|
__ Ret(ne, at, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (types_.Contains(SPEC_OBJECT)) {
|
|
|
|
// Spec object -> true.
|
|
|
|
__ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
|
|
|
// tos_ contains the correct non-zero return value already.
|
|
|
|
__ Ret(ge, at, Operand(FIRST_SPEC_OBJECT_TYPE));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (types_.Contains(STRING)) {
|
|
|
|
// String value -> false iff empty.
|
|
|
|
__ lbu(at, FieldMemOperand(map, Map::kInstanceTypeOffset));
|
|
|
|
Label skip;
|
|
|
|
__ Branch(&skip, ge, at, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
__ lw(tos_, FieldMemOperand(tos_, String::kLengthOffset));
|
|
|
|
__ Ret(); // the string length is OK as the return value
|
|
|
|
__ bind(&skip);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (types_.Contains(HEAP_NUMBER)) {
|
|
|
|
// Heap number -> false iff +0, -0, or NaN.
|
|
|
|
Label not_heap_number;
|
|
|
|
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
|
|
|
|
__ Branch(¬_heap_number, ne, map, Operand(at));
|
|
|
|
Label zero_or_nan, number;
|
|
|
|
__ ldc1(f2, FieldMemOperand(tos_, HeapNumber::kValueOffset));
|
|
|
|
__ BranchF(&number, &zero_or_nan, ne, f2, kDoubleRegZero);
|
|
|
|
// "tos_" is a register, and contains a non zero value by default.
|
|
|
|
// Hence we only need to overwrite "tos_" with zero to return false for
|
|
|
|
// FP_ZERO or FP_NAN cases. Otherwise, by default it returns true.
|
|
|
|
__ bind(&zero_or_nan);
|
|
|
|
__ mov(tos_, zero_reg);
|
|
|
|
__ bind(&number);
|
|
|
|
__ Ret();
|
|
|
|
__ bind(¬_heap_number);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&patch);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ToBooleanStub::CheckOddball(MacroAssembler* masm,
|
|
|
|
Type type,
|
|
|
|
Heap::RootListIndex value,
|
|
|
|
bool result) {
|
|
|
|
if (types_.Contains(type)) {
|
|
|
|
// If we see an expected oddball, return its ToBoolean value tos_.
|
|
|
|
__ LoadRoot(at, value);
|
|
|
|
__ Subu(at, at, tos_); // This is a check for equality for the movz below.
|
|
|
|
// The value of a root is never NULL, so we can avoid loading a non-null
|
|
|
|
// value into tos_ when we want to return 'true'.
|
|
|
|
if (!result) {
|
|
|
|
__ movz(tos_, zero_reg, at);
|
|
|
|
}
|
|
|
|
__ Ret(eq, at, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) {
|
|
|
|
__ Move(a3, tos_);
|
|
|
|
__ li(a2, Operand(Smi::FromInt(tos_.code())));
|
|
|
|
__ li(a1, Operand(Smi::FromInt(types_.ToByte())));
|
|
|
|
__ Push(a3, a2, a1);
|
|
|
|
// Patch the caller to an appropriate specialized stub and return the
|
|
|
|
// operation result to the caller of the stub.
|
|
|
|
__ TailCallExternalReference(
|
|
|
|
ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()),
|
|
|
|
3,
|
|
|
|
1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StoreBufferOverflowStub::Generate(MacroAssembler* masm) {
|
|
|
|
// We don't allow a GC during a store buffer overflow so there is no need to
|
|
|
|
// store the registers in any particular way, but we do have to store and
|
|
|
|
// restore them.
|
|
|
|
__ MultiPush(kJSCallerSaved | ra.bit());
|
|
|
|
if (save_doubles_ == kSaveFPRegs) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ MultiPushFPU(kCallerSavedFPU);
|
|
|
|
}
|
|
|
|
const int argument_count = 1;
|
|
|
|
const int fp_argument_count = 0;
|
|
|
|
const Register scratch = a1;
|
|
|
|
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
__ PrepareCallCFunction(argument_count, fp_argument_count, scratch);
|
|
|
|
__ li(a0, Operand(ExternalReference::isolate_address()));
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::store_buffer_overflow_function(masm->isolate()),
|
|
|
|
argument_count);
|
|
|
|
if (save_doubles_ == kSaveFPRegs) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ MultiPopFPU(kCallerSavedFPU);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ MultiPop(kJSCallerSaved | ra.bit());
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::PrintName(StringStream* stream) {
|
|
|
|
const char* op_name = Token::Name(op_);
|
|
|
|
const char* overwrite_name = NULL; // Make g++ happy.
|
|
|
|
switch (mode_) {
|
|
|
|
case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break;
|
|
|
|
case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break;
|
|
|
|
}
|
|
|
|
stream->Add("UnaryOpStub_%s_%s_%s",
|
|
|
|
op_name,
|
|
|
|
overwrite_name,
|
|
|
|
UnaryOpIC::GetName(operand_type_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(svenpanne): Use virtual functions instead of switch.
|
|
|
|
void UnaryOpStub::Generate(MacroAssembler* masm) {
|
|
|
|
switch (operand_type_) {
|
|
|
|
case UnaryOpIC::UNINITIALIZED:
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
break;
|
|
|
|
case UnaryOpIC::SMI:
|
|
|
|
GenerateSmiStub(masm);
|
|
|
|
break;
|
|
|
|
case UnaryOpIC::HEAP_NUMBER:
|
|
|
|
GenerateHeapNumberStub(masm);
|
|
|
|
break;
|
|
|
|
case UnaryOpIC::GENERIC:
|
|
|
|
GenerateGenericStub(masm);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
|
|
|
|
// Argument is in a0 and v0 at this point, so we can overwrite a0.
|
|
|
|
__ li(a2, Operand(Smi::FromInt(op_)));
|
|
|
|
__ li(a1, Operand(Smi::FromInt(mode_)));
|
|
|
|
__ li(a0, Operand(Smi::FromInt(operand_type_)));
|
|
|
|
__ Push(v0, a2, a1, a0);
|
|
|
|
|
|
|
|
__ TailCallExternalReference(
|
|
|
|
ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(svenpanne): Use virtual functions instead of switch.
|
|
|
|
void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
|
|
|
|
switch (op_) {
|
|
|
|
case Token::SUB:
|
|
|
|
GenerateSmiStubSub(masm);
|
|
|
|
break;
|
|
|
|
case Token::BIT_NOT:
|
|
|
|
GenerateSmiStubBitNot(masm);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) {
|
|
|
|
Label non_smi, slow;
|
|
|
|
GenerateSmiCodeSub(masm, &non_smi, &slow);
|
|
|
|
__ bind(&non_smi);
|
|
|
|
__ bind(&slow);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) {
|
|
|
|
Label non_smi;
|
|
|
|
GenerateSmiCodeBitNot(masm, &non_smi);
|
|
|
|
__ bind(&non_smi);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm,
|
|
|
|
Label* non_smi,
|
|
|
|
Label* slow) {
|
|
|
|
__ JumpIfNotSmi(a0, non_smi);
|
|
|
|
|
|
|
|
// The result of negating zero or the smallest negative smi is not a smi.
|
|
|
|
__ And(t0, a0, ~0x80000000);
|
|
|
|
__ Branch(slow, eq, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Return '0 - value'.
|
|
|
|
__ Subu(v0, zero_reg, a0);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateSmiCodeBitNot(MacroAssembler* masm,
|
|
|
|
Label* non_smi) {
|
|
|
|
__ JumpIfNotSmi(a0, non_smi);
|
|
|
|
|
|
|
|
// Flip bits and revert inverted smi-tag.
|
|
|
|
__ Neg(v0, a0);
|
|
|
|
__ And(v0, v0, ~kSmiTagMask);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(svenpanne): Use virtual functions instead of switch.
|
|
|
|
void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
|
|
|
|
switch (op_) {
|
|
|
|
case Token::SUB:
|
|
|
|
GenerateHeapNumberStubSub(masm);
|
|
|
|
break;
|
|
|
|
case Token::BIT_NOT:
|
|
|
|
GenerateHeapNumberStubBitNot(masm);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) {
|
|
|
|
Label non_smi, slow, call_builtin;
|
|
|
|
GenerateSmiCodeSub(masm, &non_smi, &call_builtin);
|
|
|
|
__ bind(&non_smi);
|
|
|
|
GenerateHeapNumberCodeSub(masm, &slow);
|
|
|
|
__ bind(&slow);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
__ bind(&call_builtin);
|
|
|
|
GenerateGenericCodeFallback(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateHeapNumberStubBitNot(MacroAssembler* masm) {
|
|
|
|
Label non_smi, slow;
|
|
|
|
GenerateSmiCodeBitNot(masm, &non_smi);
|
|
|
|
__ bind(&non_smi);
|
|
|
|
GenerateHeapNumberCodeBitNot(masm, &slow);
|
|
|
|
__ bind(&slow);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm,
|
|
|
|
Label* slow) {
|
|
|
|
EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
|
|
|
|
// a0 is a heap number. Get a new heap number in a1.
|
|
|
|
if (mode_ == UNARY_OVERWRITE) {
|
|
|
|
__ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
|
|
|
|
__ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
|
|
|
|
__ sw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
|
|
|
|
} else {
|
|
|
|
Label slow_allocate_heapnumber, heapnumber_allocated;
|
|
|
|
__ AllocateHeapNumber(a1, a2, a3, t2, &slow_allocate_heapnumber);
|
|
|
|
__ jmp(&heapnumber_allocated);
|
|
|
|
|
|
|
|
__ bind(&slow_allocate_heapnumber);
|
|
|
|
{
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
__ push(a0);
|
|
|
|
__ CallRuntime(Runtime::kNumberAlloc, 0);
|
|
|
|
__ mov(a1, v0);
|
|
|
|
__ pop(a0);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&heapnumber_allocated);
|
|
|
|
__ lw(a3, FieldMemOperand(a0, HeapNumber::kMantissaOffset));
|
|
|
|
__ lw(a2, FieldMemOperand(a0, HeapNumber::kExponentOffset));
|
|
|
|
__ sw(a3, FieldMemOperand(a1, HeapNumber::kMantissaOffset));
|
|
|
|
__ Xor(a2, a2, Operand(HeapNumber::kSignMask)); // Flip sign.
|
|
|
|
__ sw(a2, FieldMemOperand(a1, HeapNumber::kExponentOffset));
|
|
|
|
__ mov(v0, a1);
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateHeapNumberCodeBitNot(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Label* slow) {
|
|
|
|
Label impossible;
|
|
|
|
|
|
|
|
EmitCheckForHeapNumber(masm, a0, a1, t2, slow);
|
|
|
|
// Convert the heap number in a0 to an untagged integer in a1.
|
|
|
|
__ ConvertToInt32(a0, a1, a2, a3, f0, slow);
|
|
|
|
|
|
|
|
// Do the bitwise operation and check if the result fits in a smi.
|
|
|
|
Label try_float;
|
|
|
|
__ Neg(a1, a1);
|
|
|
|
__ Addu(a2, a1, Operand(0x40000000));
|
|
|
|
__ Branch(&try_float, lt, a2, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Tag the result as a smi and we're done.
|
|
|
|
__ SmiTag(v0, a1);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Try to store the result in a heap number.
|
|
|
|
__ bind(&try_float);
|
|
|
|
if (mode_ == UNARY_NO_OVERWRITE) {
|
|
|
|
Label slow_allocate_heapnumber, heapnumber_allocated;
|
|
|
|
// Allocate a new heap number without zapping v0, which we need if it fails.
|
|
|
|
__ AllocateHeapNumber(a2, a3, t0, t2, &slow_allocate_heapnumber);
|
|
|
|
__ jmp(&heapnumber_allocated);
|
|
|
|
|
|
|
|
__ bind(&slow_allocate_heapnumber);
|
|
|
|
{
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
__ push(v0); // Push the heap number, not the untagged int32.
|
|
|
|
__ CallRuntime(Runtime::kNumberAlloc, 0);
|
|
|
|
__ mov(a2, v0); // Move the new heap number into a2.
|
|
|
|
// Get the heap number into v0, now that the new heap number is in a2.
|
|
|
|
__ pop(v0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert the heap number in v0 to an untagged integer in a1.
|
|
|
|
// This can't go slow-case because it's the same number we already
|
|
|
|
// converted once again.
|
|
|
|
__ ConvertToInt32(v0, a1, a3, t0, f0, &impossible);
|
|
|
|
// Negate the result.
|
|
|
|
__ Xor(a1, a1, -1);
|
|
|
|
|
|
|
|
__ bind(&heapnumber_allocated);
|
|
|
|
__ mov(v0, a2); // Move newly allocated heap number to v0.
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
// Convert the int32 in a1 to the heap number in v0. a2 is corrupted.
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ mtc1(a1, f0);
|
|
|
|
__ cvt_d_w(f0, f0);
|
|
|
|
__ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
|
|
|
|
__ Ret();
|
|
|
|
} else {
|
|
|
|
// WriteInt32ToHeapNumberStub does not trigger GC, so we do not
|
|
|
|
// have to set up a frame.
|
|
|
|
WriteInt32ToHeapNumberStub stub(a1, v0, a2, a3);
|
|
|
|
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&impossible);
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ stop("Incorrect assumption in bit-not stub");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// TODO(svenpanne): Use virtual functions instead of switch.
|
|
|
|
void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) {
|
|
|
|
switch (op_) {
|
|
|
|
case Token::SUB:
|
|
|
|
GenerateGenericStubSub(masm);
|
|
|
|
break;
|
|
|
|
case Token::BIT_NOT:
|
|
|
|
GenerateGenericStubBitNot(masm);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) {
|
|
|
|
Label non_smi, slow;
|
|
|
|
GenerateSmiCodeSub(masm, &non_smi, &slow);
|
|
|
|
__ bind(&non_smi);
|
|
|
|
GenerateHeapNumberCodeSub(masm, &slow);
|
|
|
|
__ bind(&slow);
|
|
|
|
GenerateGenericCodeFallback(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) {
|
|
|
|
Label non_smi, slow;
|
|
|
|
GenerateSmiCodeBitNot(masm, &non_smi);
|
|
|
|
__ bind(&non_smi);
|
|
|
|
GenerateHeapNumberCodeBitNot(masm, &slow);
|
|
|
|
__ bind(&slow);
|
|
|
|
GenerateGenericCodeFallback(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void UnaryOpStub::GenerateGenericCodeFallback(
|
|
|
|
MacroAssembler* masm) {
|
|
|
|
// Handle the slow case by jumping to the JavaScript builtin.
|
|
|
|
__ push(a0);
|
|
|
|
switch (op_) {
|
|
|
|
case Token::SUB:
|
|
|
|
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::BIT_NOT:
|
|
|
|
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
|
|
|
|
Label get_result;
|
|
|
|
|
|
|
|
__ Push(a1, a0);
|
|
|
|
|
|
|
|
__ li(a2, Operand(Smi::FromInt(MinorKey())));
|
|
|
|
__ li(a1, Operand(Smi::FromInt(op_)));
|
|
|
|
__ li(a0, Operand(Smi::FromInt(operands_type_)));
|
|
|
|
__ Push(a2, a1, a0);
|
|
|
|
|
|
|
|
__ TailCallExternalReference(
|
|
|
|
ExternalReference(IC_Utility(IC::kBinaryOp_Patch),
|
|
|
|
masm->isolate()),
|
|
|
|
5,
|
|
|
|
1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(
|
|
|
|
MacroAssembler* masm) {
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Explicitly allow generation of nested stubs. It is safe here because
|
|
|
|
// generation code does not use any raw pointers.
|
|
|
|
AllowStubCallsScope allow_stub_calls(masm, true);
|
|
|
|
switch (operands_type_) {
|
|
|
|
case BinaryOpIC::UNINITIALIZED:
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
break;
|
|
|
|
case BinaryOpIC::SMI:
|
|
|
|
GenerateSmiStub(masm);
|
|
|
|
break;
|
|
|
|
case BinaryOpIC::INT32:
|
|
|
|
GenerateInt32Stub(masm);
|
|
|
|
break;
|
|
|
|
case BinaryOpIC::HEAP_NUMBER:
|
|
|
|
GenerateHeapNumberStub(masm);
|
|
|
|
break;
|
|
|
|
case BinaryOpIC::ODDBALL:
|
|
|
|
GenerateOddballStub(masm);
|
|
|
|
break;
|
|
|
|
case BinaryOpIC::BOTH_STRING:
|
|
|
|
GenerateBothStringStub(masm);
|
|
|
|
break;
|
|
|
|
case BinaryOpIC::STRING:
|
|
|
|
GenerateStringStub(masm);
|
|
|
|
break;
|
|
|
|
case BinaryOpIC::GENERIC:
|
|
|
|
GenerateGeneric(masm);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::PrintName(StringStream* stream) {
|
|
|
|
const char* op_name = Token::Name(op_);
|
|
|
|
const char* overwrite_name;
|
|
|
|
switch (mode_) {
|
|
|
|
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
|
|
|
|
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
|
|
|
|
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
|
|
|
|
default: overwrite_name = "UnknownOverwrite"; break;
|
|
|
|
}
|
|
|
|
stream->Add("BinaryOpStub_%s_%s_%s",
|
|
|
|
op_name,
|
|
|
|
overwrite_name,
|
|
|
|
BinaryOpIC::GetName(operands_type_));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateSmiSmiOperation(MacroAssembler* masm) {
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
|
|
|
|
Register scratch1 = t0;
|
|
|
|
Register scratch2 = t1;
|
|
|
|
|
|
|
|
ASSERT(right.is(a0));
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
|
|
|
|
Label not_smi_result;
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD:
|
|
|
|
__ AdduAndCheckForOverflow(v0, left, right, scratch1);
|
|
|
|
__ RetOnNoOverflow(scratch1);
|
|
|
|
// No need to revert anything - right and left are intact.
|
|
|
|
break;
|
|
|
|
case Token::SUB:
|
|
|
|
__ SubuAndCheckForOverflow(v0, left, right, scratch1);
|
|
|
|
__ RetOnNoOverflow(scratch1);
|
|
|
|
// No need to revert anything - right and left are intact.
|
|
|
|
break;
|
|
|
|
case Token::MUL: {
|
|
|
|
// Remove tag from one of the operands. This way the multiplication result
|
|
|
|
// will be a smi if it fits the smi range.
|
|
|
|
__ SmiUntag(scratch1, right);
|
|
|
|
// Do multiplication.
|
|
|
|
// lo = lower 32 bits of scratch1 * left.
|
|
|
|
// hi = higher 32 bits of scratch1 * left.
|
|
|
|
__ Mult(left, scratch1);
|
|
|
|
// Check for overflowing the smi range - no overflow if higher 33 bits of
|
|
|
|
// the result are identical.
|
|
|
|
__ mflo(scratch1);
|
|
|
|
__ mfhi(scratch2);
|
|
|
|
__ sra(scratch1, scratch1, 31);
|
|
|
|
__ Branch(¬_smi_result, ne, scratch1, Operand(scratch2));
|
|
|
|
// Go slow on zero result to handle -0.
|
|
|
|
__ mflo(v0);
|
|
|
|
__ Ret(ne, v0, Operand(zero_reg));
|
|
|
|
// We need -0 if we were multiplying a negative number with 0 to get 0.
|
|
|
|
// We know one of them was zero.
|
|
|
|
__ Addu(scratch2, right, left);
|
|
|
|
Label skip;
|
|
|
|
// ARM uses the 'pl' condition, which is 'ge'.
|
|
|
|
// Negating it results in 'lt'.
|
|
|
|
__ Branch(&skip, lt, scratch2, Operand(zero_reg));
|
|
|
|
ASSERT(Smi::FromInt(0) == 0);
|
|
|
|
__ mov(v0, zero_reg);
|
|
|
|
__ Ret(); // Return smi 0 if the non-zero one was positive.
|
|
|
|
__ bind(&skip);
|
|
|
|
// We fall through here if we multiplied a negative number with 0, because
|
|
|
|
// that would mean we should produce -0.
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Token::DIV: {
|
|
|
|
Label done;
|
|
|
|
__ SmiUntag(scratch2, right);
|
|
|
|
__ SmiUntag(scratch1, left);
|
|
|
|
__ Div(scratch1, scratch2);
|
|
|
|
// A minor optimization: div may be calculated asynchronously, so we check
|
|
|
|
// for division by zero before getting the result.
|
|
|
|
__ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg));
|
|
|
|
// If the result is 0, we need to make sure the dividsor (right) is
|
|
|
|
// positive, otherwise it is a -0 case.
|
|
|
|
// Quotient is in 'lo', remainder is in 'hi'.
|
|
|
|
// Check for no remainder first.
|
|
|
|
__ mfhi(scratch1);
|
|
|
|
__ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg));
|
|
|
|
__ mflo(scratch1);
|
|
|
|
__ Branch(&done, ne, scratch1, Operand(zero_reg));
|
|
|
|
__ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg));
|
|
|
|
__ bind(&done);
|
|
|
|
// Check that the signed result fits in a Smi.
|
|
|
|
__ Addu(scratch2, scratch1, Operand(0x40000000));
|
|
|
|
__ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg));
|
|
|
|
__ SmiTag(v0, scratch1);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Token::MOD: {
|
|
|
|
Label done;
|
|
|
|
__ SmiUntag(scratch2, right);
|
|
|
|
__ SmiUntag(scratch1, left);
|
|
|
|
__ Div(scratch1, scratch2);
|
|
|
|
// A minor optimization: div may be calculated asynchronously, so we check
|
|
|
|
// for division by 0 before calling mfhi.
|
|
|
|
// Check for zero on the right hand side.
|
|
|
|
__ Branch(¬_smi_result, eq, scratch2, Operand(zero_reg));
|
|
|
|
// If the result is 0, we need to make sure the dividend (left) is
|
|
|
|
// positive (or 0), otherwise it is a -0 case.
|
|
|
|
// Remainder is in 'hi'.
|
|
|
|
__ mfhi(scratch2);
|
|
|
|
__ Branch(&done, ne, scratch2, Operand(zero_reg));
|
|
|
|
__ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg));
|
|
|
|
__ bind(&done);
|
|
|
|
// Check that the signed result fits in a Smi.
|
|
|
|
__ Addu(scratch1, scratch2, Operand(0x40000000));
|
|
|
|
__ Branch(¬_smi_result, lt, scratch1, Operand(zero_reg));
|
|
|
|
__ SmiTag(v0, scratch2);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Token::BIT_OR:
|
|
|
|
__ Or(v0, left, Operand(right));
|
|
|
|
__ Ret();
|
|
|
|
break;
|
|
|
|
case Token::BIT_AND:
|
|
|
|
__ And(v0, left, Operand(right));
|
|
|
|
__ Ret();
|
|
|
|
break;
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
__ Xor(v0, left, Operand(right));
|
|
|
|
__ Ret();
|
|
|
|
break;
|
|
|
|
case Token::SAR:
|
|
|
|
// Remove tags from right operand.
|
|
|
|
__ GetLeastBitsFromSmi(scratch1, right, 5);
|
|
|
|
__ srav(scratch1, left, scratch1);
|
|
|
|
// Smi tag result.
|
|
|
|
__ And(v0, scratch1, Operand(~kSmiTagMask));
|
|
|
|
__ Ret();
|
|
|
|
break;
|
|
|
|
case Token::SHR:
|
|
|
|
// Remove tags from operands. We can't do this on a 31 bit number
|
|
|
|
// because then the 0s get shifted into bit 30 instead of bit 31.
|
|
|
|
__ SmiUntag(scratch1, left);
|
|
|
|
__ GetLeastBitsFromSmi(scratch2, right, 5);
|
|
|
|
__ srlv(v0, scratch1, scratch2);
|
|
|
|
// Unsigned shift is not allowed to produce a negative number, so
|
|
|
|
// check the sign bit and the sign bit after Smi tagging.
|
|
|
|
__ And(scratch1, v0, Operand(0xc0000000));
|
|
|
|
__ Branch(¬_smi_result, ne, scratch1, Operand(zero_reg));
|
|
|
|
// Smi tag result.
|
|
|
|
__ SmiTag(v0);
|
|
|
|
__ Ret();
|
|
|
|
break;
|
|
|
|
case Token::SHL:
|
|
|
|
// Remove tags from operands.
|
|
|
|
__ SmiUntag(scratch1, left);
|
|
|
|
__ GetLeastBitsFromSmi(scratch2, right, 5);
|
|
|
|
__ sllv(scratch1, scratch1, scratch2);
|
|
|
|
// Check that the signed result fits in a Smi.
|
|
|
|
__ Addu(scratch2, scratch1, Operand(0x40000000));
|
|
|
|
__ Branch(¬_smi_result, lt, scratch2, Operand(zero_reg));
|
|
|
|
__ SmiTag(v0, scratch1);
|
|
|
|
__ Ret();
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
__ bind(¬_smi_result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateFPOperation(MacroAssembler* masm,
|
|
|
|
bool smi_operands,
|
|
|
|
Label* not_numbers,
|
|
|
|
Label* gc_required) {
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
Register scratch1 = t3;
|
|
|
|
Register scratch2 = t5;
|
|
|
|
Register scratch3 = t0;
|
|
|
|
|
|
|
|
ASSERT(smi_operands || (not_numbers != NULL));
|
|
|
|
if (smi_operands && FLAG_debug_code) {
|
|
|
|
__ AbortIfNotSmi(left);
|
|
|
|
__ AbortIfNotSmi(right);
|
|
|
|
}
|
|
|
|
|
|
|
|
Register heap_number_map = t2;
|
|
|
|
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
|
|
|
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD:
|
|
|
|
case Token::SUB:
|
|
|
|
case Token::MUL:
|
|
|
|
case Token::DIV:
|
|
|
|
case Token::MOD: {
|
|
|
|
// Load left and right operands into f12 and f14 or a0/a1 and a2/a3
|
|
|
|
// depending on whether FPU is available or not.
|
|
|
|
FloatingPointHelper::Destination destination =
|
|
|
|
CpuFeatures::IsSupported(FPU) &&
|
|
|
|
op_ != Token::MOD ?
|
|
|
|
FloatingPointHelper::kFPURegisters :
|
|
|
|
FloatingPointHelper::kCoreRegisters;
|
|
|
|
|
|
|
|
// Allocate new heap number for result.
|
|
|
|
Register result = s0;
|
|
|
|
GenerateHeapResultAllocation(
|
|
|
|
masm, result, heap_number_map, scratch1, scratch2, gc_required);
|
|
|
|
|
|
|
|
// Load the operands.
|
|
|
|
if (smi_operands) {
|
|
|
|
FloatingPointHelper::LoadSmis(masm, destination, scratch1, scratch2);
|
|
|
|
} else {
|
|
|
|
FloatingPointHelper::LoadOperands(masm,
|
|
|
|
destination,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
not_numbers);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calculate the result.
|
|
|
|
if (destination == FloatingPointHelper::kFPURegisters) {
|
|
|
|
// Using FPU registers:
|
|
|
|
// f12: Left value.
|
|
|
|
// f14: Right value.
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD:
|
|
|
|
__ add_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
case Token::SUB:
|
|
|
|
__ sub_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
case Token::MUL:
|
|
|
|
__ mul_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
case Token::DIV:
|
|
|
|
__ div_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
// ARM uses a workaround here because of the unaligned HeapNumber
|
|
|
|
// kValueOffset. On MIPS this workaround is built into sdc1 so
|
|
|
|
// there's no point in generating even more instructions.
|
|
|
|
__ sdc1(f10, FieldMemOperand(result, HeapNumber::kValueOffset));
|
|
|
|
__ mov(v0, result);
|
|
|
|
__ Ret();
|
|
|
|
} else {
|
|
|
|
// Call the C function to handle the double operation.
|
|
|
|
FloatingPointHelper::CallCCodeForDoubleOperation(masm,
|
|
|
|
op_,
|
|
|
|
result,
|
|
|
|
scratch1);
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ stop("Unreachable code.");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::BIT_AND:
|
|
|
|
case Token::SAR:
|
|
|
|
case Token::SHR:
|
|
|
|
case Token::SHL: {
|
|
|
|
if (smi_operands) {
|
|
|
|
__ SmiUntag(a3, left);
|
|
|
|
__ SmiUntag(a2, right);
|
|
|
|
} else {
|
|
|
|
// Convert operands to 32-bit integers. Right in a2 and left in a3.
|
|
|
|
FloatingPointHelper::ConvertNumberToInt32(masm,
|
|
|
|
left,
|
|
|
|
a3,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
scratch3,
|
|
|
|
f0,
|
|
|
|
not_numbers);
|
|
|
|
FloatingPointHelper::ConvertNumberToInt32(masm,
|
|
|
|
right,
|
|
|
|
a2,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
scratch3,
|
|
|
|
f0,
|
|
|
|
not_numbers);
|
|
|
|
}
|
|
|
|
Label result_not_a_smi;
|
|
|
|
switch (op_) {
|
|
|
|
case Token::BIT_OR:
|
|
|
|
__ Or(a2, a3, Operand(a2));
|
|
|
|
break;
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
__ Xor(a2, a3, Operand(a2));
|
|
|
|
break;
|
|
|
|
case Token::BIT_AND:
|
|
|
|
__ And(a2, a3, Operand(a2));
|
|
|
|
break;
|
|
|
|
case Token::SAR:
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ GetLeastBitsFromInt32(a2, a2, 5);
|
|
|
|
__ srav(a2, a3, a2);
|
|
|
|
break;
|
|
|
|
case Token::SHR:
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ GetLeastBitsFromInt32(a2, a2, 5);
|
|
|
|
__ srlv(a2, a3, a2);
|
|
|
|
// SHR is special because it is required to produce a positive answer.
|
|
|
|
// The code below for writing into heap numbers isn't capable of
|
|
|
|
// writing the register as an unsigned int so we go to slow case if we
|
|
|
|
// hit this case.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
__ Branch(&result_not_a_smi, lt, a2, Operand(zero_reg));
|
|
|
|
} else {
|
|
|
|
__ Branch(not_numbers, lt, a2, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Token::SHL:
|
|
|
|
// Use only the 5 least significant bits of the shift count.
|
|
|
|
__ GetLeastBitsFromInt32(a2, a2, 5);
|
|
|
|
__ sllv(a2, a3, a2);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
// Check that the *signed* result fits in a smi.
|
|
|
|
__ Addu(a3, a2, Operand(0x40000000));
|
|
|
|
__ Branch(&result_not_a_smi, lt, a3, Operand(zero_reg));
|
|
|
|
__ SmiTag(v0, a2);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Allocate new heap number for result.
|
|
|
|
__ bind(&result_not_a_smi);
|
|
|
|
Register result = t1;
|
|
|
|
if (smi_operands) {
|
|
|
|
__ AllocateHeapNumber(
|
|
|
|
result, scratch1, scratch2, heap_number_map, gc_required);
|
|
|
|
} else {
|
|
|
|
GenerateHeapResultAllocation(
|
|
|
|
masm, result, heap_number_map, scratch1, scratch2, gc_required);
|
|
|
|
}
|
|
|
|
|
|
|
|
// a2: Answer as signed int32.
|
|
|
|
// t1: Heap number to write answer into.
|
|
|
|
|
|
|
|
// Nothing can go wrong now, so move the heap number to v0, which is the
|
|
|
|
// result.
|
|
|
|
__ mov(v0, t1);
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
// Convert the int32 in a2 to the heap number in a0. As
|
|
|
|
// mentioned above SHR needs to always produce a positive result.
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
__ mtc1(a2, f0);
|
|
|
|
if (op_ == Token::SHR) {
|
|
|
|
__ Cvt_d_uw(f0, f0, f22);
|
|
|
|
} else {
|
|
|
|
__ cvt_d_w(f0, f0);
|
|
|
|
}
|
|
|
|
// ARM uses a workaround here because of the unaligned HeapNumber
|
|
|
|
// kValueOffset. On MIPS this workaround is built into sdc1 so
|
|
|
|
// there's no point in generating even more instructions.
|
|
|
|
__ sdc1(f0, FieldMemOperand(v0, HeapNumber::kValueOffset));
|
|
|
|
__ Ret();
|
|
|
|
} else {
|
|
|
|
// Tail call that writes the int32 in a2 to the heap number in v0, using
|
|
|
|
// a3 and a0 as scratch. v0 is preserved and returned.
|
|
|
|
WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
|
|
|
|
__ TailCallStub(&stub);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Generate the smi code. If the operation on smis are successful this return is
|
|
|
|
// generated. If the result is not a smi and heap number allocation is not
|
|
|
|
// requested the code falls through. If number allocation is requested but a
|
|
|
|
// heap number cannot be allocated the code jumps to the lable gc_required.
|
|
|
|
void BinaryOpStub::GenerateSmiCode(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Label* use_runtime,
|
|
|
|
Label* gc_required,
|
|
|
|
SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
|
|
|
|
Label not_smis;
|
|
|
|
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
Register scratch1 = t3;
|
|
|
|
Register scratch2 = t5;
|
|
|
|
|
|
|
|
// Perform combined smi check on both operands.
|
|
|
|
__ Or(scratch1, left, Operand(right));
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ JumpIfNotSmi(scratch1, ¬_smis);
|
|
|
|
|
|
|
|
// If the smi-smi operation results in a smi return is generated.
|
|
|
|
GenerateSmiSmiOperation(masm);
|
|
|
|
|
|
|
|
// If heap number results are possible generate the result in an allocated
|
|
|
|
// heap number.
|
|
|
|
if (allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) {
|
|
|
|
GenerateFPOperation(masm, true, use_runtime, gc_required);
|
|
|
|
}
|
|
|
|
__ bind(¬_smis);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
|
|
|
|
Label not_smis, call_runtime;
|
|
|
|
|
|
|
|
if (result_type_ == BinaryOpIC::UNINITIALIZED ||
|
|
|
|
result_type_ == BinaryOpIC::SMI) {
|
|
|
|
// Only allow smi results.
|
|
|
|
GenerateSmiCode(masm, &call_runtime, NULL, NO_HEAPNUMBER_RESULTS);
|
|
|
|
} else {
|
|
|
|
// Allow heap number result and don't make a transition if a heap number
|
|
|
|
// cannot be allocated.
|
|
|
|
GenerateSmiCode(masm,
|
|
|
|
&call_runtime,
|
|
|
|
&call_runtime,
|
|
|
|
ALLOW_HEAPNUMBER_RESULTS);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Code falls through if the result is not returned as either a smi or heap
|
|
|
|
// number.
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
GenerateCallRuntime(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
|
|
|
|
ASSERT(operands_type_ == BinaryOpIC::STRING);
|
|
|
|
// Try to add arguments as strings, otherwise, transition to the generic
|
|
|
|
// BinaryOpIC type.
|
|
|
|
GenerateAddStrings(masm);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) {
|
|
|
|
Label call_runtime;
|
|
|
|
ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING);
|
|
|
|
ASSERT(op_ == Token::ADD);
|
|
|
|
// If both arguments are strings, call the string add stub.
|
|
|
|
// Otherwise, do a transition.
|
|
|
|
|
|
|
|
// Registers containing left and right operands respectively.
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
|
|
|
|
// Test if left operand is a string.
|
|
|
|
__ JumpIfSmi(left, &call_runtime);
|
|
|
|
__ GetObjectType(left, a2, a2);
|
|
|
|
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
|
|
|
|
// Test if right operand is a string.
|
|
|
|
__ JumpIfSmi(right, &call_runtime);
|
|
|
|
__ GetObjectType(right, a2, a2);
|
|
|
|
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
|
|
|
|
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
|
|
|
|
GenerateRegisterArgsPush(masm);
|
|
|
|
__ TailCallStub(&string_add_stub);
|
|
|
|
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) {
|
|
|
|
ASSERT(operands_type_ == BinaryOpIC::INT32);
|
|
|
|
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
Register scratch1 = t3;
|
|
|
|
Register scratch2 = t5;
|
|
|
|
FPURegister double_scratch = f0;
|
|
|
|
FPURegister single_scratch = f6;
|
|
|
|
|
|
|
|
Register heap_number_result = no_reg;
|
|
|
|
Register heap_number_map = t2;
|
|
|
|
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
|
|
|
|
|
|
|
|
Label call_runtime;
|
|
|
|
// Labels for type transition, used for wrong input or output types.
|
|
|
|
// Both label are currently actually bound to the same position. We use two
|
|
|
|
// different label to differentiate the cause leading to type transition.
|
|
|
|
Label transition;
|
|
|
|
|
|
|
|
// Smi-smi fast case.
|
|
|
|
Label skip;
|
|
|
|
__ Or(scratch1, left, right);
|
|
|
|
__ JumpIfNotSmi(scratch1, &skip);
|
|
|
|
GenerateSmiSmiOperation(masm);
|
|
|
|
// Fall through if the result is not a smi.
|
|
|
|
__ bind(&skip);
|
|
|
|
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD:
|
|
|
|
case Token::SUB:
|
|
|
|
case Token::MUL:
|
|
|
|
case Token::DIV:
|
|
|
|
case Token::MOD: {
|
|
|
|
// Load both operands and check that they are 32-bit integer.
|
|
|
|
// Jump to type transition if they are not. The registers a0 and a1 (right
|
|
|
|
// and left) are preserved for the runtime call.
|
|
|
|
FloatingPointHelper::Destination destination =
|
|
|
|
(CpuFeatures::IsSupported(FPU) && op_ != Token::MOD)
|
|
|
|
? FloatingPointHelper::kFPURegisters
|
|
|
|
: FloatingPointHelper::kCoreRegisters;
|
|
|
|
|
|
|
|
FloatingPointHelper::LoadNumberAsInt32Double(masm,
|
|
|
|
right,
|
|
|
|
destination,
|
|
|
|
f14,
|
|
|
|
a2,
|
|
|
|
a3,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
f2,
|
|
|
|
&transition);
|
|
|
|
FloatingPointHelper::LoadNumberAsInt32Double(masm,
|
|
|
|
left,
|
|
|
|
destination,
|
|
|
|
f12,
|
|
|
|
t0,
|
|
|
|
t1,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
f2,
|
|
|
|
&transition);
|
|
|
|
|
|
|
|
if (destination == FloatingPointHelper::kFPURegisters) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
Label return_heap_number;
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD:
|
|
|
|
__ add_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
case Token::SUB:
|
|
|
|
__ sub_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
case Token::MUL:
|
|
|
|
__ mul_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
case Token::DIV:
|
|
|
|
__ div_d(f10, f12, f14);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
if (op_ != Token::DIV) {
|
|
|
|
// These operations produce an integer result.
|
|
|
|
// Try to return a smi if we can.
|
|
|
|
// Otherwise return a heap number if allowed, or jump to type
|
|
|
|
// transition.
|
|
|
|
|
|
|
|
Register except_flag = scratch2;
|
|
|
|
__ EmitFPUTruncate(kRoundToZero,
|
|
|
|
single_scratch,
|
|
|
|
f10,
|
|
|
|
scratch1,
|
|
|
|
except_flag);
|
|
|
|
|
|
|
|
if (result_type_ <= BinaryOpIC::INT32) {
|
|
|
|
// If except_flag != 0, result does not fit in a 32-bit integer.
|
|
|
|
__ Branch(&transition, ne, except_flag, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the result fits in a smi.
|
|
|
|
__ mfc1(scratch1, single_scratch);
|
|
|
|
__ Addu(scratch2, scratch1, Operand(0x40000000));
|
|
|
|
// If not try to return a heap number.
|
|
|
|
__ Branch(&return_heap_number, lt, scratch2, Operand(zero_reg));
|
|
|
|
// Check for minus zero. Return heap number for minus zero.
|
|
|
|
Label not_zero;
|
|
|
|
__ Branch(¬_zero, ne, scratch1, Operand(zero_reg));
|
|
|
|
__ mfc1(scratch2, f11);
|
|
|
|
__ And(scratch2, scratch2, HeapNumber::kSignMask);
|
|
|
|
__ Branch(&return_heap_number, ne, scratch2, Operand(zero_reg));
|
|
|
|
__ bind(¬_zero);
|
|
|
|
|
|
|
|
// Tag the result and return.
|
|
|
|
__ SmiTag(v0, scratch1);
|
|
|
|
__ Ret();
|
|
|
|
} else {
|
|
|
|
// DIV just falls through to allocating a heap number.
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&return_heap_number);
|
|
|
|
// Return a heap number, or fall through to type transition or runtime
|
|
|
|
// call if we can't.
|
|
|
|
if (result_type_ >= ((op_ == Token::DIV) ? BinaryOpIC::HEAP_NUMBER
|
|
|
|
: BinaryOpIC::INT32)) {
|
|
|
|
// We are using FPU registers so s0 is available.
|
|
|
|
heap_number_result = s0;
|
|
|
|
GenerateHeapResultAllocation(masm,
|
|
|
|
heap_number_result,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
&call_runtime);
|
|
|
|
__ mov(v0, heap_number_result);
|
|
|
|
__ sdc1(f10, FieldMemOperand(v0, HeapNumber::kValueOffset));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
// A DIV operation expecting an integer result falls through
|
|
|
|
// to type transition.
|
|
|
|
|
|
|
|
} else {
|
|
|
|
// We preserved a0 and a1 to be able to call runtime.
|
|
|
|
// Save the left value on the stack.
|
|
|
|
__ Push(t1, t0);
|
|
|
|
|
|
|
|
Label pop_and_call_runtime;
|
|
|
|
|
|
|
|
// Allocate a heap number to store the result.
|
|
|
|
heap_number_result = s0;
|
|
|
|
GenerateHeapResultAllocation(masm,
|
|
|
|
heap_number_result,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
&pop_and_call_runtime);
|
|
|
|
|
|
|
|
// Load the left value from the value saved on the stack.
|
|
|
|
__ Pop(a1, a0);
|
|
|
|
|
|
|
|
// Call the C function to handle the double operation.
|
|
|
|
FloatingPointHelper::CallCCodeForDoubleOperation(
|
|
|
|
masm, op_, heap_number_result, scratch1);
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ stop("Unreachable code.");
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&pop_and_call_runtime);
|
|
|
|
__ Drop(2);
|
|
|
|
__ Branch(&call_runtime);
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
case Token::BIT_OR:
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
case Token::BIT_AND:
|
|
|
|
case Token::SAR:
|
|
|
|
case Token::SHR:
|
|
|
|
case Token::SHL: {
|
|
|
|
Label return_heap_number;
|
|
|
|
Register scratch3 = t1;
|
|
|
|
// Convert operands to 32-bit integers. Right in a2 and left in a3. The
|
|
|
|
// registers a0 and a1 (right and left) are preserved for the runtime
|
|
|
|
// call.
|
|
|
|
FloatingPointHelper::LoadNumberAsInt32(masm,
|
|
|
|
left,
|
|
|
|
a3,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
scratch3,
|
|
|
|
f0,
|
|
|
|
&transition);
|
|
|
|
FloatingPointHelper::LoadNumberAsInt32(masm,
|
|
|
|
right,
|
|
|
|
a2,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
scratch3,
|
|
|
|
f0,
|
|
|
|
&transition);
|
|
|
|
|
|
|
|
// The ECMA-262 standard specifies that, for shift operations, only the
|
|
|
|
// 5 least significant bits of the shift value should be used.
|
|
|
|
switch (op_) {
|
|
|
|
case Token::BIT_OR:
|
|
|
|
__ Or(a2, a3, Operand(a2));
|
|
|
|
break;
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
__ Xor(a2, a3, Operand(a2));
|
|
|
|
break;
|
|
|
|
case Token::BIT_AND:
|
|
|
|
__ And(a2, a3, Operand(a2));
|
|
|
|
break;
|
|
|
|
case Token::SAR:
|
|
|
|
__ And(a2, a2, Operand(0x1f));
|
|
|
|
__ srav(a2, a3, a2);
|
|
|
|
break;
|
|
|
|
case Token::SHR:
|
|
|
|
__ And(a2, a2, Operand(0x1f));
|
|
|
|
__ srlv(a2, a3, a2);
|
|
|
|
// SHR is special because it is required to produce a positive answer.
|
|
|
|
// We only get a negative result if the shift value (a2) is 0.
|
|
|
|
// This result cannot be respresented as a signed 32-bit integer, try
|
|
|
|
// to return a heap number if we can.
|
|
|
|
// The non FPU code does not support this special case, so jump to
|
|
|
|
// runtime if we don't support it.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
__ Branch((result_type_ <= BinaryOpIC::INT32)
|
|
|
|
? &transition
|
|
|
|
: &return_heap_number,
|
|
|
|
lt,
|
|
|
|
a2,
|
|
|
|
Operand(zero_reg));
|
|
|
|
} else {
|
|
|
|
__ Branch((result_type_ <= BinaryOpIC::INT32)
|
|
|
|
? &transition
|
|
|
|
: &call_runtime,
|
|
|
|
lt,
|
|
|
|
a2,
|
|
|
|
Operand(zero_reg));
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case Token::SHL:
|
|
|
|
__ And(a2, a2, Operand(0x1f));
|
|
|
|
__ sllv(a2, a3, a2);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the result fits in a smi.
|
|
|
|
__ Addu(scratch1, a2, Operand(0x40000000));
|
|
|
|
// If not try to return a heap number. (We know the result is an int32.)
|
|
|
|
__ Branch(&return_heap_number, lt, scratch1, Operand(zero_reg));
|
|
|
|
// Tag the result and return.
|
|
|
|
__ SmiTag(v0, a2);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&return_heap_number);
|
|
|
|
heap_number_result = t1;
|
|
|
|
GenerateHeapResultAllocation(masm,
|
|
|
|
heap_number_result,
|
|
|
|
heap_number_map,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
&call_runtime);
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
|
|
|
|
if (op_ != Token::SHR) {
|
|
|
|
// Convert the result to a floating point value.
|
|
|
|
__ mtc1(a2, double_scratch);
|
|
|
|
__ cvt_d_w(double_scratch, double_scratch);
|
|
|
|
} else {
|
|
|
|
// The result must be interpreted as an unsigned 32-bit integer.
|
|
|
|
__ mtc1(a2, double_scratch);
|
|
|
|
__ Cvt_d_uw(double_scratch, double_scratch, single_scratch);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Store the result.
|
|
|
|
__ mov(v0, heap_number_result);
|
|
|
|
__ sdc1(double_scratch, FieldMemOperand(v0, HeapNumber::kValueOffset));
|
|
|
|
__ Ret();
|
|
|
|
} else {
|
|
|
|
// Tail call that writes the int32 in a2 to the heap number in v0, using
|
|
|
|
// a3 and a0 as scratch. v0 is preserved and returned.
|
|
|
|
__ mov(a0, t1);
|
|
|
|
WriteInt32ToHeapNumberStub stub(a2, v0, a3, a0);
|
|
|
|
__ TailCallStub(&stub);
|
|
|
|
}
|
|
|
|
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
// We never expect DIV to yield an integer result, so we always generate
|
|
|
|
// type transition code for DIV operations expecting an integer result: the
|
|
|
|
// code will fall through to this type transition.
|
|
|
|
if (transition.is_linked() ||
|
|
|
|
((op_ == Token::DIV) && (result_type_ <= BinaryOpIC::INT32))) {
|
|
|
|
__ bind(&transition);
|
|
|
|
GenerateTypeTransition(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
GenerateCallRuntime(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) {
|
|
|
|
Label call_runtime;
|
|
|
|
|
|
|
|
if (op_ == Token::ADD) {
|
|
|
|
// Handle string addition here, because it is the only operation
|
|
|
|
// that does not do a ToNumber conversion on the operands.
|
|
|
|
GenerateAddStrings(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Convert oddball arguments to numbers.
|
|
|
|
Label check, done;
|
|
|
|
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ Branch(&check, ne, a1, Operand(t0));
|
|
|
|
if (Token::IsBitOp(op_)) {
|
|
|
|
__ li(a1, Operand(Smi::FromInt(0)));
|
|
|
|
} else {
|
|
|
|
__ LoadRoot(a1, Heap::kNanValueRootIndex);
|
|
|
|
}
|
|
|
|
__ jmp(&done);
|
|
|
|
__ bind(&check);
|
|
|
|
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ Branch(&done, ne, a0, Operand(t0));
|
|
|
|
if (Token::IsBitOp(op_)) {
|
|
|
|
__ li(a0, Operand(Smi::FromInt(0)));
|
|
|
|
} else {
|
|
|
|
__ LoadRoot(a0, Heap::kNanValueRootIndex);
|
|
|
|
}
|
|
|
|
__ bind(&done);
|
|
|
|
|
|
|
|
GenerateHeapNumberStub(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
|
|
|
|
Label call_runtime;
|
|
|
|
GenerateFPOperation(masm, false, &call_runtime, &call_runtime);
|
|
|
|
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
GenerateCallRuntime(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
|
|
|
|
Label call_runtime, call_string_add_or_runtime;
|
|
|
|
|
|
|
|
GenerateSmiCode(masm, &call_runtime, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
|
|
|
|
|
|
|
|
GenerateFPOperation(masm, false, &call_string_add_or_runtime, &call_runtime);
|
|
|
|
|
|
|
|
__ bind(&call_string_add_or_runtime);
|
|
|
|
if (op_ == Token::ADD) {
|
|
|
|
GenerateAddStrings(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
GenerateCallRuntime(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) {
|
|
|
|
ASSERT(op_ == Token::ADD);
|
|
|
|
Label left_not_string, call_runtime;
|
|
|
|
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
|
|
|
|
// Check if left argument is a string.
|
|
|
|
__ JumpIfSmi(left, &left_not_string);
|
|
|
|
__ GetObjectType(left, a2, a2);
|
|
|
|
__ Branch(&left_not_string, ge, a2, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
|
|
|
|
StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB);
|
|
|
|
GenerateRegisterArgsPush(masm);
|
|
|
|
__ TailCallStub(&string_add_left_stub);
|
|
|
|
|
|
|
|
// Left operand is not a string, test right.
|
|
|
|
__ bind(&left_not_string);
|
|
|
|
__ JumpIfSmi(right, &call_runtime);
|
|
|
|
__ GetObjectType(right, a2, a2);
|
|
|
|
__ Branch(&call_runtime, ge, a2, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
|
|
|
|
StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB);
|
|
|
|
GenerateRegisterArgsPush(masm);
|
|
|
|
__ TailCallStub(&string_add_right_stub);
|
|
|
|
|
|
|
|
// At least one argument is not a string.
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateCallRuntime(MacroAssembler* masm) {
|
|
|
|
GenerateRegisterArgsPush(masm);
|
|
|
|
switch (op_) {
|
|
|
|
case Token::ADD:
|
|
|
|
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::SUB:
|
|
|
|
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::MUL:
|
|
|
|
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::DIV:
|
|
|
|
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::MOD:
|
|
|
|
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::BIT_OR:
|
|
|
|
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::BIT_AND:
|
|
|
|
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::BIT_XOR:
|
|
|
|
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::SAR:
|
|
|
|
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::SHR:
|
|
|
|
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
case Token::SHL:
|
|
|
|
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateHeapResultAllocation(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Register result,
|
|
|
|
Register heap_number_map,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Label* gc_required) {
|
|
|
|
|
|
|
|
// Code below will scratch result if allocation fails. To keep both arguments
|
|
|
|
// intact for the runtime call result cannot be one of these.
|
|
|
|
ASSERT(!result.is(a0) && !result.is(a1));
|
|
|
|
|
|
|
|
if (mode_ == OVERWRITE_LEFT || mode_ == OVERWRITE_RIGHT) {
|
|
|
|
Label skip_allocation, allocated;
|
|
|
|
Register overwritable_operand = mode_ == OVERWRITE_LEFT ? a1 : a0;
|
|
|
|
// If the overwritable operand is already an object, we skip the
|
|
|
|
// allocation of a heap number.
|
|
|
|
__ JumpIfNotSmi(overwritable_operand, &skip_allocation);
|
|
|
|
// Allocate a heap number for the result.
|
|
|
|
__ AllocateHeapNumber(
|
|
|
|
result, scratch1, scratch2, heap_number_map, gc_required);
|
|
|
|
__ Branch(&allocated);
|
|
|
|
__ bind(&skip_allocation);
|
|
|
|
// Use object holding the overwritable operand for result.
|
|
|
|
__ mov(result, overwritable_operand);
|
|
|
|
__ bind(&allocated);
|
|
|
|
} else {
|
|
|
|
ASSERT(mode_ == NO_OVERWRITE);
|
|
|
|
__ AllocateHeapNumber(
|
|
|
|
result, scratch1, scratch2, heap_number_map, gc_required);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
|
|
|
|
__ Push(a1, a0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Untagged case: double input in f4, double result goes
|
|
|
|
// into f4.
|
|
|
|
// Tagged case: tagged input on top of stack and in a0,
|
|
|
|
// tagged result (heap number) goes into v0.
|
|
|
|
|
|
|
|
Label input_not_smi;
|
|
|
|
Label loaded;
|
|
|
|
Label calculate;
|
|
|
|
Label invalid_cache;
|
|
|
|
const Register scratch0 = t5;
|
|
|
|
const Register scratch1 = t3;
|
|
|
|
const Register cache_entry = a0;
|
|
|
|
const bool tagged = (argument_type_ == TAGGED);
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
|
|
|
|
if (tagged) {
|
|
|
|
// Argument is a number and is on stack and in a0.
|
|
|
|
// Load argument and check if it is a smi.
|
|
|
|
__ JumpIfNotSmi(a0, &input_not_smi);
|
|
|
|
|
|
|
|
// Input is a smi. Convert to double and load the low and high words
|
|
|
|
// of the double into a2, a3.
|
|
|
|
__ sra(t0, a0, kSmiTagSize);
|
|
|
|
__ mtc1(t0, f4);
|
|
|
|
__ cvt_d_w(f4, f4);
|
|
|
|
__ Move(a2, a3, f4);
|
|
|
|
__ Branch(&loaded);
|
|
|
|
|
|
|
|
__ bind(&input_not_smi);
|
|
|
|
// Check if input is a HeapNumber.
|
|
|
|
__ CheckMap(a0,
|
|
|
|
a1,
|
|
|
|
Heap::kHeapNumberMapRootIndex,
|
|
|
|
&calculate,
|
|
|
|
DONT_DO_SMI_CHECK);
|
|
|
|
// Input is a HeapNumber. Store the
|
|
|
|
// low and high words into a2, a3.
|
|
|
|
__ lw(a2, FieldMemOperand(a0, HeapNumber::kValueOffset));
|
|
|
|
__ lw(a3, FieldMemOperand(a0, HeapNumber::kValueOffset + 4));
|
|
|
|
} else {
|
|
|
|
// Input is untagged double in f4. Output goes to f4.
|
|
|
|
__ Move(a2, a3, f4);
|
|
|
|
}
|
|
|
|
__ bind(&loaded);
|
|
|
|
// a2 = low 32 bits of double value.
|
|
|
|
// a3 = high 32 bits of double value.
|
|
|
|
// Compute hash (the shifts are arithmetic):
|
|
|
|
// h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1);
|
|
|
|
__ Xor(a1, a2, a3);
|
|
|
|
__ sra(t0, a1, 16);
|
|
|
|
__ Xor(a1, a1, t0);
|
|
|
|
__ sra(t0, a1, 8);
|
|
|
|
__ Xor(a1, a1, t0);
|
|
|
|
ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize));
|
|
|
|
__ And(a1, a1, Operand(TranscendentalCache::SubCache::kCacheSize - 1));
|
|
|
|
|
|
|
|
// a2 = low 32 bits of double value.
|
|
|
|
// a3 = high 32 bits of double value.
|
|
|
|
// a1 = TranscendentalCache::hash(double value).
|
|
|
|
__ li(cache_entry, Operand(
|
|
|
|
ExternalReference::transcendental_cache_array_address(
|
|
|
|
masm->isolate())));
|
|
|
|
// a0 points to cache array.
|
|
|
|
__ lw(cache_entry, MemOperand(cache_entry, type_ * sizeof(
|
|
|
|
Isolate::Current()->transcendental_cache()->caches_[0])));
|
|
|
|
// a0 points to the cache for the type type_.
|
|
|
|
// If NULL, the cache hasn't been initialized yet, so go through runtime.
|
|
|
|
__ Branch(&invalid_cache, eq, cache_entry, Operand(zero_reg));
|
|
|
|
|
|
|
|
#ifdef DEBUG
|
|
|
|
// Check that the layout of cache elements match expectations.
|
|
|
|
{ TranscendentalCache::SubCache::Element test_elem[2];
|
|
|
|
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
|
|
|
|
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
|
|
|
|
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
|
|
|
|
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
|
|
|
|
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
|
|
|
|
CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer.
|
|
|
|
CHECK_EQ(0, elem_in0 - elem_start);
|
|
|
|
CHECK_EQ(kIntSize, elem_in1 - elem_start);
|
|
|
|
CHECK_EQ(2 * kIntSize, elem_out - elem_start);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Find the address of the a1'st entry in the cache, i.e., &a0[a1*12].
|
|
|
|
__ sll(t0, a1, 1);
|
|
|
|
__ Addu(a1, a1, t0);
|
|
|
|
__ sll(t0, a1, 2);
|
|
|
|
__ Addu(cache_entry, cache_entry, t0);
|
|
|
|
|
|
|
|
// Check if cache matches: Double value is stored in uint32_t[2] array.
|
|
|
|
__ lw(t0, MemOperand(cache_entry, 0));
|
|
|
|
__ lw(t1, MemOperand(cache_entry, 4));
|
|
|
|
__ lw(t2, MemOperand(cache_entry, 8));
|
|
|
|
__ Branch(&calculate, ne, a2, Operand(t0));
|
|
|
|
__ Branch(&calculate, ne, a3, Operand(t1));
|
|
|
|
// Cache hit. Load result, cleanup and return.
|
|
|
|
Counters* counters = masm->isolate()->counters();
|
|
|
|
__ IncrementCounter(
|
|
|
|
counters->transcendental_cache_hit(), 1, scratch0, scratch1);
|
|
|
|
if (tagged) {
|
|
|
|
// Pop input value from stack and load result into v0.
|
|
|
|
__ Drop(1);
|
|
|
|
__ mov(v0, t2);
|
|
|
|
} else {
|
|
|
|
// Load result into f4.
|
|
|
|
__ ldc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
} // if (CpuFeatures::IsSupported(FPU))
|
|
|
|
|
|
|
|
__ bind(&calculate);
|
|
|
|
Counters* counters = masm->isolate()->counters();
|
|
|
|
__ IncrementCounter(
|
|
|
|
counters->transcendental_cache_miss(), 1, scratch0, scratch1);
|
|
|
|
if (tagged) {
|
|
|
|
__ bind(&invalid_cache);
|
|
|
|
__ TailCallExternalReference(ExternalReference(RuntimeFunction(),
|
|
|
|
masm->isolate()),
|
|
|
|
1,
|
|
|
|
1);
|
|
|
|
} else {
|
|
|
|
if (!CpuFeatures::IsSupported(FPU)) UNREACHABLE();
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
|
|
|
|
Label no_update;
|
|
|
|
Label skip_cache;
|
|
|
|
const Register heap_number_map = t2;
|
|
|
|
|
|
|
|
// Call C function to calculate the result and update the cache.
|
|
|
|
// Register a0 holds precalculated cache entry address; preserve
|
|
|
|
// it on the stack and pop it into register cache_entry after the
|
|
|
|
// call.
|
|
|
|
__ Push(cache_entry, a2, a3);
|
|
|
|
GenerateCallCFunction(masm, scratch0);
|
|
|
|
__ GetCFunctionDoubleResult(f4);
|
|
|
|
|
|
|
|
// Try to update the cache. If we cannot allocate a
|
|
|
|
// heap number, we return the result without updating.
|
|
|
|
__ Pop(cache_entry, a2, a3);
|
|
|
|
__ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
|
|
|
|
__ AllocateHeapNumber(t2, scratch0, scratch1, t1, &no_update);
|
|
|
|
__ sdc1(f4, FieldMemOperand(t2, HeapNumber::kValueOffset));
|
|
|
|
|
|
|
|
__ sw(a2, MemOperand(cache_entry, 0 * kPointerSize));
|
|
|
|
__ sw(a3, MemOperand(cache_entry, 1 * kPointerSize));
|
|
|
|
__ sw(t2, MemOperand(cache_entry, 2 * kPointerSize));
|
|
|
|
|
|
|
|
__ mov(v0, cache_entry);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&invalid_cache);
|
|
|
|
// The cache is invalid. Call runtime which will recreate the
|
|
|
|
// cache.
|
|
|
|
__ LoadRoot(t1, Heap::kHeapNumberMapRootIndex);
|
|
|
|
__ AllocateHeapNumber(a0, scratch0, scratch1, t1, &skip_cache);
|
|
|
|
__ sdc1(f4, FieldMemOperand(a0, HeapNumber::kValueOffset));
|
|
|
|
{
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
__ push(a0);
|
|
|
|
__ CallRuntime(RuntimeFunction(), 1);
|
|
|
|
}
|
|
|
|
__ ldc1(f4, FieldMemOperand(v0, HeapNumber::kValueOffset));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&skip_cache);
|
|
|
|
// Call C function to calculate the result and answer directly
|
|
|
|
// without updating the cache.
|
|
|
|
GenerateCallCFunction(masm, scratch0);
|
|
|
|
__ GetCFunctionDoubleResult(f4);
|
|
|
|
__ bind(&no_update);
|
|
|
|
|
|
|
|
// We return the value in f4 without adding it to the cache, but
|
|
|
|
// we cause a scavenging GC so that future allocations will succeed.
|
|
|
|
{
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
|
|
|
|
// Allocate an aligned object larger than a HeapNumber.
|
|
|
|
ASSERT(4 * kPointerSize >= HeapNumber::kSize);
|
|
|
|
__ li(scratch0, Operand(4 * kPointerSize));
|
|
|
|
__ push(scratch0);
|
|
|
|
__ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace);
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void TranscendentalCacheStub::GenerateCallCFunction(MacroAssembler* masm,
|
|
|
|
Register scratch) {
|
|
|
|
__ push(ra);
|
|
|
|
__ PrepareCallCFunction(2, scratch);
|
|
|
|
if (IsMipsSoftFloatABI) {
|
|
|
|
__ Move(a0, a1, f4);
|
|
|
|
} else {
|
|
|
|
__ mov_d(f12, f4);
|
|
|
|
}
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
switch (type_) {
|
|
|
|
case TranscendentalCache::SIN:
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::math_sin_double_function(isolate),
|
|
|
|
0, 1);
|
|
|
|
break;
|
|
|
|
case TranscendentalCache::COS:
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::math_cos_double_function(isolate),
|
|
|
|
0, 1);
|
|
|
|
break;
|
|
|
|
case TranscendentalCache::TAN:
|
|
|
|
__ CallCFunction(ExternalReference::math_tan_double_function(isolate),
|
|
|
|
0, 1);
|
|
|
|
break;
|
|
|
|
case TranscendentalCache::LOG:
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::math_log_double_function(isolate),
|
|
|
|
0, 1);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
__ pop(ra);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
|
|
|
|
switch (type_) {
|
|
|
|
// Add more cases when necessary.
|
|
|
|
case TranscendentalCache::SIN: return Runtime::kMath_sin;
|
|
|
|
case TranscendentalCache::COS: return Runtime::kMath_cos;
|
|
|
|
case TranscendentalCache::TAN: return Runtime::kMath_tan;
|
|
|
|
case TranscendentalCache::LOG: return Runtime::kMath_log;
|
|
|
|
default:
|
|
|
|
UNIMPLEMENTED();
|
|
|
|
return Runtime::kAbort;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StackCheckStub::Generate(MacroAssembler* masm) {
|
|
|
|
__ TailCallRuntime(Runtime::kStackGuard, 0, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void MathPowStub::Generate(MacroAssembler* masm) {
|
|
|
|
CpuFeatures::Scope fpu_scope(FPU);
|
|
|
|
const Register base = a1;
|
|
|
|
const Register exponent = a2;
|
|
|
|
const Register heapnumbermap = t1;
|
|
|
|
const Register heapnumber = v0;
|
|
|
|
const DoubleRegister double_base = f2;
|
|
|
|
const DoubleRegister double_exponent = f4;
|
|
|
|
const DoubleRegister double_result = f0;
|
|
|
|
const DoubleRegister double_scratch = f6;
|
|
|
|
const FPURegister single_scratch = f8;
|
|
|
|
const Register scratch = t5;
|
|
|
|
const Register scratch2 = t3;
|
|
|
|
|
|
|
|
Label call_runtime, done, exponent_not_smi, int_exponent;
|
|
|
|
if (exponent_type_ == ON_STACK) {
|
|
|
|
Label base_is_smi, unpack_exponent;
|
|
|
|
// The exponent and base are supplied as arguments on the stack.
|
|
|
|
// This can only happen if the stub is called from non-optimized code.
|
|
|
|
// Load input parameters from stack to double registers.
|
|
|
|
__ lw(base, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
__ lw(exponent, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
|
|
|
|
__ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex);
|
|
|
|
|
|
|
|
__ JumpIfSmi(base, &base_is_smi);
|
|
|
|
__ lw(scratch, FieldMemOperand(base, JSObject::kMapOffset));
|
|
|
|
__ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
|
|
|
|
|
|
|
|
__ ldc1(double_base, FieldMemOperand(base, HeapNumber::kValueOffset));
|
|
|
|
__ jmp(&unpack_exponent);
|
|
|
|
|
|
|
|
__ bind(&base_is_smi);
|
|
|
|
__ SmiUntag(base);
|
|
|
|
__ mtc1(base, single_scratch);
|
|
|
|
__ cvt_d_w(double_base, single_scratch);
|
|
|
|
__ bind(&unpack_exponent);
|
|
|
|
|
|
|
|
__ JumpIfNotSmi(exponent, &exponent_not_smi);
|
|
|
|
__ SmiUntag(exponent);
|
|
|
|
__ jmp(&int_exponent);
|
|
|
|
|
|
|
|
__ bind(&exponent_not_smi);
|
|
|
|
__ lw(scratch, FieldMemOperand(exponent, JSObject::kMapOffset));
|
|
|
|
__ Branch(&call_runtime, ne, scratch, Operand(heapnumbermap));
|
|
|
|
__ ldc1(double_exponent,
|
|
|
|
FieldMemOperand(exponent, HeapNumber::kValueOffset));
|
|
|
|
} else if (exponent_type_ == TAGGED) {
|
|
|
|
// Base is already in double_base.
|
|
|
|
__ JumpIfNotSmi(exponent, &exponent_not_smi);
|
|
|
|
__ SmiUntag(exponent);
|
|
|
|
__ jmp(&int_exponent);
|
|
|
|
|
|
|
|
__ bind(&exponent_not_smi);
|
|
|
|
__ ldc1(double_exponent,
|
|
|
|
FieldMemOperand(exponent, HeapNumber::kValueOffset));
|
|
|
|
}
|
|
|
|
|
|
|
|
if (exponent_type_ != INTEGER) {
|
|
|
|
Label int_exponent_convert;
|
|
|
|
// Detect integer exponents stored as double.
|
|
|
|
__ EmitFPUTruncate(kRoundToMinusInf,
|
|
|
|
single_scratch,
|
|
|
|
double_exponent,
|
|
|
|
scratch,
|
|
|
|
scratch2,
|
|
|
|
kCheckForInexactConversion);
|
|
|
|
// scratch2 == 0 means there was no conversion error.
|
|
|
|
__ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg));
|
|
|
|
|
|
|
|
if (exponent_type_ == ON_STACK) {
|
|
|
|
// Detect square root case. Crankshaft detects constant +/-0.5 at
|
|
|
|
// compile time and uses DoMathPowHalf instead. We then skip this check
|
|
|
|
// for non-constant cases of +/-0.5 as these hardly occur.
|
|
|
|
Label not_plus_half;
|
|
|
|
|
|
|
|
// Test for 0.5.
|
|
|
|
__ Move(double_scratch, 0.5);
|
|
|
|
__ BranchF(USE_DELAY_SLOT,
|
|
|
|
¬_plus_half,
|
|
|
|
NULL,
|
|
|
|
ne,
|
|
|
|
double_exponent,
|
|
|
|
double_scratch);
|
|
|
|
|
|
|
|
// Calculates square root of base. Check for the special case of
|
|
|
|
// Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13).
|
|
|
|
__ Move(double_scratch, -V8_INFINITY);
|
|
|
|
__ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
|
|
|
|
__ neg_d(double_result, double_scratch);
|
|
|
|
|
|
|
|
// Add +0 to convert -0 to +0.
|
|
|
|
__ add_d(double_scratch, double_base, kDoubleRegZero);
|
|
|
|
__ sqrt_d(double_result, double_scratch);
|
|
|
|
__ jmp(&done);
|
|
|
|
|
|
|
|
__ bind(¬_plus_half);
|
|
|
|
__ Move(double_scratch, -0.5);
|
|
|
|
__ BranchF(USE_DELAY_SLOT,
|
|
|
|
&call_runtime,
|
|
|
|
NULL,
|
|
|
|
ne,
|
|
|
|
double_exponent,
|
|
|
|
double_scratch);
|
|
|
|
|
|
|
|
// Calculates square root of base. Check for the special case of
|
|
|
|
// Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13).
|
|
|
|
__ Move(double_scratch, -V8_INFINITY);
|
|
|
|
__ BranchF(USE_DELAY_SLOT, &done, NULL, eq, double_base, double_scratch);
|
|
|
|
__ Move(double_result, kDoubleRegZero);
|
|
|
|
|
|
|
|
// Add +0 to convert -0 to +0.
|
|
|
|
__ add_d(double_scratch, double_base, kDoubleRegZero);
|
|
|
|
__ Move(double_result, 1);
|
|
|
|
__ sqrt_d(double_scratch, double_scratch);
|
|
|
|
__ div_d(double_result, double_result, double_scratch);
|
|
|
|
__ jmp(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ push(ra);
|
|
|
|
{
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
__ PrepareCallCFunction(0, 2, scratch);
|
|
|
|
__ SetCallCDoubleArguments(double_base, double_exponent);
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::power_double_double_function(masm->isolate()),
|
|
|
|
0, 2);
|
|
|
|
}
|
|
|
|
__ pop(ra);
|
|
|
|
__ GetCFunctionDoubleResult(double_result);
|
|
|
|
__ jmp(&done);
|
|
|
|
|
|
|
|
__ bind(&int_exponent_convert);
|
|
|
|
__ mfc1(exponent, single_scratch);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Calculate power with integer exponent.
|
|
|
|
__ bind(&int_exponent);
|
|
|
|
|
|
|
|
__ mov(scratch, exponent); // Back up exponent.
|
|
|
|
__ mov_d(double_scratch, double_base); // Back up base.
|
|
|
|
__ Move(double_result, 1.0);
|
|
|
|
|
|
|
|
// Get absolute value of exponent.
|
|
|
|
Label positive_exponent;
|
|
|
|
__ Branch(&positive_exponent, ge, scratch, Operand(zero_reg));
|
|
|
|
__ Subu(scratch, zero_reg, scratch);
|
|
|
|
__ bind(&positive_exponent);
|
|
|
|
|
|
|
|
Label while_true, no_carry, loop_end;
|
|
|
|
__ bind(&while_true);
|
|
|
|
|
|
|
|
__ And(scratch2, scratch, 1);
|
|
|
|
|
|
|
|
__ Branch(&no_carry, eq, scratch2, Operand(zero_reg));
|
|
|
|
__ mul_d(double_result, double_result, double_scratch);
|
|
|
|
__ bind(&no_carry);
|
|
|
|
|
|
|
|
__ sra(scratch, scratch, 1);
|
|
|
|
|
|
|
|
__ Branch(&loop_end, eq, scratch, Operand(zero_reg));
|
|
|
|
__ mul_d(double_scratch, double_scratch, double_scratch);
|
|
|
|
|
|
|
|
__ Branch(&while_true);
|
|
|
|
|
|
|
|
__ bind(&loop_end);
|
|
|
|
|
|
|
|
__ Branch(&done, ge, exponent, Operand(zero_reg));
|
|
|
|
__ Move(double_scratch, 1.0);
|
|
|
|
__ div_d(double_result, double_scratch, double_result);
|
|
|
|
// Test whether result is zero. Bail out to check for subnormal result.
|
|
|
|
// Due to subnormals, x^-y == (1/x)^y does not hold in all cases.
|
|
|
|
__ BranchF(&done, NULL, ne, double_result, kDoubleRegZero);
|
|
|
|
|
|
|
|
// double_exponent may not contain the exponent value if the input was a
|
|
|
|
// smi. We set it with exponent value before bailing out.
|
|
|
|
__ mtc1(exponent, single_scratch);
|
|
|
|
__ cvt_d_w(double_exponent, single_scratch);
|
|
|
|
|
|
|
|
// Returning or bailing out.
|
|
|
|
Counters* counters = masm->isolate()->counters();
|
|
|
|
if (exponent_type_ == ON_STACK) {
|
|
|
|
// The arguments are still on the stack.
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
__ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1);
|
|
|
|
|
|
|
|
// The stub is called from non-optimized code, which expects the result
|
|
|
|
// as heap number in exponent.
|
|
|
|
__ bind(&done);
|
|
|
|
__ AllocateHeapNumber(
|
|
|
|
heapnumber, scratch, scratch2, heapnumbermap, &call_runtime);
|
|
|
|
__ sdc1(double_result,
|
|
|
|
FieldMemOperand(heapnumber, HeapNumber::kValueOffset));
|
|
|
|
ASSERT(heapnumber.is(v0));
|
|
|
|
__ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
|
|
|
|
__ DropAndRet(2);
|
|
|
|
} else {
|
|
|
|
__ push(ra);
|
|
|
|
{
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
__ PrepareCallCFunction(0, 2, scratch);
|
|
|
|
__ SetCallCDoubleArguments(double_base, double_exponent);
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::power_double_double_function(masm->isolate()),
|
|
|
|
0, 2);
|
|
|
|
}
|
|
|
|
__ pop(ra);
|
|
|
|
__ GetCFunctionDoubleResult(double_result);
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
__ IncrementCounter(counters->math_pow(), 1, scratch, scratch2);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CEntryStub::NeedsImmovableCode() {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool CEntryStub::IsPregenerated() {
|
|
|
|
return (!save_doubles_ || ISOLATE->fp_stubs_generated()) &&
|
|
|
|
result_size_ == 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeStub::GenerateStubsAheadOfTime() {
|
|
|
|
CEntryStub::GenerateAheadOfTime();
|
|
|
|
WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime();
|
|
|
|
StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime();
|
|
|
|
RecordWriteStub::GenerateFixedRegStubsAheadOfTime();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CodeStub::GenerateFPStubs() {
|
|
|
|
CEntryStub save_doubles(1, kSaveFPRegs);
|
|
|
|
Handle<Code> code = save_doubles.GetCode();
|
|
|
|
code->set_is_pregenerated(true);
|
|
|
|
StoreBufferOverflowStub stub(kSaveFPRegs);
|
|
|
|
stub.GetCode()->set_is_pregenerated(true);
|
|
|
|
code->GetIsolate()->set_fp_stubs_generated(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateAheadOfTime() {
|
|
|
|
CEntryStub stub(1, kDontSaveFPRegs);
|
|
|
|
Handle<Code> code = stub.GetCode();
|
|
|
|
code->set_is_pregenerated(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
|
|
|
|
__ Throw(v0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
|
|
|
|
UncatchableExceptionType type) {
|
|
|
|
__ ThrowUncatchable(type, v0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::GenerateCore(MacroAssembler* masm,
|
|
|
|
Label* throw_normal_exception,
|
|
|
|
Label* throw_termination_exception,
|
|
|
|
Label* throw_out_of_memory_exception,
|
|
|
|
bool do_gc,
|
|
|
|
bool always_allocate) {
|
|
|
|
// v0: result parameter for PerformGC, if any
|
|
|
|
// s0: number of arguments including receiver (C callee-saved)
|
|
|
|
// s1: pointer to the first argument (C callee-saved)
|
|
|
|
// s2: pointer to builtin function (C callee-saved)
|
|
|
|
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
|
|
|
|
if (do_gc) {
|
|
|
|
// Move result passed in v0 into a0 to call PerformGC.
|
|
|
|
__ mov(a0, v0);
|
|
|
|
__ PrepareCallCFunction(1, 0, a1);
|
|
|
|
__ CallCFunction(ExternalReference::perform_gc_function(isolate), 1, 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
ExternalReference scope_depth =
|
|
|
|
ExternalReference::heap_always_allocate_scope_depth(isolate);
|
|
|
|
if (always_allocate) {
|
|
|
|
__ li(a0, Operand(scope_depth));
|
|
|
|
__ lw(a1, MemOperand(a0));
|
|
|
|
__ Addu(a1, a1, Operand(1));
|
|
|
|
__ sw(a1, MemOperand(a0));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Prepare arguments for C routine: a0 = argc, a1 = argv
|
|
|
|
__ mov(a0, s0);
|
|
|
|
__ mov(a1, s1);
|
|
|
|
|
|
|
|
// We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We
|
|
|
|
// also need to reserve the 4 argument slots on the stack.
|
|
|
|
|
|
|
|
__ AssertStackIsAligned();
|
|
|
|
|
|
|
|
__ li(a2, Operand(ExternalReference::isolate_address()));
|
|
|
|
|
|
|
|
// To let the GC traverse the return address of the exit frames, we need to
|
|
|
|
// know where the return address is. The CEntryStub is unmovable, so
|
|
|
|
// we can store the address on the stack to be able to find it again and
|
|
|
|
// we never have to restore it, because it will not change.
|
|
|
|
{ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
|
|
|
|
// This branch-and-link sequence is needed to find the current PC on mips,
|
|
|
|
// saved to the ra register.
|
|
|
|
// Use masm-> here instead of the double-underscore macro since extra
|
|
|
|
// coverage code can interfere with the proper calculation of ra.
|
|
|
|
Label find_ra;
|
|
|
|
masm->bal(&find_ra); // bal exposes branch delay slot.
|
|
|
|
masm->nop(); // Branch delay slot nop.
|
|
|
|
masm->bind(&find_ra);
|
|
|
|
|
|
|
|
// Adjust the value in ra to point to the correct return location, 2nd
|
|
|
|
// instruction past the real call into C code (the jalr(t9)), and push it.
|
|
|
|
// This is the return address of the exit frame.
|
|
|
|
const int kNumInstructionsToJump = 6;
|
|
|
|
masm->Addu(ra, ra, kNumInstructionsToJump * kPointerSize);
|
|
|
|
masm->sw(ra, MemOperand(sp)); // This spot was reserved in EnterExitFrame.
|
|
|
|
masm->Subu(sp, sp, kCArgsSlotsSize);
|
|
|
|
// Stack is still aligned.
|
|
|
|
|
|
|
|
// Call the C routine.
|
|
|
|
masm->mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC.
|
|
|
|
masm->jalr(t9);
|
|
|
|
masm->nop(); // Branch delay slot nop.
|
|
|
|
// Make sure the stored 'ra' points to this position.
|
|
|
|
ASSERT_EQ(kNumInstructionsToJump,
|
|
|
|
masm->InstructionsGeneratedSince(&find_ra));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Restore stack (remove arg slots).
|
|
|
|
__ Addu(sp, sp, kCArgsSlotsSize);
|
|
|
|
|
|
|
|
if (always_allocate) {
|
|
|
|
// It's okay to clobber a2 and a3 here. v0 & v1 contain result.
|
|
|
|
__ li(a2, Operand(scope_depth));
|
|
|
|
__ lw(a3, MemOperand(a2));
|
|
|
|
__ Subu(a3, a3, Operand(1));
|
|
|
|
__ sw(a3, MemOperand(a2));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check for failure result.
|
|
|
|
Label failure_returned;
|
|
|
|
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
|
|
|
|
__ addiu(a2, v0, 1);
|
|
|
|
__ andi(t0, a2, kFailureTagMask);
|
|
|
|
__ Branch(&failure_returned, eq, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Exit C frame and return.
|
|
|
|
// v0:v1: result
|
|
|
|
// sp: stack pointer
|
|
|
|
// fp: frame pointer
|
|
|
|
__ LeaveExitFrame(save_doubles_, s0);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Check if we should retry or throw exception.
|
|
|
|
Label retry;
|
|
|
|
__ bind(&failure_returned);
|
|
|
|
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
|
|
|
|
__ andi(t0, v0, ((1 << kFailureTypeTagSize) - 1) << kFailureTagSize);
|
|
|
|
__ Branch(&retry, eq, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Special handling of out of memory exceptions.
|
|
|
|
Failure* out_of_memory = Failure::OutOfMemoryException();
|
|
|
|
__ Branch(throw_out_of_memory_exception, eq,
|
|
|
|
v0, Operand(reinterpret_cast<int32_t>(out_of_memory)));
|
|
|
|
|
|
|
|
// Retrieve the pending exception and clear the variable.
|
|
|
|
__ li(a3, Operand(isolate->factory()->the_hole_value()));
|
|
|
|
__ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
|
|
|
isolate)));
|
|
|
|
__ lw(v0, MemOperand(t0));
|
|
|
|
__ sw(a3, MemOperand(t0));
|
|
|
|
|
|
|
|
// Special handling of termination exceptions which are uncatchable
|
|
|
|
// by javascript code.
|
|
|
|
__ Branch(throw_termination_exception, eq,
|
|
|
|
v0, Operand(isolate->factory()->termination_exception()));
|
|
|
|
|
|
|
|
// Handle normal exception.
|
|
|
|
__ jmp(throw_normal_exception);
|
|
|
|
|
|
|
|
__ bind(&retry);
|
|
|
|
// Last failure (v0) will be moved to (a0) for parameter when retrying.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CEntryStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Called from JavaScript; parameters are on stack as if calling JS function
|
|
|
|
// a0: number of arguments including receiver
|
|
|
|
// a1: pointer to builtin function
|
|
|
|
// fp: frame pointer (restored after C call)
|
|
|
|
// sp: stack pointer (restored as callee's sp after C call)
|
|
|
|
// cp: current context (C callee-saved)
|
|
|
|
|
|
|
|
// NOTE: Invocations of builtins may return failure objects
|
|
|
|
// instead of a proper result. The builtin entry handles
|
|
|
|
// this by performing a garbage collection and retrying the
|
|
|
|
// builtin once.
|
|
|
|
|
|
|
|
// Compute the argv pointer in a callee-saved register.
|
|
|
|
__ sll(s1, a0, kPointerSizeLog2);
|
|
|
|
__ Addu(s1, sp, s1);
|
|
|
|
__ Subu(s1, s1, Operand(kPointerSize));
|
|
|
|
|
|
|
|
// Enter the exit frame that transitions from JavaScript to C++.
|
|
|
|
FrameScope scope(masm, StackFrame::MANUAL);
|
|
|
|
__ EnterExitFrame(save_doubles_);
|
|
|
|
|
|
|
|
// Setup argc and the builtin function in callee-saved registers.
|
|
|
|
__ mov(s0, a0);
|
|
|
|
__ mov(s2, a1);
|
|
|
|
|
|
|
|
// s0: number of arguments (C callee-saved)
|
|
|
|
// s1: pointer to first argument (C callee-saved)
|
|
|
|
// s2: pointer to builtin function (C callee-saved)
|
|
|
|
|
|
|
|
Label throw_normal_exception;
|
|
|
|
Label throw_termination_exception;
|
|
|
|
Label throw_out_of_memory_exception;
|
|
|
|
|
|
|
|
// Call into the runtime system.
|
|
|
|
GenerateCore(masm,
|
|
|
|
&throw_normal_exception,
|
|
|
|
&throw_termination_exception,
|
|
|
|
&throw_out_of_memory_exception,
|
|
|
|
false,
|
|
|
|
false);
|
|
|
|
|
|
|
|
// Do space-specific GC and retry runtime call.
|
|
|
|
GenerateCore(masm,
|
|
|
|
&throw_normal_exception,
|
|
|
|
&throw_termination_exception,
|
|
|
|
&throw_out_of_memory_exception,
|
|
|
|
true,
|
|
|
|
false);
|
|
|
|
|
|
|
|
// Do full GC and retry runtime call one final time.
|
|
|
|
Failure* failure = Failure::InternalError();
|
|
|
|
__ li(v0, Operand(reinterpret_cast<int32_t>(failure)));
|
|
|
|
GenerateCore(masm,
|
|
|
|
&throw_normal_exception,
|
|
|
|
&throw_termination_exception,
|
|
|
|
&throw_out_of_memory_exception,
|
|
|
|
true,
|
|
|
|
true);
|
|
|
|
|
|
|
|
__ bind(&throw_out_of_memory_exception);
|
|
|
|
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
|
|
|
|
|
|
|
|
__ bind(&throw_termination_exception);
|
|
|
|
GenerateThrowUncatchable(masm, TERMINATION);
|
|
|
|
|
|
|
|
__ bind(&throw_normal_exception);
|
|
|
|
GenerateThrowTOS(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
|
|
|
|
Label invoke, handler_entry, exit;
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
|
|
|
|
// Registers:
|
|
|
|
// a0: entry address
|
|
|
|
// a1: function
|
|
|
|
// a2: reveiver
|
|
|
|
// a3: argc
|
|
|
|
//
|
|
|
|
// Stack:
|
|
|
|
// 4 args slots
|
|
|
|
// args
|
|
|
|
|
|
|
|
// Save callee saved registers on the stack.
|
|
|
|
__ MultiPush(kCalleeSaved | ra.bit());
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Save callee-saved FPU registers.
|
|
|
|
__ MultiPushFPU(kCalleeSavedFPU);
|
|
|
|
// Set up the reserved register for 0.0.
|
|
|
|
__ Move(kDoubleRegZero, 0.0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Load argv in s0 register.
|
|
|
|
int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize;
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
offset_to_argv += kNumCalleeSavedFPU * kDoubleSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
__ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize));
|
|
|
|
|
|
|
|
// We build an EntryFrame.
|
|
|
|
__ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used.
|
|
|
|
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
|
|
|
|
__ li(t2, Operand(Smi::FromInt(marker)));
|
|
|
|
__ li(t1, Operand(Smi::FromInt(marker)));
|
|
|
|
__ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
|
|
|
|
isolate)));
|
|
|
|
__ lw(t0, MemOperand(t0));
|
|
|
|
__ Push(t3, t2, t1, t0);
|
|
|
|
// Setup frame pointer for the frame to be pushed.
|
|
|
|
__ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset);
|
|
|
|
|
|
|
|
// Registers:
|
|
|
|
// a0: entry_address
|
|
|
|
// a1: function
|
|
|
|
// a2: reveiver_pointer
|
|
|
|
// a3: argc
|
|
|
|
// s0: argv
|
|
|
|
//
|
|
|
|
// Stack:
|
|
|
|
// caller fp |
|
|
|
|
// function slot | entry frame
|
|
|
|
// context slot |
|
|
|
|
// bad fp (0xff...f) |
|
|
|
|
// callee saved registers + ra
|
|
|
|
// 4 args slots
|
|
|
|
// args
|
|
|
|
|
|
|
|
// If this is the outermost JS call, set js_entry_sp value.
|
|
|
|
Label non_outermost_js;
|
|
|
|
ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate);
|
|
|
|
__ li(t1, Operand(ExternalReference(js_entry_sp)));
|
|
|
|
__ lw(t2, MemOperand(t1));
|
|
|
|
__ Branch(&non_outermost_js, ne, t2, Operand(zero_reg));
|
|
|
|
__ sw(fp, MemOperand(t1));
|
|
|
|
__ li(t0, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
|
|
|
|
Label cont;
|
|
|
|
__ b(&cont);
|
|
|
|
__ nop(); // Branch delay slot nop.
|
|
|
|
__ bind(&non_outermost_js);
|
|
|
|
__ li(t0, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)));
|
|
|
|
__ bind(&cont);
|
|
|
|
__ push(t0);
|
|
|
|
|
|
|
|
// Jump to a faked try block that does the invoke, with a faked catch
|
|
|
|
// block that sets the pending exception.
|
|
|
|
__ jmp(&invoke);
|
|
|
|
__ bind(&handler_entry);
|
|
|
|
handler_offset_ = handler_entry.pos();
|
|
|
|
// Caught exception: Store result (exception) in the pending exception
|
|
|
|
// field in the JSEnv and return a failure sentinel. Coming in here the
|
|
|
|
// fp will be invalid because the PushTryHandler below sets it to 0 to
|
|
|
|
// signal the existence of the JSEntry frame.
|
|
|
|
__ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
|
|
|
isolate)));
|
|
|
|
__ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0.
|
|
|
|
__ li(v0, Operand(reinterpret_cast<int32_t>(Failure::Exception())));
|
|
|
|
__ b(&exit); // b exposes branch delay slot.
|
|
|
|
__ nop(); // Branch delay slot nop.
|
|
|
|
|
|
|
|
// Invoke: Link this frame into the handler chain. There's only one
|
|
|
|
// handler block in this code object, so its index is 0.
|
|
|
|
__ bind(&invoke);
|
|
|
|
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER, 0);
|
|
|
|
// If an exception not caught by another handler occurs, this handler
|
|
|
|
// returns control to the code after the bal(&invoke) above, which
|
|
|
|
// restores all kCalleeSaved registers (including cp and fp) to their
|
|
|
|
// saved values before returning a failure to C.
|
|
|
|
|
|
|
|
// Clear any pending exceptions.
|
|
|
|
__ li(t1, Operand(isolate->factory()->the_hole_value()));
|
|
|
|
__ li(t0, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
|
|
|
isolate)));
|
|
|
|
__ sw(t1, MemOperand(t0));
|
|
|
|
|
|
|
|
// Invoke the function by calling through JS entry trampoline builtin.
|
|
|
|
// Notice that we cannot store a reference to the trampoline code directly in
|
|
|
|
// this stub, because runtime stubs are not traversed when doing GC.
|
|
|
|
|
|
|
|
// Registers:
|
|
|
|
// a0: entry_address
|
|
|
|
// a1: function
|
|
|
|
// a2: reveiver_pointer
|
|
|
|
// a3: argc
|
|
|
|
// s0: argv
|
|
|
|
//
|
|
|
|
// Stack:
|
|
|
|
// handler frame
|
|
|
|
// entry frame
|
|
|
|
// callee saved registers + ra
|
|
|
|
// 4 args slots
|
|
|
|
// args
|
|
|
|
|
|
|
|
if (is_construct) {
|
|
|
|
ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline,
|
|
|
|
isolate);
|
|
|
|
__ li(t0, Operand(construct_entry));
|
|
|
|
} else {
|
|
|
|
ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate());
|
|
|
|
__ li(t0, Operand(entry));
|
|
|
|
}
|
|
|
|
__ lw(t9, MemOperand(t0)); // Deref address.
|
|
|
|
|
|
|
|
// Call JSEntryTrampoline.
|
|
|
|
__ addiu(t9, t9, Code::kHeaderSize - kHeapObjectTag);
|
|
|
|
__ Call(t9);
|
|
|
|
|
|
|
|
// Unlink this frame from the handler chain.
|
|
|
|
__ PopTryHandler();
|
|
|
|
|
|
|
|
__ bind(&exit); // v0 holds result
|
|
|
|
// Check if the current stack frame is marked as the outermost JS frame.
|
|
|
|
Label non_outermost_js_2;
|
|
|
|
__ pop(t1);
|
|
|
|
__ Branch(&non_outermost_js_2, ne, t1,
|
|
|
|
Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)));
|
|
|
|
__ li(t1, Operand(ExternalReference(js_entry_sp)));
|
|
|
|
__ sw(zero_reg, MemOperand(t1));
|
|
|
|
__ bind(&non_outermost_js_2);
|
|
|
|
|
|
|
|
// Restore the top frame descriptors from the stack.
|
|
|
|
__ pop(t1);
|
|
|
|
__ li(t0, Operand(ExternalReference(Isolate::kCEntryFPAddress,
|
|
|
|
isolate)));
|
|
|
|
__ sw(t1, MemOperand(t0));
|
|
|
|
|
|
|
|
// Reset the stack to the callee saved registers.
|
|
|
|
__ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset);
|
|
|
|
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
// Restore callee-saved fpu registers.
|
|
|
|
__ MultiPopFPU(kCalleeSavedFPU);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Restore callee saved registers from the stack.
|
|
|
|
__ MultiPop(kCalleeSaved | ra.bit());
|
|
|
|
// Return.
|
|
|
|
__ Jump(ra);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Uses registers a0 to t0.
|
|
|
|
// Expected input (depending on whether args are in registers or on the stack):
|
|
|
|
// * object: a0 or at sp + 1 * kPointerSize.
|
|
|
|
// * function: a1 or at sp.
|
|
|
|
//
|
|
|
|
// An inlined call site may have been generated before calling this stub.
|
|
|
|
// In this case the offset to the inline site to patch is passed on the stack,
|
|
|
|
// in the safepoint slot for register t0.
|
|
|
|
void InstanceofStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Call site inlining and patching implies arguments in registers.
|
|
|
|
ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck());
|
|
|
|
// ReturnTrueFalse is only implemented for inlined call sites.
|
|
|
|
ASSERT(!ReturnTrueFalseObject() || HasCallSiteInlineCheck());
|
|
|
|
|
|
|
|
// Fixed register usage throughout the stub:
|
|
|
|
const Register object = a0; // Object (lhs).
|
|
|
|
Register map = a3; // Map of the object.
|
|
|
|
const Register function = a1; // Function (rhs).
|
|
|
|
const Register prototype = t0; // Prototype of the function.
|
|
|
|
const Register inline_site = t5;
|
|
|
|
const Register scratch = a2;
|
|
|
|
|
|
|
|
const int32_t kDeltaToLoadBoolResult = 4 * kPointerSize;
|
|
|
|
|
|
|
|
Label slow, loop, is_instance, is_not_instance, not_js_object;
|
|
|
|
|
|
|
|
if (!HasArgsInRegisters()) {
|
|
|
|
__ lw(object, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
__ lw(function, MemOperand(sp, 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that the left hand is a JS object and load map.
|
|
|
|
__ JumpIfSmi(object, ¬_js_object);
|
|
|
|
__ IsObjectJSObjectType(object, map, scratch, ¬_js_object);
|
|
|
|
|
|
|
|
// If there is a call site cache don't look in the global cache, but do the
|
|
|
|
// real lookup and update the call site cache.
|
|
|
|
if (!HasCallSiteInlineCheck()) {
|
|
|
|
Label miss;
|
|
|
|
__ LoadRoot(at, Heap::kInstanceofCacheFunctionRootIndex);
|
|
|
|
__ Branch(&miss, ne, function, Operand(at));
|
|
|
|
__ LoadRoot(at, Heap::kInstanceofCacheMapRootIndex);
|
|
|
|
__ Branch(&miss, ne, map, Operand(at));
|
|
|
|
__ LoadRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
|
|
|
|
|
|
|
|
__ bind(&miss);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get the prototype of the function.
|
|
|
|
__ TryGetFunctionPrototype(function, prototype, scratch, &slow, true);
|
|
|
|
|
|
|
|
// Check that the function prototype is a JS object.
|
|
|
|
__ JumpIfSmi(prototype, &slow);
|
|
|
|
__ IsObjectJSObjectType(prototype, scratch, scratch, &slow);
|
|
|
|
|
|
|
|
// Update the global instanceof or call site inlined cache with the current
|
|
|
|
// map and function. The cached answer will be set when it is known below.
|
|
|
|
if (!HasCallSiteInlineCheck()) {
|
|
|
|
__ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex);
|
|
|
|
__ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex);
|
|
|
|
} else {
|
|
|
|
ASSERT(HasArgsInRegisters());
|
|
|
|
// Patch the (relocated) inlined map check.
|
|
|
|
|
|
|
|
// The offset was stored in t0 safepoint slot.
|
|
|
|
// (See LCodeGen::DoDeferredLInstanceOfKnownGlobal)
|
|
|
|
__ LoadFromSafepointRegisterSlot(scratch, t0);
|
|
|
|
__ Subu(inline_site, ra, scratch);
|
|
|
|
// Patch the relocated value to map.
|
|
|
|
__ PatchRelocatedValue(inline_site, scratch, map);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Register mapping: a3 is object map and t0 is function prototype.
|
|
|
|
// Get prototype of object into a2.
|
|
|
|
__ lw(scratch, FieldMemOperand(map, Map::kPrototypeOffset));
|
|
|
|
|
|
|
|
// We don't need map any more. Use it as a scratch register.
|
|
|
|
Register scratch2 = map;
|
|
|
|
map = no_reg;
|
|
|
|
|
|
|
|
// Loop through the prototype chain looking for the function prototype.
|
|
|
|
__ LoadRoot(scratch2, Heap::kNullValueRootIndex);
|
|
|
|
__ bind(&loop);
|
|
|
|
__ Branch(&is_instance, eq, scratch, Operand(prototype));
|
|
|
|
__ Branch(&is_not_instance, eq, scratch, Operand(scratch2));
|
|
|
|
__ lw(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset));
|
|
|
|
__ lw(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset));
|
|
|
|
__ Branch(&loop);
|
|
|
|
|
|
|
|
__ bind(&is_instance);
|
|
|
|
ASSERT(Smi::FromInt(0) == 0);
|
|
|
|
if (!HasCallSiteInlineCheck()) {
|
|
|
|
__ mov(v0, zero_reg);
|
|
|
|
__ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
|
|
|
|
} else {
|
|
|
|
// Patch the call site to return true.
|
|
|
|
__ LoadRoot(v0, Heap::kTrueValueRootIndex);
|
|
|
|
__ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
|
|
|
|
// Get the boolean result location in scratch and patch it.
|
|
|
|
__ PatchRelocatedValue(inline_site, scratch, v0);
|
|
|
|
|
|
|
|
if (!ReturnTrueFalseObject()) {
|
|
|
|
ASSERT_EQ(Smi::FromInt(0), 0);
|
|
|
|
__ mov(v0, zero_reg);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
|
|
|
|
|
|
|
|
__ bind(&is_not_instance);
|
|
|
|
if (!HasCallSiteInlineCheck()) {
|
|
|
|
__ li(v0, Operand(Smi::FromInt(1)));
|
|
|
|
__ StoreRoot(v0, Heap::kInstanceofCacheAnswerRootIndex);
|
|
|
|
} else {
|
|
|
|
// Patch the call site to return false.
|
|
|
|
__ LoadRoot(v0, Heap::kFalseValueRootIndex);
|
|
|
|
__ Addu(inline_site, inline_site, Operand(kDeltaToLoadBoolResult));
|
|
|
|
// Get the boolean result location in scratch and patch it.
|
|
|
|
__ PatchRelocatedValue(inline_site, scratch, v0);
|
|
|
|
|
|
|
|
if (!ReturnTrueFalseObject()) {
|
|
|
|
__ li(v0, Operand(Smi::FromInt(1)));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
|
|
|
|
|
|
|
|
Label object_not_null, object_not_null_or_smi;
|
|
|
|
__ bind(¬_js_object);
|
|
|
|
// Before null, smi and string value checks, check that the rhs is a function
|
|
|
|
// as for a non-function rhs an exception needs to be thrown.
|
|
|
|
__ JumpIfSmi(function, &slow);
|
|
|
|
__ GetObjectType(function, scratch2, scratch);
|
|
|
|
__ Branch(&slow, ne, scratch, Operand(JS_FUNCTION_TYPE));
|
|
|
|
|
|
|
|
// Null is not instance of anything.
|
|
|
|
__ Branch(&object_not_null, ne, scratch,
|
|
|
|
Operand(masm->isolate()->factory()->null_value()));
|
|
|
|
__ li(v0, Operand(Smi::FromInt(1)));
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
|
|
|
|
|
|
|
|
__ bind(&object_not_null);
|
|
|
|
// Smi values are not instances of anything.
|
|
|
|
__ JumpIfNotSmi(object, &object_not_null_or_smi);
|
|
|
|
__ li(v0, Operand(Smi::FromInt(1)));
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
|
|
|
|
|
|
|
|
__ bind(&object_not_null_or_smi);
|
|
|
|
// String values are not instances of anything.
|
|
|
|
__ IsObjectJSStringType(object, scratch, &slow);
|
|
|
|
__ li(v0, Operand(Smi::FromInt(1)));
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
|
|
|
|
|
|
|
|
// Slow-case. Tail call builtin.
|
|
|
|
__ bind(&slow);
|
|
|
|
if (!ReturnTrueFalseObject()) {
|
|
|
|
if (HasArgsInRegisters()) {
|
|
|
|
__ Push(a0, a1);
|
|
|
|
}
|
|
|
|
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
|
|
|
|
} else {
|
|
|
|
{
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
__ Push(a0, a1);
|
|
|
|
__ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION);
|
|
|
|
}
|
|
|
|
__ mov(a0, v0);
|
|
|
|
__ LoadRoot(v0, Heap::kTrueValueRootIndex);
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2, eq, a0, Operand(zero_reg));
|
|
|
|
__ LoadRoot(v0, Heap::kFalseValueRootIndex);
|
|
|
|
__ DropAndRet(HasArgsInRegisters() ? 0 : 2);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Register InstanceofStub::left() { return a0; }
|
|
|
|
|
|
|
|
|
|
|
|
Register InstanceofStub::right() { return a1; }
|
|
|
|
|
|
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
|
|
|
|
// The displacement is the offset of the last parameter (if any)
|
|
|
|
// relative to the frame pointer.
|
|
|
|
static const int kDisplacement =
|
|
|
|
StandardFrameConstants::kCallerSPOffset - kPointerSize;
|
|
|
|
|
|
|
|
// Check that the key is a smiGenerateReadElement.
|
|
|
|
Label slow;
|
|
|
|
__ JumpIfNotSmi(a1, &slow);
|
|
|
|
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
|
|
Label adaptor;
|
|
|
|
__ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
__ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
|
|
|
|
__ Branch(&adaptor,
|
|
|
|
eq,
|
|
|
|
a3,
|
|
|
|
Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
|
|
|
|
// Check index (a1) against formal parameters count limit passed in
|
|
|
|
// through register a0. Use unsigned comparison to get negative
|
|
|
|
// check for free.
|
|
|
|
__ Branch(&slow, hs, a1, Operand(a0));
|
|
|
|
|
|
|
|
// Read the argument from the stack and return it.
|
|
|
|
__ subu(a3, a0, a1);
|
|
|
|
__ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(a3, fp, Operand(t3));
|
|
|
|
__ lw(v0, MemOperand(a3, kDisplacement));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Arguments adaptor case: Check index (a1) against actual arguments
|
|
|
|
// limit found in the arguments adaptor frame. Use unsigned
|
|
|
|
// comparison to get negative check for free.
|
|
|
|
__ bind(&adaptor);
|
|
|
|
__ lw(a0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
__ Branch(&slow, Ugreater_equal, a1, Operand(a0));
|
|
|
|
|
|
|
|
// Read the argument from the adaptor frame and return it.
|
|
|
|
__ subu(a3, a0, a1);
|
|
|
|
__ sll(t3, a3, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(a3, a2, Operand(t3));
|
|
|
|
__ lw(v0, MemOperand(a3, kDisplacement));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Slow-case: Handle non-smi or out-of-bounds access to arguments
|
|
|
|
// by calling the runtime system.
|
|
|
|
__ bind(&slow);
|
|
|
|
__ push(a1);
|
|
|
|
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) {
|
|
|
|
// sp[0] : number of parameters
|
|
|
|
// sp[4] : receiver displacement
|
|
|
|
// sp[8] : function
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
|
|
Label runtime;
|
|
|
|
__ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
__ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
|
|
|
|
__ Branch(&runtime, ne,
|
|
|
|
a2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
|
|
|
|
// Patch the arguments.length and the parameters pointer in the current frame.
|
|
|
|
__ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
__ sw(a2, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
__ sll(t3, a2, 1);
|
|
|
|
__ Addu(a3, a3, Operand(t3));
|
|
|
|
__ addiu(a3, a3, StandardFrameConstants::kCallerSPOffset);
|
|
|
|
__ sw(a3, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) {
|
|
|
|
// Stack layout:
|
|
|
|
// sp[0] : number of parameters (tagged)
|
|
|
|
// sp[4] : address of receiver argument
|
|
|
|
// sp[8] : function
|
|
|
|
// Registers used over whole function:
|
|
|
|
// t2 : allocated object (tagged)
|
|
|
|
// t5 : mapped parameter count (tagged)
|
|
|
|
|
|
|
|
__ lw(a1, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
// a1 = parameter count (tagged)
|
|
|
|
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
|
|
Label runtime;
|
|
|
|
Label adaptor_frame, try_allocate;
|
|
|
|
__ lw(a3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
__ lw(a2, MemOperand(a3, StandardFrameConstants::kContextOffset));
|
|
|
|
__ Branch(&adaptor_frame, eq, a2,
|
|
|
|
Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
|
|
|
|
// No adaptor, parameter count = argument count.
|
|
|
|
__ mov(a2, a1);
|
|
|
|
__ b(&try_allocate);
|
|
|
|
__ nop(); // Branch delay slot nop.
|
|
|
|
|
|
|
|
// We have an adaptor frame. Patch the parameters pointer.
|
|
|
|
__ bind(&adaptor_frame);
|
|
|
|
__ lw(a2, MemOperand(a3, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
__ sll(t6, a2, 1);
|
|
|
|
__ Addu(a3, a3, Operand(t6));
|
|
|
|
__ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
|
|
|
|
__ sw(a3, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
|
|
|
|
// a1 = parameter count (tagged)
|
|
|
|
// a2 = argument count (tagged)
|
|
|
|
// Compute the mapped parameter count = min(a1, a2) in a1.
|
|
|
|
Label skip_min;
|
|
|
|
__ Branch(&skip_min, lt, a1, Operand(a2));
|
|
|
|
__ mov(a1, a2);
|
|
|
|
__ bind(&skip_min);
|
|
|
|
|
|
|
|
__ bind(&try_allocate);
|
|
|
|
|
|
|
|
// Compute the sizes of backing store, parameter map, and arguments object.
|
|
|
|
// 1. Parameter map, has 2 extra words containing context and backing store.
|
|
|
|
const int kParameterMapHeaderSize =
|
|
|
|
FixedArray::kHeaderSize + 2 * kPointerSize;
|
|
|
|
// If there are no mapped parameters, we do not need the parameter_map.
|
|
|
|
Label param_map_size;
|
|
|
|
ASSERT_EQ(0, Smi::FromInt(0));
|
|
|
|
__ Branch(USE_DELAY_SLOT, ¶m_map_size, eq, a1, Operand(zero_reg));
|
|
|
|
__ mov(t5, zero_reg); // In delay slot: param map size = 0 when a1 == 0.
|
|
|
|
__ sll(t5, a1, 1);
|
|
|
|
__ addiu(t5, t5, kParameterMapHeaderSize);
|
|
|
|
__ bind(¶m_map_size);
|
|
|
|
|
|
|
|
// 2. Backing store.
|
|
|
|
__ sll(t6, a2, 1);
|
|
|
|
__ Addu(t5, t5, Operand(t6));
|
|
|
|
__ Addu(t5, t5, Operand(FixedArray::kHeaderSize));
|
|
|
|
|
|
|
|
// 3. Arguments object.
|
|
|
|
__ Addu(t5, t5, Operand(Heap::kArgumentsObjectSize));
|
|
|
|
|
|
|
|
// Do the allocation of all three objects in one go.
|
|
|
|
__ AllocateInNewSpace(t5, v0, a3, t0, &runtime, TAG_OBJECT);
|
|
|
|
|
|
|
|
// v0 = address of new object(s) (tagged)
|
|
|
|
// a2 = argument count (tagged)
|
|
|
|
// Get the arguments boilerplate from the current (global) context into t0.
|
|
|
|
const int kNormalOffset =
|
|
|
|
Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
|
|
|
|
const int kAliasedOffset =
|
|
|
|
Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX);
|
|
|
|
|
|
|
|
__ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
|
|
__ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
|
|
|
|
Label skip2_ne, skip2_eq;
|
|
|
|
__ Branch(&skip2_ne, ne, a1, Operand(zero_reg));
|
|
|
|
__ lw(t0, MemOperand(t0, kNormalOffset));
|
|
|
|
__ bind(&skip2_ne);
|
|
|
|
|
|
|
|
__ Branch(&skip2_eq, eq, a1, Operand(zero_reg));
|
|
|
|
__ lw(t0, MemOperand(t0, kAliasedOffset));
|
|
|
|
__ bind(&skip2_eq);
|
|
|
|
|
|
|
|
// v0 = address of new object (tagged)
|
|
|
|
// a1 = mapped parameter count (tagged)
|
|
|
|
// a2 = argument count (tagged)
|
|
|
|
// t0 = address of boilerplate object (tagged)
|
|
|
|
// Copy the JS object part.
|
|
|
|
for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) {
|
|
|
|
__ lw(a3, FieldMemOperand(t0, i));
|
|
|
|
__ sw(a3, FieldMemOperand(v0, i));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Setup the callee in-object property.
|
|
|
|
STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1);
|
|
|
|
__ lw(a3, MemOperand(sp, 2 * kPointerSize));
|
|
|
|
const int kCalleeOffset = JSObject::kHeaderSize +
|
|
|
|
Heap::kArgumentsCalleeIndex * kPointerSize;
|
|
|
|
__ sw(a3, FieldMemOperand(v0, kCalleeOffset));
|
|
|
|
|
|
|
|
// Use the length (smi tagged) and set that as an in-object property too.
|
|
|
|
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
|
|
|
const int kLengthOffset = JSObject::kHeaderSize +
|
|
|
|
Heap::kArgumentsLengthIndex * kPointerSize;
|
|
|
|
__ sw(a2, FieldMemOperand(v0, kLengthOffset));
|
|
|
|
|
|
|
|
// Setup the elements pointer in the allocated arguments object.
|
|
|
|
// If we allocated a parameter map, t0 will point there, otherwise
|
|
|
|
// it will point to the backing store.
|
|
|
|
__ Addu(t0, v0, Operand(Heap::kArgumentsObjectSize));
|
|
|
|
__ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
|
|
|
|
|
|
|
|
// v0 = address of new object (tagged)
|
|
|
|
// a1 = mapped parameter count (tagged)
|
|
|
|
// a2 = argument count (tagged)
|
|
|
|
// t0 = address of parameter map or backing store (tagged)
|
|
|
|
// Initialize parameter map. If there are no mapped arguments, we're done.
|
|
|
|
Label skip_parameter_map;
|
|
|
|
Label skip3;
|
|
|
|
__ Branch(&skip3, ne, a1, Operand(Smi::FromInt(0)));
|
|
|
|
// Move backing store address to a3, because it is
|
|
|
|
// expected there when filling in the unmapped arguments.
|
|
|
|
__ mov(a3, t0);
|
|
|
|
__ bind(&skip3);
|
|
|
|
|
|
|
|
__ Branch(&skip_parameter_map, eq, a1, Operand(Smi::FromInt(0)));
|
|
|
|
|
|
|
|
__ LoadRoot(t2, Heap::kNonStrictArgumentsElementsMapRootIndex);
|
|
|
|
__ sw(t2, FieldMemOperand(t0, FixedArray::kMapOffset));
|
|
|
|
__ Addu(t2, a1, Operand(Smi::FromInt(2)));
|
|
|
|
__ sw(t2, FieldMemOperand(t0, FixedArray::kLengthOffset));
|
|
|
|
__ sw(cp, FieldMemOperand(t0, FixedArray::kHeaderSize + 0 * kPointerSize));
|
|
|
|
__ sll(t6, a1, 1);
|
|
|
|
__ Addu(t2, t0, Operand(t6));
|
|
|
|
__ Addu(t2, t2, Operand(kParameterMapHeaderSize));
|
|
|
|
__ sw(t2, FieldMemOperand(t0, FixedArray::kHeaderSize + 1 * kPointerSize));
|
|
|
|
|
|
|
|
// Copy the parameter slots and the holes in the arguments.
|
|
|
|
// We need to fill in mapped_parameter_count slots. They index the context,
|
|
|
|
// where parameters are stored in reverse order, at
|
|
|
|
// MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1
|
|
|
|
// The mapped parameter thus need to get indices
|
|
|
|
// MIN_CONTEXT_SLOTS+parameter_count-1 ..
|
|
|
|
// MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count
|
|
|
|
// We loop from right to left.
|
|
|
|
Label parameters_loop, parameters_test;
|
|
|
|
__ mov(t2, a1);
|
|
|
|
__ lw(t5, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
__ Addu(t5, t5, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS)));
|
|
|
|
__ Subu(t5, t5, Operand(a1));
|
|
|
|
__ LoadRoot(t3, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ sll(t6, t2, 1);
|
|
|
|
__ Addu(a3, t0, Operand(t6));
|
|
|
|
__ Addu(a3, a3, Operand(kParameterMapHeaderSize));
|
|
|
|
|
|
|
|
// t2 = loop variable (tagged)
|
|
|
|
// a1 = mapping index (tagged)
|
|
|
|
// a3 = address of backing store (tagged)
|
|
|
|
// t0 = address of parameter map (tagged)
|
|
|
|
// t1 = temporary scratch (a.o., for address calculation)
|
|
|
|
// t3 = the hole value
|
|
|
|
__ jmp(¶meters_test);
|
|
|
|
|
|
|
|
__ bind(¶meters_loop);
|
|
|
|
__ Subu(t2, t2, Operand(Smi::FromInt(1)));
|
|
|
|
__ sll(t1, t2, 1);
|
|
|
|
__ Addu(t1, t1, Operand(kParameterMapHeaderSize - kHeapObjectTag));
|
|
|
|
__ Addu(t6, t0, t1);
|
|
|
|
__ sw(t5, MemOperand(t6));
|
|
|
|
__ Subu(t1, t1, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize));
|
|
|
|
__ Addu(t6, a3, t1);
|
|
|
|
__ sw(t3, MemOperand(t6));
|
|
|
|
__ Addu(t5, t5, Operand(Smi::FromInt(1)));
|
|
|
|
__ bind(¶meters_test);
|
|
|
|
__ Branch(¶meters_loop, ne, t2, Operand(Smi::FromInt(0)));
|
|
|
|
|
|
|
|
__ bind(&skip_parameter_map);
|
|
|
|
// a2 = argument count (tagged)
|
|
|
|
// a3 = address of backing store (tagged)
|
|
|
|
// t1 = scratch
|
|
|
|
// Copy arguments header and remaining slots (if there are any).
|
|
|
|
__ LoadRoot(t1, Heap::kFixedArrayMapRootIndex);
|
|
|
|
__ sw(t1, FieldMemOperand(a3, FixedArray::kMapOffset));
|
|
|
|
__ sw(a2, FieldMemOperand(a3, FixedArray::kLengthOffset));
|
|
|
|
|
|
|
|
Label arguments_loop, arguments_test;
|
|
|
|
__ mov(t5, a1);
|
|
|
|
__ lw(t0, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
__ sll(t6, t5, 1);
|
|
|
|
__ Subu(t0, t0, Operand(t6));
|
|
|
|
__ jmp(&arguments_test);
|
|
|
|
|
|
|
|
__ bind(&arguments_loop);
|
|
|
|
__ Subu(t0, t0, Operand(kPointerSize));
|
|
|
|
__ lw(t2, MemOperand(t0, 0));
|
|
|
|
__ sll(t6, t5, 1);
|
|
|
|
__ Addu(t1, a3, Operand(t6));
|
|
|
|
__ sw(t2, FieldMemOperand(t1, FixedArray::kHeaderSize));
|
|
|
|
__ Addu(t5, t5, Operand(Smi::FromInt(1)));
|
|
|
|
|
|
|
|
__ bind(&arguments_test);
|
|
|
|
__ Branch(&arguments_loop, lt, t5, Operand(a2));
|
|
|
|
|
|
|
|
// Return and remove the on-stack parameters.
|
|
|
|
__ Addu(sp, sp, Operand(3 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
|
|
// a2 = argument count (taggged)
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ sw(a2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count.
|
|
|
|
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) {
|
|
|
|
// sp[0] : number of parameters
|
|
|
|
// sp[4] : receiver displacement
|
|
|
|
// sp[8] : function
|
|
|
|
// Check if the calling frame is an arguments adaptor frame.
|
|
|
|
Label adaptor_frame, try_allocate, runtime;
|
|
|
|
__ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
|
|
|
|
__ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
|
|
|
|
__ Branch(&adaptor_frame,
|
|
|
|
eq,
|
|
|
|
a3,
|
|
|
|
Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
|
|
|
|
|
|
|
|
// Get the length from the frame.
|
|
|
|
__ lw(a1, MemOperand(sp, 0));
|
|
|
|
__ Branch(&try_allocate);
|
|
|
|
|
|
|
|
// Patch the arguments.length and the parameters pointer.
|
|
|
|
__ bind(&adaptor_frame);
|
|
|
|
__ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
|
|
|
|
__ sw(a1, MemOperand(sp, 0));
|
|
|
|
__ sll(at, a1, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(a3, a2, Operand(at));
|
|
|
|
|
|
|
|
__ Addu(a3, a3, Operand(StandardFrameConstants::kCallerSPOffset));
|
|
|
|
__ sw(a3, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
|
|
|
|
// Try the new space allocation. Start out with computing the size
|
|
|
|
// of the arguments object and the elements array in words.
|
|
|
|
Label add_arguments_object;
|
|
|
|
__ bind(&try_allocate);
|
|
|
|
__ Branch(&add_arguments_object, eq, a1, Operand(zero_reg));
|
|
|
|
__ srl(a1, a1, kSmiTagSize);
|
|
|
|
|
|
|
|
__ Addu(a1, a1, Operand(FixedArray::kHeaderSize / kPointerSize));
|
|
|
|
__ bind(&add_arguments_object);
|
|
|
|
__ Addu(a1, a1, Operand(Heap::kArgumentsObjectSizeStrict / kPointerSize));
|
|
|
|
|
|
|
|
// Do the allocation of both objects in one go.
|
|
|
|
__ AllocateInNewSpace(a1,
|
|
|
|
v0,
|
|
|
|
a2,
|
|
|
|
a3,
|
|
|
|
&runtime,
|
|
|
|
static_cast<AllocationFlags>(TAG_OBJECT |
|
|
|
|
SIZE_IN_WORDS));
|
|
|
|
|
|
|
|
// Get the arguments boilerplate from the current (global) context.
|
|
|
|
__ lw(t0, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
|
|
__ lw(t0, FieldMemOperand(t0, GlobalObject::kGlobalContextOffset));
|
|
|
|
__ lw(t0, MemOperand(t0, Context::SlotOffset(
|
|
|
|
Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX)));
|
|
|
|
|
|
|
|
// Copy the JS object part.
|
|
|
|
__ CopyFields(v0, t0, a3.bit(), JSObject::kHeaderSize / kPointerSize);
|
|
|
|
|
|
|
|
// Get the length (smi tagged) and set that as an in-object property too.
|
|
|
|
STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0);
|
|
|
|
__ lw(a1, MemOperand(sp, 0 * kPointerSize));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, JSObject::kHeaderSize +
|
|
|
|
Heap::kArgumentsLengthIndex * kPointerSize));
|
|
|
|
|
|
|
|
Label done;
|
|
|
|
__ Branch(&done, eq, a1, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Get the parameters pointer from the stack.
|
|
|
|
__ lw(a2, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
|
|
|
|
// Setup the elements pointer in the allocated arguments object and
|
|
|
|
// initialize the header in the elements fixed array.
|
|
|
|
__ Addu(t0, v0, Operand(Heap::kArgumentsObjectSizeStrict));
|
|
|
|
__ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset));
|
|
|
|
__ LoadRoot(a3, Heap::kFixedArrayMapRootIndex);
|
|
|
|
__ sw(a3, FieldMemOperand(t0, FixedArray::kMapOffset));
|
|
|
|
__ sw(a1, FieldMemOperand(t0, FixedArray::kLengthOffset));
|
|
|
|
// Untag the length for the loop.
|
|
|
|
__ srl(a1, a1, kSmiTagSize);
|
|
|
|
|
|
|
|
// Copy the fixed array slots.
|
|
|
|
Label loop;
|
|
|
|
// Setup t0 to point to the first array slot.
|
|
|
|
__ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ bind(&loop);
|
|
|
|
// Pre-decrement a2 with kPointerSize on each iteration.
|
|
|
|
// Pre-decrement in order to skip receiver.
|
|
|
|
__ Addu(a2, a2, Operand(-kPointerSize));
|
|
|
|
__ lw(a3, MemOperand(a2));
|
|
|
|
// Post-increment t0 with kPointerSize on each iteration.
|
|
|
|
__ sw(a3, MemOperand(t0));
|
|
|
|
__ Addu(t0, t0, Operand(kPointerSize));
|
|
|
|
__ Subu(a1, a1, Operand(1));
|
|
|
|
__ Branch(&loop, ne, a1, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Return and remove the on-stack parameters.
|
|
|
|
__ bind(&done);
|
|
|
|
__ Addu(sp, sp, Operand(3 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Do the runtime call to allocate the arguments object.
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RegExpExecStub::Generate(MacroAssembler* masm) {
|
|
|
|
// Just jump directly to runtime if native RegExp is not selected at compile
|
|
|
|
// time or if regexp entry in generated code is turned off runtime switch or
|
|
|
|
// at compilation.
|
|
|
|
#ifdef V8_INTERPRETED_REGEXP
|
|
|
|
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
|
|
|
#else // V8_INTERPRETED_REGEXP
|
|
|
|
|
|
|
|
// Stack frame on entry.
|
|
|
|
// sp[0]: last_match_info (expected JSArray)
|
|
|
|
// sp[4]: previous index
|
|
|
|
// sp[8]: subject string
|
|
|
|
// sp[12]: JSRegExp object
|
|
|
|
|
|
|
|
static const int kLastMatchInfoOffset = 0 * kPointerSize;
|
|
|
|
static const int kPreviousIndexOffset = 1 * kPointerSize;
|
|
|
|
static const int kSubjectOffset = 2 * kPointerSize;
|
|
|
|
static const int kJSRegExpOffset = 3 * kPointerSize;
|
|
|
|
|
|
|
|
Isolate* isolate = masm->isolate();
|
|
|
|
|
|
|
|
Label runtime, invoke_regexp;
|
|
|
|
|
|
|
|
// Allocation of registers for this function. These are in callee save
|
|
|
|
// registers and will be preserved by the call to the native RegExp code, as
|
|
|
|
// this code is called using the normal C calling convention. When calling
|
|
|
|
// directly from generated code the native RegExp code will not do a GC and
|
|
|
|
// therefore the content of these registers are safe to use after the call.
|
|
|
|
// MIPS - using s0..s2, since we are not using CEntry Stub.
|
|
|
|
Register subject = s0;
|
|
|
|
Register regexp_data = s1;
|
|
|
|
Register last_match_info_elements = s2;
|
|
|
|
|
|
|
|
// Ensure that a RegExp stack is allocated.
|
|
|
|
ExternalReference address_of_regexp_stack_memory_address =
|
|
|
|
ExternalReference::address_of_regexp_stack_memory_address(
|
|
|
|
isolate);
|
|
|
|
ExternalReference address_of_regexp_stack_memory_size =
|
|
|
|
ExternalReference::address_of_regexp_stack_memory_size(isolate);
|
|
|
|
__ li(a0, Operand(address_of_regexp_stack_memory_size));
|
|
|
|
__ lw(a0, MemOperand(a0, 0));
|
|
|
|
__ Branch(&runtime, eq, a0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Check that the first argument is a JSRegExp object.
|
|
|
|
__ lw(a0, MemOperand(sp, kJSRegExpOffset));
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ JumpIfSmi(a0, &runtime);
|
|
|
|
__ GetObjectType(a0, a1, a1);
|
|
|
|
__ Branch(&runtime, ne, a1, Operand(JS_REGEXP_TYPE));
|
|
|
|
|
|
|
|
// Check that the RegExp has been compiled (data contains a fixed array).
|
|
|
|
__ lw(regexp_data, FieldMemOperand(a0, JSRegExp::kDataOffset));
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ And(t0, regexp_data, Operand(kSmiTagMask));
|
|
|
|
__ Check(nz,
|
|
|
|
"Unexpected type for RegExp data, FixedArray expected",
|
|
|
|
t0,
|
|
|
|
Operand(zero_reg));
|
|
|
|
__ GetObjectType(regexp_data, a0, a0);
|
|
|
|
__ Check(eq,
|
|
|
|
"Unexpected type for RegExp data, FixedArray expected",
|
|
|
|
a0,
|
|
|
|
Operand(FIXED_ARRAY_TYPE));
|
|
|
|
}
|
|
|
|
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
|
|
|
|
__ lw(a0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset));
|
|
|
|
__ Branch(&runtime, ne, a0, Operand(Smi::FromInt(JSRegExp::IRREGEXP)));
|
|
|
|
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// Check that the number of captures fit in the static offsets vector buffer.
|
|
|
|
__ lw(a2,
|
|
|
|
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
|
|
|
// Calculate number of capture registers (number_of_captures + 1) * 2. This
|
|
|
|
// uses the asumption that smis are 2 * their untagged value.
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
|
|
|
__ Addu(a2, a2, Operand(2)); // a2 was a smi.
|
|
|
|
// Check that the static offsets vector buffer is large enough.
|
|
|
|
__ Branch(&runtime, hi, a2, Operand(OffsetsVector::kStaticOffsetsVectorSize));
|
|
|
|
|
|
|
|
// a2: Number of capture registers
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// Check that the second argument is a string.
|
|
|
|
__ lw(subject, MemOperand(sp, kSubjectOffset));
|
|
|
|
__ JumpIfSmi(subject, &runtime);
|
|
|
|
__ GetObjectType(subject, a0, a0);
|
|
|
|
__ And(a0, a0, Operand(kIsNotStringMask));
|
|
|
|
STATIC_ASSERT(kStringTag == 0);
|
|
|
|
__ Branch(&runtime, ne, a0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Get the length of the string to r3.
|
|
|
|
__ lw(a3, FieldMemOperand(subject, String::kLengthOffset));
|
|
|
|
|
|
|
|
// a2: Number of capture registers
|
|
|
|
// a3: Length of subject string as a smi
|
|
|
|
// subject: Subject string
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// Check that the third argument is a positive smi less than the subject
|
|
|
|
// string length. A negative value will be greater (unsigned comparison).
|
|
|
|
__ lw(a0, MemOperand(sp, kPreviousIndexOffset));
|
|
|
|
__ JumpIfNotSmi(a0, &runtime);
|
|
|
|
__ Branch(&runtime, ls, a3, Operand(a0));
|
|
|
|
|
|
|
|
// a2: Number of capture registers
|
|
|
|
// subject: Subject string
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// Check that the fourth object is a JSArray object.
|
|
|
|
__ lw(a0, MemOperand(sp, kLastMatchInfoOffset));
|
|
|
|
__ JumpIfSmi(a0, &runtime);
|
|
|
|
__ GetObjectType(a0, a1, a1);
|
|
|
|
__ Branch(&runtime, ne, a1, Operand(JS_ARRAY_TYPE));
|
|
|
|
// Check that the JSArray is in fast case.
|
|
|
|
__ lw(last_match_info_elements,
|
|
|
|
FieldMemOperand(a0, JSArray::kElementsOffset));
|
|
|
|
__ lw(a0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset));
|
|
|
|
__ Branch(&runtime, ne, a0, Operand(
|
|
|
|
isolate->factory()->fixed_array_map()));
|
|
|
|
// Check that the last match info has space for the capture registers and the
|
|
|
|
// additional information.
|
|
|
|
__ lw(a0,
|
|
|
|
FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset));
|
|
|
|
__ Addu(a2, a2, Operand(RegExpImpl::kLastMatchOverhead));
|
|
|
|
__ sra(at, a0, kSmiTagSize); // Untag length for comparison.
|
|
|
|
__ Branch(&runtime, gt, a2, Operand(at));
|
|
|
|
|
|
|
|
// Reset offset for possibly sliced string.
|
|
|
|
__ mov(t0, zero_reg);
|
|
|
|
// subject: Subject string
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// Check the representation and encoding of the subject string.
|
|
|
|
Label seq_string;
|
|
|
|
__ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
|
|
|
|
// First check for flat string. None of the following string type tests will
|
|
|
|
// succeed if subject is not a string or a short external string.
|
|
|
|
__ And(a1,
|
|
|
|
a0,
|
|
|
|
Operand(kIsNotStringMask |
|
|
|
|
kStringRepresentationMask |
|
|
|
|
kShortExternalStringMask));
|
|
|
|
STATIC_ASSERT((kStringTag | kSeqStringTag) == 0);
|
|
|
|
__ Branch(&seq_string, eq, a1, Operand(zero_reg));
|
|
|
|
|
|
|
|
// subject: Subject string
|
|
|
|
// a0: instance type if Subject string
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// a1: whether subject is a string and if yes, its string representation
|
|
|
|
// Check for flat cons string or sliced string.
|
|
|
|
// A flat cons string is a cons string where the second part is the empty
|
|
|
|
// string. In that case the subject string is just the first part of the cons
|
|
|
|
// string. Also in this case the first part of the cons string is known to be
|
|
|
|
// a sequential string or an external string.
|
|
|
|
// In the case of a sliced string its offset has to be taken into account.
|
|
|
|
Label cons_string, external_string, check_encoding;
|
|
|
|
STATIC_ASSERT(kConsStringTag < kExternalStringTag);
|
|
|
|
STATIC_ASSERT(kSlicedStringTag > kExternalStringTag);
|
|
|
|
STATIC_ASSERT(kIsNotStringMask > kExternalStringTag);
|
|
|
|
STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag);
|
|
|
|
__ Branch(&cons_string, lt, a1, Operand(kExternalStringTag));
|
|
|
|
__ Branch(&external_string, eq, a1, Operand(kExternalStringTag));
|
|
|
|
|
|
|
|
// Catch non-string subject or short external string.
|
|
|
|
STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0);
|
|
|
|
__ And(at, a1, Operand(kIsNotStringMask | kShortExternalStringMask));
|
|
|
|
__ Branch(&runtime, ne, at, Operand(zero_reg));
|
|
|
|
|
|
|
|
// String is sliced.
|
|
|
|
__ lw(t0, FieldMemOperand(subject, SlicedString::kOffsetOffset));
|
|
|
|
__ sra(t0, t0, kSmiTagSize);
|
|
|
|
__ lw(subject, FieldMemOperand(subject, SlicedString::kParentOffset));
|
|
|
|
// t5: offset of sliced string, smi-tagged.
|
|
|
|
__ jmp(&check_encoding);
|
|
|
|
// String is a cons string, check whether it is flat.
|
|
|
|
__ bind(&cons_string);
|
|
|
|
__ lw(a0, FieldMemOperand(subject, ConsString::kSecondOffset));
|
|
|
|
__ LoadRoot(a1, Heap::kEmptyStringRootIndex);
|
|
|
|
__ Branch(&runtime, ne, a0, Operand(a1));
|
|
|
|
__ lw(subject, FieldMemOperand(subject, ConsString::kFirstOffset));
|
|
|
|
// Is first part of cons or parent of slice a flat string?
|
|
|
|
__ bind(&check_encoding);
|
|
|
|
__ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
|
|
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
|
|
__ And(at, a0, Operand(kStringRepresentationMask));
|
|
|
|
__ Branch(&external_string, ne, at, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ bind(&seq_string);
|
|
|
|
// subject: Subject string
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// a0: Instance type of subject string
|
|
|
|
STATIC_ASSERT(kStringEncodingMask == 4);
|
|
|
|
STATIC_ASSERT(kAsciiStringTag == 4);
|
|
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
|
|
// Find the code object based on the assumptions above.
|
|
|
|
__ And(a0, a0, Operand(kStringEncodingMask)); // Non-zero for ascii.
|
|
|
|
__ lw(t9, FieldMemOperand(regexp_data, JSRegExp::kDataAsciiCodeOffset));
|
|
|
|
__ sra(a3, a0, 2); // a3 is 1 for ascii, 0 for UC16 (usyed below).
|
|
|
|
__ lw(t1, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset));
|
|
|
|
__ movz(t9, t1, a0); // If UC16 (a0 is 0), replace t9 w/kDataUC16CodeOffset.
|
|
|
|
|
|
|
|
// Check that the irregexp code has been generated for the actual string
|
|
|
|
// encoding. If it has, the field contains a code object otherwise it contains
|
|
|
|
// a smi (code flushing support).
|
|
|
|
__ JumpIfSmi(t9, &runtime);
|
|
|
|
|
|
|
|
// a3: encoding of subject string (1 if ASCII, 0 if two_byte);
|
|
|
|
// t9: code
|
|
|
|
// subject: Subject string
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// Load used arguments before starting to push arguments for call to native
|
|
|
|
// RegExp code to avoid handling changing stack height.
|
|
|
|
__ lw(a1, MemOperand(sp, kPreviousIndexOffset));
|
|
|
|
__ sra(a1, a1, kSmiTagSize); // Untag the Smi.
|
|
|
|
|
|
|
|
// a1: previous index
|
|
|
|
// a3: encoding of subject string (1 if ASCII, 0 if two_byte);
|
|
|
|
// t9: code
|
|
|
|
// subject: Subject string
|
|
|
|
// regexp_data: RegExp data (FixedArray)
|
|
|
|
// All checks done. Now push arguments for native regexp code.
|
|
|
|
__ IncrementCounter(isolate->counters()->regexp_entry_native(),
|
|
|
|
1, a0, a2);
|
|
|
|
|
|
|
|
// Isolates: note we add an additional parameter here (isolate pointer).
|
|
|
|
static const int kRegExpExecuteArguments = 8;
|
|
|
|
static const int kParameterRegisters = 4;
|
|
|
|
__ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters);
|
|
|
|
|
|
|
|
// Stack pointer now points to cell where return address is to be written.
|
|
|
|
// Arguments are before that on the stack or in registers, meaning we
|
|
|
|
// treat the return address as argument 5. Thus every argument after that
|
|
|
|
// needs to be shifted back by 1. Since DirectCEntryStub will handle
|
|
|
|
// allocating space for the c argument slots, we don't need to calculate
|
|
|
|
// that into the argument positions on the stack. This is how the stack will
|
|
|
|
// look (sp meaning the value of sp at this moment):
|
|
|
|
// [sp + 4] - Argument 8
|
|
|
|
// [sp + 3] - Argument 7
|
|
|
|
// [sp + 2] - Argument 6
|
|
|
|
// [sp + 1] - Argument 5
|
|
|
|
// [sp + 0] - saved ra
|
|
|
|
|
|
|
|
// Argument 8: Pass current isolate address.
|
|
|
|
// CFunctionArgumentOperand handles MIPS stack argument slots.
|
|
|
|
__ li(a0, Operand(ExternalReference::isolate_address()));
|
|
|
|
__ sw(a0, MemOperand(sp, 4 * kPointerSize));
|
|
|
|
|
|
|
|
// Argument 7: Indicate that this is a direct call from JavaScript.
|
|
|
|
__ li(a0, Operand(1));
|
|
|
|
__ sw(a0, MemOperand(sp, 3 * kPointerSize));
|
|
|
|
|
|
|
|
// Argument 6: Start (high end) of backtracking stack memory area.
|
|
|
|
__ li(a0, Operand(address_of_regexp_stack_memory_address));
|
|
|
|
__ lw(a0, MemOperand(a0, 0));
|
|
|
|
__ li(a2, Operand(address_of_regexp_stack_memory_size));
|
|
|
|
__ lw(a2, MemOperand(a2, 0));
|
|
|
|
__ addu(a0, a0, a2);
|
|
|
|
__ sw(a0, MemOperand(sp, 2 * kPointerSize));
|
|
|
|
|
|
|
|
// Argument 5: static offsets vector buffer.
|
|
|
|
__ li(a0, Operand(
|
|
|
|
ExternalReference::address_of_static_offsets_vector(isolate)));
|
|
|
|
__ sw(a0, MemOperand(sp, 1 * kPointerSize));
|
|
|
|
|
|
|
|
// For arguments 4 and 3 get string length, calculate start of string data
|
|
|
|
// and calculate the shift of the index (0 for ASCII and 1 for two byte).
|
|
|
|
__ Addu(t2, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ Xor(a3, a3, Operand(1)); // 1 for 2-byte str, 0 for 1-byte.
|
|
|
|
// Load the length from the original subject string from the previous stack
|
|
|
|
// frame. Therefore we have to use fp, which points exactly to two pointer
|
|
|
|
// sizes below the previous sp. (Because creating a new stack frame pushes
|
|
|
|
// the previous fp onto the stack and moves up sp by 2 * kPointerSize.)
|
|
|
|
__ lw(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize));
|
|
|
|
// If slice offset is not 0, load the length from the original sliced string.
|
|
|
|
// Argument 4, a3: End of string data
|
|
|
|
// Argument 3, a2: Start of string data
|
|
|
|
// Prepare start and end index of the input.
|
|
|
|
__ sllv(t1, t0, a3);
|
|
|
|
__ addu(t0, t2, t1);
|
|
|
|
__ sllv(t1, a1, a3);
|
|
|
|
__ addu(a2, t0, t1);
|
|
|
|
|
|
|
|
__ lw(t2, FieldMemOperand(subject, String::kLengthOffset));
|
|
|
|
__ sra(t2, t2, kSmiTagSize);
|
|
|
|
__ sllv(t1, t2, a3);
|
|
|
|
__ addu(a3, t0, t1);
|
|
|
|
// Argument 2 (a1): Previous index.
|
|
|
|
// Already there
|
|
|
|
|
|
|
|
// Argument 1 (a0): Subject string.
|
|
|
|
__ mov(a0, subject);
|
|
|
|
|
|
|
|
// Locate the code entry and call it.
|
|
|
|
__ Addu(t9, t9, Operand(Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
DirectCEntryStub stub;
|
|
|
|
stub.GenerateCall(masm, t9);
|
|
|
|
|
|
|
|
__ LeaveExitFrame(false, no_reg);
|
|
|
|
|
|
|
|
// v0: result
|
|
|
|
// subject: subject string (callee saved)
|
|
|
|
// regexp_data: RegExp data (callee saved)
|
|
|
|
// last_match_info_elements: Last match info elements (callee saved)
|
|
|
|
|
|
|
|
// Check the result.
|
|
|
|
|
|
|
|
Label success;
|
|
|
|
__ Branch(&success, eq,
|
|
|
|
v0, Operand(NativeRegExpMacroAssembler::SUCCESS));
|
|
|
|
Label failure;
|
|
|
|
__ Branch(&failure, eq,
|
|
|
|
v0, Operand(NativeRegExpMacroAssembler::FAILURE));
|
|
|
|
// If not exception it can only be retry. Handle that in the runtime system.
|
|
|
|
__ Branch(&runtime, ne,
|
|
|
|
v0, Operand(NativeRegExpMacroAssembler::EXCEPTION));
|
|
|
|
// Result must now be exception. If there is no pending exception already a
|
|
|
|
// stack overflow (on the backtrack stack) was detected in RegExp code but
|
|
|
|
// haven't created the exception yet. Handle that in the runtime system.
|
|
|
|
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
|
|
|
|
__ li(a1, Operand(isolate->factory()->the_hole_value()));
|
|
|
|
__ li(a2, Operand(ExternalReference(Isolate::kPendingExceptionAddress,
|
|
|
|
isolate)));
|
|
|
|
__ lw(v0, MemOperand(a2, 0));
|
|
|
|
__ Branch(&runtime, eq, v0, Operand(a1));
|
|
|
|
|
|
|
|
__ sw(a1, MemOperand(a2, 0)); // Clear pending exception.
|
|
|
|
|
|
|
|
// Check if the exception is a termination. If so, throw as uncatchable.
|
|
|
|
__ LoadRoot(a0, Heap::kTerminationExceptionRootIndex);
|
|
|
|
Label termination_exception;
|
|
|
|
__ Branch(&termination_exception, eq, v0, Operand(a0));
|
|
|
|
|
|
|
|
__ Throw(v0); // Expects thrown value in v0.
|
|
|
|
|
|
|
|
__ bind(&termination_exception);
|
|
|
|
__ ThrowUncatchable(TERMINATION, v0); // Expects thrown value in v0.
|
|
|
|
|
|
|
|
__ bind(&failure);
|
|
|
|
// For failure and exception return null.
|
|
|
|
__ li(v0, Operand(isolate->factory()->null_value()));
|
|
|
|
__ Addu(sp, sp, Operand(4 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Process the result from the native regexp code.
|
|
|
|
__ bind(&success);
|
|
|
|
__ lw(a1,
|
|
|
|
FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset));
|
|
|
|
// Calculate number of capture registers (number_of_captures + 1) * 2.
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
|
|
|
__ Addu(a1, a1, Operand(2)); // a1 was a smi.
|
|
|
|
|
|
|
|
// a1: number of capture registers
|
|
|
|
// subject: subject string
|
|
|
|
// Store the capture count.
|
|
|
|
__ sll(a2, a1, kSmiTagSize + kSmiShiftSize); // To smi.
|
|
|
|
__ sw(a2, FieldMemOperand(last_match_info_elements,
|
|
|
|
RegExpImpl::kLastCaptureCountOffset));
|
|
|
|
// Store last subject and last input.
|
|
|
|
__ sw(subject,
|
|
|
|
FieldMemOperand(last_match_info_elements,
|
|
|
|
RegExpImpl::kLastSubjectOffset));
|
|
|
|
__ mov(a2, subject);
|
|
|
|
__ RecordWriteField(last_match_info_elements,
|
|
|
|
RegExpImpl::kLastSubjectOffset,
|
|
|
|
a2,
|
|
|
|
t3,
|
|
|
|
kRAHasNotBeenSaved,
|
|
|
|
kDontSaveFPRegs);
|
|
|
|
__ sw(subject,
|
|
|
|
FieldMemOperand(last_match_info_elements,
|
|
|
|
RegExpImpl::kLastInputOffset));
|
|
|
|
__ RecordWriteField(last_match_info_elements,
|
|
|
|
RegExpImpl::kLastInputOffset,
|
|
|
|
subject,
|
|
|
|
t3,
|
|
|
|
kRAHasNotBeenSaved,
|
|
|
|
kDontSaveFPRegs);
|
|
|
|
|
|
|
|
// Get the static offsets vector filled by the native regexp code.
|
|
|
|
ExternalReference address_of_static_offsets_vector =
|
|
|
|
ExternalReference::address_of_static_offsets_vector(isolate);
|
|
|
|
__ li(a2, Operand(address_of_static_offsets_vector));
|
|
|
|
|
|
|
|
// a1: number of capture registers
|
|
|
|
// a2: offsets vector
|
|
|
|
Label next_capture, done;
|
|
|
|
// Capture register counter starts from number of capture registers and
|
|
|
|
// counts down until wrapping after zero.
|
|
|
|
__ Addu(a0,
|
|
|
|
last_match_info_elements,
|
|
|
|
Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag));
|
|
|
|
__ bind(&next_capture);
|
|
|
|
__ Subu(a1, a1, Operand(1));
|
|
|
|
__ Branch(&done, lt, a1, Operand(zero_reg));
|
|
|
|
// Read the value from the static offsets vector buffer.
|
|
|
|
__ lw(a3, MemOperand(a2, 0));
|
|
|
|
__ addiu(a2, a2, kPointerSize);
|
|
|
|
// Store the smi value in the last match info.
|
|
|
|
__ sll(a3, a3, kSmiTagSize); // Convert to Smi.
|
|
|
|
__ sw(a3, MemOperand(a0, 0));
|
|
|
|
__ Branch(&next_capture, USE_DELAY_SLOT);
|
|
|
|
__ addiu(a0, a0, kPointerSize); // In branch delay slot.
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
|
|
|
|
// Return last match info.
|
|
|
|
__ lw(v0, MemOperand(sp, kLastMatchInfoOffset));
|
|
|
|
__ Addu(sp, sp, Operand(4 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// External string. Short external strings have already been ruled out.
|
|
|
|
// a0: scratch
|
|
|
|
__ bind(&external_string);
|
|
|
|
__ lw(a0, FieldMemOperand(subject, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a0, FieldMemOperand(a0, Map::kInstanceTypeOffset));
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
// Assert that we do not have a cons or slice (indirect strings) here.
|
|
|
|
// Sequential strings have already been ruled out.
|
|
|
|
__ And(at, a0, Operand(kIsIndirectStringMask));
|
|
|
|
__ Assert(eq,
|
|
|
|
"external string expected, but not found",
|
|
|
|
at,
|
|
|
|
Operand(zero_reg));
|
|
|
|
}
|
|
|
|
__ lw(subject,
|
|
|
|
FieldMemOperand(subject, ExternalString::kResourceDataOffset));
|
|
|
|
// Move the pointer so that offset-wise, it looks like a sequential string.
|
|
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
|
|
|
|
__ Subu(subject,
|
|
|
|
subject,
|
|
|
|
SeqTwoByteString::kHeaderSize - kHeapObjectTag);
|
|
|
|
__ jmp(&seq_string);
|
|
|
|
|
|
|
|
// Do the runtime call to execute the regexp.
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
|
|
|
|
#endif // V8_INTERPRETED_REGEXP
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
|
|
|
|
const int kMaxInlineLength = 100;
|
|
|
|
Label slowcase;
|
|
|
|
Label done;
|
|
|
|
__ lw(a1, MemOperand(sp, kPointerSize * 2));
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
STATIC_ASSERT(kSmiTagSize == 1);
|
|
|
|
__ JumpIfNotSmi(a1, &slowcase);
|
|
|
|
__ Branch(&slowcase, hi, a1, Operand(Smi::FromInt(kMaxInlineLength)));
|
|
|
|
// Smi-tagging is equivalent to multiplying by 2.
|
|
|
|
// Allocate RegExpResult followed by FixedArray with size in ebx.
|
|
|
|
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
|
|
|
|
// Elements: [Map][Length][..elements..]
|
|
|
|
// Size of JSArray with two in-object properties and the header of a
|
|
|
|
// FixedArray.
|
|
|
|
int objects_size =
|
|
|
|
(JSRegExpResult::kSize + FixedArray::kHeaderSize) / kPointerSize;
|
|
|
|
__ srl(t1, a1, kSmiTagSize + kSmiShiftSize);
|
|
|
|
__ Addu(a2, t1, Operand(objects_size));
|
|
|
|
__ AllocateInNewSpace(
|
|
|
|
a2, // In: Size, in words.
|
|
|
|
v0, // Out: Start of allocation (tagged).
|
|
|
|
a3, // Scratch register.
|
|
|
|
t0, // Scratch register.
|
|
|
|
&slowcase,
|
|
|
|
static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
|
|
|
|
// v0: Start of allocated area, object-tagged.
|
|
|
|
// a1: Number of elements in array, as smi.
|
|
|
|
// t1: Number of elements, untagged.
|
|
|
|
|
|
|
|
// Set JSArray map to global.regexp_result_map().
|
|
|
|
// Set empty properties FixedArray.
|
|
|
|
// Set elements to point to FixedArray allocated right after the JSArray.
|
|
|
|
// Interleave operations for better latency.
|
|
|
|
__ lw(a2, ContextOperand(cp, Context::GLOBAL_INDEX));
|
|
|
|
__ Addu(a3, v0, Operand(JSRegExpResult::kSize));
|
|
|
|
__ li(t0, Operand(masm->isolate()->factory()->empty_fixed_array()));
|
|
|
|
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
|
|
|
|
__ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
|
|
|
|
__ lw(a2, ContextOperand(a2, Context::REGEXP_RESULT_MAP_INDEX));
|
|
|
|
__ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset));
|
|
|
|
__ sw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
|
|
|
|
|
|
|
|
// Set input, index and length fields from arguments.
|
|
|
|
__ lw(a1, MemOperand(sp, kPointerSize * 0));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, JSRegExpResult::kInputOffset));
|
|
|
|
__ lw(a1, MemOperand(sp, kPointerSize * 1));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, JSRegExpResult::kIndexOffset));
|
|
|
|
__ lw(a1, MemOperand(sp, kPointerSize * 2));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, JSArray::kLengthOffset));
|
|
|
|
|
|
|
|
// Fill out the elements FixedArray.
|
|
|
|
// v0: JSArray, tagged.
|
|
|
|
// a3: FixedArray, tagged.
|
|
|
|
// t1: Number of elements in array, untagged.
|
|
|
|
|
|
|
|
// Set map.
|
|
|
|
__ li(a2, Operand(masm->isolate()->factory()->fixed_array_map()));
|
|
|
|
__ sw(a2, FieldMemOperand(a3, HeapObject::kMapOffset));
|
|
|
|
// Set FixedArray length.
|
|
|
|
__ sll(t2, t1, kSmiTagSize);
|
|
|
|
__ sw(t2, FieldMemOperand(a3, FixedArray::kLengthOffset));
|
|
|
|
// Fill contents of fixed-array with the-hole.
|
|
|
|
__ li(a2, Operand(masm->isolate()->factory()->the_hole_value()));
|
|
|
|
__ Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
// Fill fixed array elements with hole.
|
|
|
|
// v0: JSArray, tagged.
|
|
|
|
// a2: the hole.
|
|
|
|
// a3: Start of elements in FixedArray.
|
|
|
|
// t1: Number of elements to fill.
|
|
|
|
Label loop;
|
|
|
|
__ sll(t1, t1, kPointerSizeLog2); // Convert num elements to num bytes.
|
|
|
|
__ addu(t1, t1, a3); // Point past last element to store.
|
|
|
|
__ bind(&loop);
|
|
|
|
__ Branch(&done, ge, a3, Operand(t1)); // Break when a3 past end of elem.
|
|
|
|
__ sw(a2, MemOperand(a3));
|
|
|
|
__ Branch(&loop, USE_DELAY_SLOT);
|
|
|
|
__ addiu(a3, a3, kPointerSize); // In branch delay slot.
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
__ Addu(sp, sp, Operand(3 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&slowcase);
|
|
|
|
__ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CallFunctionStub::FinishCode(Handle<Code> code) {
|
|
|
|
code->set_has_function_cache(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CallFunctionStub::Clear(Heap* heap, Address address) {
|
|
|
|
UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
Object* CallFunctionStub::GetCachedValue(Address address) {
|
|
|
|
UNREACHABLE();
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CallFunctionStub::Generate(MacroAssembler* masm) {
|
|
|
|
// a1 : the function to call
|
|
|
|
Label slow, non_function;
|
|
|
|
|
|
|
|
// The receiver might implicitly be the global object. This is
|
|
|
|
// indicated by passing the hole as the receiver to the call
|
|
|
|
// function stub.
|
|
|
|
if (ReceiverMightBeImplicit()) {
|
|
|
|
Label call;
|
|
|
|
// Get the receiver from the stack.
|
|
|
|
// function, receiver [, arguments]
|
|
|
|
__ lw(t0, MemOperand(sp, argc_ * kPointerSize));
|
|
|
|
// Call as function is indicated with the hole.
|
|
|
|
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ Branch(&call, ne, t0, Operand(at));
|
|
|
|
// Patch the receiver on the stack with the global receiver object.
|
|
|
|
__ lw(a2, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
|
|
|
|
__ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
|
|
|
|
__ sw(a2, MemOperand(sp, argc_ * kPointerSize));
|
|
|
|
__ bind(&call);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check that the function is really a JavaScript function.
|
|
|
|
// a1: pushed function (to be verified)
|
|
|
|
__ JumpIfSmi(a1, &non_function);
|
|
|
|
// Get the map of the function object.
|
|
|
|
__ GetObjectType(a1, a2, a2);
|
|
|
|
__ Branch(&slow, ne, a2, Operand(JS_FUNCTION_TYPE));
|
|
|
|
|
|
|
|
// Fast-case: Invoke the function now.
|
|
|
|
// a1: pushed function
|
|
|
|
ParameterCount actual(argc_);
|
|
|
|
|
|
|
|
if (ReceiverMightBeImplicit()) {
|
|
|
|
Label call_as_function;
|
|
|
|
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ Branch(&call_as_function, eq, t0, Operand(at));
|
|
|
|
__ InvokeFunction(a1,
|
|
|
|
actual,
|
|
|
|
JUMP_FUNCTION,
|
|
|
|
NullCallWrapper(),
|
|
|
|
CALL_AS_METHOD);
|
|
|
|
__ bind(&call_as_function);
|
|
|
|
}
|
|
|
|
__ InvokeFunction(a1,
|
|
|
|
actual,
|
|
|
|
JUMP_FUNCTION,
|
|
|
|
NullCallWrapper(),
|
|
|
|
CALL_AS_FUNCTION);
|
|
|
|
|
|
|
|
// Slow-case: Non-function called.
|
|
|
|
__ bind(&slow);
|
|
|
|
// Check for function proxy.
|
|
|
|
__ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_PROXY_TYPE));
|
|
|
|
__ push(a1); // Put proxy as additional argument.
|
|
|
|
__ li(a0, Operand(argc_ + 1, RelocInfo::NONE));
|
|
|
|
__ li(a2, Operand(0, RelocInfo::NONE));
|
|
|
|
__ GetBuiltinEntry(a3, Builtins::CALL_FUNCTION_PROXY);
|
|
|
|
__ SetCallKind(t1, CALL_AS_METHOD);
|
|
|
|
{
|
|
|
|
Handle<Code> adaptor =
|
|
|
|
masm->isolate()->builtins()->ArgumentsAdaptorTrampoline();
|
|
|
|
__ Jump(adaptor, RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
|
|
|
|
// of the original receiver from the call site).
|
|
|
|
__ bind(&non_function);
|
|
|
|
__ sw(a1, MemOperand(sp, argc_ * kPointerSize));
|
|
|
|
__ li(a0, Operand(argc_)); // Setup the number of arguments.
|
|
|
|
__ mov(a2, zero_reg);
|
|
|
|
__ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
|
|
|
|
__ SetCallKind(t1, CALL_AS_METHOD);
|
|
|
|
__ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
|
|
|
|
RelocInfo::CODE_TARGET);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Unfortunately you have to run without snapshots to see most of these
|
|
|
|
// names in the profile since most compare stubs end up in the snapshot.
|
|
|
|
void CompareStub::PrintName(StringStream* stream) {
|
|
|
|
ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
|
|
|
|
(lhs_.is(a1) && rhs_.is(a0)));
|
|
|
|
const char* cc_name;
|
|
|
|
switch (cc_) {
|
|
|
|
case lt: cc_name = "LT"; break;
|
|
|
|
case gt: cc_name = "GT"; break;
|
|
|
|
case le: cc_name = "LE"; break;
|
|
|
|
case ge: cc_name = "GE"; break;
|
|
|
|
case eq: cc_name = "EQ"; break;
|
|
|
|
case ne: cc_name = "NE"; break;
|
|
|
|
default: cc_name = "UnknownCondition"; break;
|
|
|
|
}
|
|
|
|
bool is_equality = cc_ == eq || cc_ == ne;
|
|
|
|
stream->Add("CompareStub_%s", cc_name);
|
|
|
|
stream->Add(lhs_.is(a0) ? "_a0" : "_a1");
|
|
|
|
stream->Add(rhs_.is(a0) ? "_a0" : "_a1");
|
|
|
|
if (strict_ && is_equality) stream->Add("_STRICT");
|
|
|
|
if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN");
|
|
|
|
if (!include_number_compare_) stream->Add("_NO_NUMBER");
|
|
|
|
if (!include_smi_compare_) stream->Add("_NO_SMI");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CompareStub::MinorKey() {
|
|
|
|
// Encode the two parameters in a unique 16 bit value.
|
|
|
|
ASSERT(static_cast<unsigned>(cc_) < (1 << 14));
|
|
|
|
ASSERT((lhs_.is(a0) && rhs_.is(a1)) ||
|
|
|
|
(lhs_.is(a1) && rhs_.is(a0)));
|
|
|
|
return ConditionField::encode(static_cast<unsigned>(cc_))
|
|
|
|
| RegisterField::encode(lhs_.is(a0))
|
|
|
|
| StrictField::encode(strict_)
|
|
|
|
| NeverNanNanField::encode(cc_ == eq ? never_nan_nan_ : false)
|
|
|
|
| IncludeSmiCompareField::encode(include_smi_compare_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// StringCharCodeAtGenerator.
|
|
|
|
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
|
|
|
|
Label flat_string;
|
|
|
|
Label ascii_string;
|
|
|
|
Label got_char_code;
|
|
|
|
Label sliced_string;
|
|
|
|
|
|
|
|
ASSERT(!t0.is(index_));
|
|
|
|
ASSERT(!t0.is(result_));
|
|
|
|
ASSERT(!t0.is(object_));
|
|
|
|
|
|
|
|
// If the receiver is a smi trigger the non-string case.
|
|
|
|
__ JumpIfSmi(object_, receiver_not_string_);
|
|
|
|
|
|
|
|
// Fetch the instance type of the receiver into result register.
|
|
|
|
__ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
|
|
|
__ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
|
|
|
// If the receiver is not a string trigger the non-string case.
|
|
|
|
__ And(t0, result_, Operand(kIsNotStringMask));
|
|
|
|
__ Branch(receiver_not_string_, ne, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// If the index is non-smi trigger the non-smi case.
|
|
|
|
__ JumpIfNotSmi(index_, &index_not_smi_);
|
|
|
|
|
|
|
|
__ bind(&got_smi_index_);
|
|
|
|
|
|
|
|
// Check for index out of range.
|
|
|
|
__ lw(t0, FieldMemOperand(object_, String::kLengthOffset));
|
|
|
|
__ Branch(index_out_of_range_, ls, t0, Operand(index_));
|
|
|
|
|
|
|
|
__ sra(index_, index_, kSmiTagSize);
|
|
|
|
|
|
|
|
StringCharLoadGenerator::Generate(masm,
|
|
|
|
object_,
|
|
|
|
index_,
|
|
|
|
result_,
|
|
|
|
&call_runtime_);
|
|
|
|
|
|
|
|
__ sll(result_, result_, kSmiTagSize);
|
|
|
|
__ bind(&exit_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCharCodeAtGenerator::GenerateSlow(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
const RuntimeCallHelper& call_helper) {
|
|
|
|
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
|
|
|
|
|
|
|
|
// Index is not a smi.
|
|
|
|
__ bind(&index_not_smi_);
|
|
|
|
// If index is a heap number, try converting it to an integer.
|
|
|
|
__ CheckMap(index_,
|
|
|
|
result_,
|
|
|
|
Heap::kHeapNumberMapRootIndex,
|
|
|
|
index_not_number_,
|
|
|
|
DONT_DO_SMI_CHECK);
|
|
|
|
call_helper.BeforeCall(masm);
|
|
|
|
// Consumed by runtime conversion function:
|
|
|
|
__ Push(object_, index_);
|
|
|
|
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
|
|
|
|
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
|
|
|
|
} else {
|
|
|
|
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
|
|
|
|
// NumberToSmi discards numbers that are not exact integers.
|
|
|
|
__ CallRuntime(Runtime::kNumberToSmi, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Save the conversion result before the pop instructions below
|
|
|
|
// have a chance to overwrite it.
|
|
|
|
|
|
|
|
__ Move(index_, v0);
|
|
|
|
__ pop(object_);
|
|
|
|
// Reload the instance type.
|
|
|
|
__ lw(result_, FieldMemOperand(object_, HeapObject::kMapOffset));
|
|
|
|
__ lbu(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset));
|
|
|
|
call_helper.AfterCall(masm);
|
|
|
|
// If index is still not a smi, it must be out of range.
|
|
|
|
__ JumpIfNotSmi(index_, index_out_of_range_);
|
|
|
|
// Otherwise, return to the fast path.
|
|
|
|
__ Branch(&got_smi_index_);
|
|
|
|
|
|
|
|
// Call runtime. We get here when the receiver is a string and the
|
|
|
|
// index is a number, but the code of getting the actual character
|
|
|
|
// is too complex (e.g., when the string needs to be flattened).
|
|
|
|
__ bind(&call_runtime_);
|
|
|
|
call_helper.BeforeCall(masm);
|
|
|
|
__ sll(index_, index_, kSmiTagSize);
|
|
|
|
__ Push(object_, index_);
|
|
|
|
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
|
|
|
|
|
|
|
|
__ Move(result_, v0);
|
|
|
|
|
|
|
|
call_helper.AfterCall(masm);
|
|
|
|
__ jmp(&exit_);
|
|
|
|
|
|
|
|
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// StringCharFromCodeGenerator
|
|
|
|
|
|
|
|
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
|
|
|
|
// Fast case of Heap::LookupSingleCharacterStringFromCode.
|
|
|
|
|
|
|
|
ASSERT(!t0.is(result_));
|
|
|
|
ASSERT(!t0.is(code_));
|
|
|
|
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
STATIC_ASSERT(kSmiShiftSize == 0);
|
|
|
|
ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1));
|
|
|
|
__ And(t0,
|
|
|
|
code_,
|
|
|
|
Operand(kSmiTagMask |
|
|
|
|
((~String::kMaxAsciiCharCode) << kSmiTagSize)));
|
|
|
|
__ Branch(&slow_case_, ne, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
|
|
|
|
// At this point code register contains smi tagged ASCII char code.
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ sll(t0, code_, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(result_, result_, t0);
|
|
|
|
__ lw(result_, FieldMemOperand(result_, FixedArray::kHeaderSize));
|
|
|
|
__ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ Branch(&slow_case_, eq, result_, Operand(t0));
|
|
|
|
__ bind(&exit_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCharFromCodeGenerator::GenerateSlow(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
const RuntimeCallHelper& call_helper) {
|
|
|
|
__ Abort("Unexpected fallthrough to CharFromCode slow case");
|
|
|
|
|
|
|
|
__ bind(&slow_case_);
|
|
|
|
call_helper.BeforeCall(masm);
|
|
|
|
__ push(code_);
|
|
|
|
__ CallRuntime(Runtime::kCharFromCode, 1);
|
|
|
|
__ Move(result_, v0);
|
|
|
|
|
|
|
|
call_helper.AfterCall(masm);
|
|
|
|
__ Branch(&exit_);
|
|
|
|
|
|
|
|
__ Abort("Unexpected fallthrough from CharFromCode slow case");
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// StringCharAtGenerator
|
|
|
|
|
|
|
|
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
|
|
|
|
char_code_at_generator_.GenerateFast(masm);
|
|
|
|
char_from_code_generator_.GenerateFast(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCharAtGenerator::GenerateSlow(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
const RuntimeCallHelper& call_helper) {
|
|
|
|
char_code_at_generator_.GenerateSlow(masm, call_helper);
|
|
|
|
char_from_code_generator_.GenerateSlow(masm, call_helper);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
|
|
|
|
Register dest,
|
|
|
|
Register src,
|
|
|
|
Register count,
|
|
|
|
Register scratch,
|
|
|
|
bool ascii) {
|
|
|
|
Label loop;
|
|
|
|
Label done;
|
|
|
|
// This loop just copies one character at a time, as it is only used for
|
|
|
|
// very short strings.
|
|
|
|
if (!ascii) {
|
|
|
|
__ addu(count, count, count);
|
|
|
|
}
|
|
|
|
__ Branch(&done, eq, count, Operand(zero_reg));
|
|
|
|
__ addu(count, dest, count); // Count now points to the last dest byte.
|
|
|
|
|
|
|
|
__ bind(&loop);
|
|
|
|
__ lbu(scratch, MemOperand(src));
|
|
|
|
__ addiu(src, src, 1);
|
|
|
|
__ sb(scratch, MemOperand(dest));
|
|
|
|
__ addiu(dest, dest, 1);
|
|
|
|
__ Branch(&loop, lt, dest, Operand(count));
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
enum CopyCharactersFlags {
|
|
|
|
COPY_ASCII = 1,
|
|
|
|
DEST_ALWAYS_ALIGNED = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void StringHelper::GenerateCopyCharactersLong(MacroAssembler* masm,
|
|
|
|
Register dest,
|
|
|
|
Register src,
|
|
|
|
Register count,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Register scratch4,
|
|
|
|
Register scratch5,
|
|
|
|
int flags) {
|
|
|
|
bool ascii = (flags & COPY_ASCII) != 0;
|
|
|
|
bool dest_always_aligned = (flags & DEST_ALWAYS_ALIGNED) != 0;
|
|
|
|
|
|
|
|
if (dest_always_aligned && FLAG_debug_code) {
|
|
|
|
// Check that destination is actually word aligned if the flag says
|
|
|
|
// that it is.
|
|
|
|
__ And(scratch4, dest, Operand(kPointerAlignmentMask));
|
|
|
|
__ Check(eq,
|
|
|
|
"Destination of copy not aligned.",
|
|
|
|
scratch4,
|
|
|
|
Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
const int kReadAlignment = 4;
|
|
|
|
const int kReadAlignmentMask = kReadAlignment - 1;
|
|
|
|
// Ensure that reading an entire aligned word containing the last character
|
|
|
|
// of a string will not read outside the allocated area (because we pad up
|
|
|
|
// to kObjectAlignment).
|
|
|
|
STATIC_ASSERT(kObjectAlignment >= kReadAlignment);
|
|
|
|
// Assumes word reads and writes are little endian.
|
|
|
|
// Nothing to do for zero characters.
|
|
|
|
Label done;
|
|
|
|
|
|
|
|
if (!ascii) {
|
|
|
|
__ addu(count, count, count);
|
|
|
|
}
|
|
|
|
__ Branch(&done, eq, count, Operand(zero_reg));
|
|
|
|
|
|
|
|
Label byte_loop;
|
|
|
|
// Must copy at least eight bytes, otherwise just do it one byte at a time.
|
|
|
|
__ Subu(scratch1, count, Operand(8));
|
|
|
|
__ Addu(count, dest, Operand(count));
|
|
|
|
Register limit = count; // Read until src equals this.
|
|
|
|
__ Branch(&byte_loop, lt, scratch1, Operand(zero_reg));
|
|
|
|
|
|
|
|
if (!dest_always_aligned) {
|
|
|
|
// Align dest by byte copying. Copies between zero and three bytes.
|
|
|
|
__ And(scratch4, dest, Operand(kReadAlignmentMask));
|
|
|
|
Label dest_aligned;
|
|
|
|
__ Branch(&dest_aligned, eq, scratch4, Operand(zero_reg));
|
|
|
|
Label aligned_loop;
|
|
|
|
__ bind(&aligned_loop);
|
|
|
|
__ lbu(scratch1, MemOperand(src));
|
|
|
|
__ addiu(src, src, 1);
|
|
|
|
__ sb(scratch1, MemOperand(dest));
|
|
|
|
__ addiu(dest, dest, 1);
|
|
|
|
__ addiu(scratch4, scratch4, 1);
|
|
|
|
__ Branch(&aligned_loop, le, scratch4, Operand(kReadAlignmentMask));
|
|
|
|
__ bind(&dest_aligned);
|
|
|
|
}
|
|
|
|
|
|
|
|
Label simple_loop;
|
|
|
|
|
|
|
|
__ And(scratch4, src, Operand(kReadAlignmentMask));
|
|
|
|
__ Branch(&simple_loop, eq, scratch4, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Loop for src/dst that are not aligned the same way.
|
|
|
|
// This loop uses lwl and lwr instructions. These instructions
|
|
|
|
// depend on the endianness, and the implementation assumes little-endian.
|
|
|
|
{
|
|
|
|
Label loop;
|
|
|
|
__ bind(&loop);
|
|
|
|
__ lwr(scratch1, MemOperand(src));
|
|
|
|
__ Addu(src, src, Operand(kReadAlignment));
|
|
|
|
__ lwl(scratch1, MemOperand(src, -1));
|
|
|
|
__ sw(scratch1, MemOperand(dest));
|
|
|
|
__ Addu(dest, dest, Operand(kReadAlignment));
|
|
|
|
__ Subu(scratch2, limit, dest);
|
|
|
|
__ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
|
|
|
|
}
|
|
|
|
|
|
|
|
__ Branch(&byte_loop);
|
|
|
|
|
|
|
|
// Simple loop.
|
|
|
|
// Copy words from src to dest, until less than four bytes left.
|
|
|
|
// Both src and dest are word aligned.
|
|
|
|
__ bind(&simple_loop);
|
|
|
|
{
|
|
|
|
Label loop;
|
|
|
|
__ bind(&loop);
|
|
|
|
__ lw(scratch1, MemOperand(src));
|
|
|
|
__ Addu(src, src, Operand(kReadAlignment));
|
|
|
|
__ sw(scratch1, MemOperand(dest));
|
|
|
|
__ Addu(dest, dest, Operand(kReadAlignment));
|
|
|
|
__ Subu(scratch2, limit, dest);
|
|
|
|
__ Branch(&loop, ge, scratch2, Operand(kReadAlignment));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Copy bytes from src to dest until dest hits limit.
|
|
|
|
__ bind(&byte_loop);
|
|
|
|
// Test if dest has already reached the limit.
|
|
|
|
__ Branch(&done, ge, dest, Operand(limit));
|
|
|
|
__ lbu(scratch1, MemOperand(src));
|
|
|
|
__ addiu(src, src, 1);
|
|
|
|
__ sb(scratch1, MemOperand(dest));
|
|
|
|
__ addiu(dest, dest, 1);
|
|
|
|
__ Branch(&byte_loop);
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
|
|
|
|
Register c1,
|
|
|
|
Register c2,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Register scratch4,
|
|
|
|
Register scratch5,
|
|
|
|
Label* not_found) {
|
|
|
|
// Register scratch3 is the general scratch register in this function.
|
|
|
|
Register scratch = scratch3;
|
|
|
|
|
|
|
|
// Make sure that both characters are not digits as such strings has a
|
|
|
|
// different hash algorithm. Don't try to look for these in the symbol table.
|
|
|
|
Label not_array_index;
|
|
|
|
__ Subu(scratch, c1, Operand(static_cast<int>('0')));
|
|
|
|
__ Branch(¬_array_index,
|
|
|
|
Ugreater,
|
|
|
|
scratch,
|
|
|
|
Operand(static_cast<int>('9' - '0')));
|
|
|
|
__ Subu(scratch, c2, Operand(static_cast<int>('0')));
|
|
|
|
|
|
|
|
// If check failed combine both characters into single halfword.
|
|
|
|
// This is required by the contract of the method: code at the
|
|
|
|
// not_found branch expects this combination in c1 register.
|
|
|
|
Label tmp;
|
|
|
|
__ sll(scratch1, c2, kBitsPerByte);
|
|
|
|
__ Branch(&tmp, Ugreater, scratch, Operand(static_cast<int>('9' - '0')));
|
|
|
|
__ Or(c1, c1, scratch1);
|
|
|
|
__ bind(&tmp);
|
|
|
|
__ Branch(not_found,
|
|
|
|
Uless_equal,
|
|
|
|
scratch,
|
|
|
|
Operand(static_cast<int>('9' - '0')));
|
|
|
|
|
|
|
|
__ bind(¬_array_index);
|
|
|
|
// Calculate the two character string hash.
|
|
|
|
Register hash = scratch1;
|
|
|
|
StringHelper::GenerateHashInit(masm, hash, c1);
|
|
|
|
StringHelper::GenerateHashAddCharacter(masm, hash, c2);
|
|
|
|
StringHelper::GenerateHashGetHash(masm, hash);
|
|
|
|
|
|
|
|
// Collect the two characters in a register.
|
|
|
|
Register chars = c1;
|
|
|
|
__ sll(scratch, c2, kBitsPerByte);
|
|
|
|
__ Or(chars, chars, scratch);
|
|
|
|
|
|
|
|
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
|
|
|
// hash: hash of two character string.
|
|
|
|
|
|
|
|
// Load symbol table.
|
|
|
|
// Load address of first element of the symbol table.
|
|
|
|
Register symbol_table = c2;
|
|
|
|
__ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
|
|
|
|
|
|
|
|
Register undefined = scratch4;
|
|
|
|
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
|
|
|
|
|
|
|
|
// Calculate capacity mask from the symbol table capacity.
|
|
|
|
Register mask = scratch2;
|
|
|
|
__ lw(mask, FieldMemOperand(symbol_table, SymbolTable::kCapacityOffset));
|
|
|
|
__ sra(mask, mask, 1);
|
|
|
|
__ Addu(mask, mask, -1);
|
|
|
|
|
|
|
|
// Calculate untagged address of the first element of the symbol table.
|
|
|
|
Register first_symbol_table_element = symbol_table;
|
|
|
|
__ Addu(first_symbol_table_element, symbol_table,
|
|
|
|
Operand(SymbolTable::kElementsStartOffset - kHeapObjectTag));
|
|
|
|
|
|
|
|
// Registers.
|
|
|
|
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
|
|
|
|
// hash: hash of two character string
|
|
|
|
// mask: capacity mask
|
|
|
|
// first_symbol_table_element: address of the first element of
|
|
|
|
// the symbol table
|
|
|
|
// undefined: the undefined object
|
|
|
|
// scratch: -
|
|
|
|
|
|
|
|
// Perform a number of probes in the symbol table.
|
|
|
|
static const int kProbes = 4;
|
|
|
|
Label found_in_symbol_table;
|
|
|
|
Label next_probe[kProbes];
|
|
|
|
Register candidate = scratch5; // Scratch register contains candidate.
|
|
|
|
for (int i = 0; i < kProbes; i++) {
|
|
|
|
// Calculate entry in symbol table.
|
|
|
|
if (i > 0) {
|
|
|
|
__ Addu(candidate, hash, Operand(SymbolTable::GetProbeOffset(i)));
|
|
|
|
} else {
|
|
|
|
__ mov(candidate, hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
__ And(candidate, candidate, Operand(mask));
|
|
|
|
|
|
|
|
// Load the entry from the symble table.
|
|
|
|
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
|
|
|
|
__ sll(scratch, candidate, kPointerSizeLog2);
|
|
|
|
__ Addu(scratch, scratch, first_symbol_table_element);
|
|
|
|
__ lw(candidate, MemOperand(scratch));
|
|
|
|
|
|
|
|
// If entry is undefined no string with this hash can be found.
|
|
|
|
Label is_string;
|
|
|
|
__ GetObjectType(candidate, scratch, scratch);
|
|
|
|
__ Branch(&is_string, ne, scratch, Operand(ODDBALL_TYPE));
|
|
|
|
|
|
|
|
__ Branch(not_found, eq, undefined, Operand(candidate));
|
|
|
|
// Must be the hole (deleted entry).
|
|
|
|
if (FLAG_debug_code) {
|
|
|
|
__ LoadRoot(scratch, Heap::kTheHoleValueRootIndex);
|
|
|
|
__ Assert(eq, "oddball in symbol table is not undefined or the hole",
|
|
|
|
scratch, Operand(candidate));
|
|
|
|
}
|
|
|
|
__ jmp(&next_probe[i]);
|
|
|
|
|
|
|
|
__ bind(&is_string);
|
|
|
|
|
|
|
|
// Check that the candidate is a non-external ASCII string. The instance
|
|
|
|
// type is still in the scratch register from the CompareObjectType
|
|
|
|
// operation.
|
|
|
|
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch, scratch, &next_probe[i]);
|
|
|
|
|
|
|
|
// If length is not 2 the string is not a candidate.
|
|
|
|
__ lw(scratch, FieldMemOperand(candidate, String::kLengthOffset));
|
|
|
|
__ Branch(&next_probe[i], ne, scratch, Operand(Smi::FromInt(2)));
|
|
|
|
|
|
|
|
// Check if the two characters match.
|
|
|
|
// Assumes that word load is little endian.
|
|
|
|
__ lhu(scratch, FieldMemOperand(candidate, SeqAsciiString::kHeaderSize));
|
|
|
|
__ Branch(&found_in_symbol_table, eq, chars, Operand(scratch));
|
|
|
|
__ bind(&next_probe[i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// No matching 2 character string found by probing.
|
|
|
|
__ jmp(not_found);
|
|
|
|
|
|
|
|
// Scratch register contains result when we fall through to here.
|
|
|
|
Register result = candidate;
|
|
|
|
__ bind(&found_in_symbol_table);
|
|
|
|
__ mov(v0, result);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringHelper::GenerateHashInit(MacroAssembler* masm,
|
|
|
|
Register hash,
|
|
|
|
Register character) {
|
|
|
|
// hash = character + (character << 10);
|
|
|
|
__ sll(hash, character, 10);
|
|
|
|
__ addu(hash, hash, character);
|
|
|
|
// hash ^= hash >> 6;
|
|
|
|
__ srl(at, hash, 6);
|
|
|
|
__ xor_(hash, hash, at);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
|
|
|
|
Register hash,
|
|
|
|
Register character) {
|
|
|
|
// hash += character;
|
|
|
|
__ addu(hash, hash, character);
|
|
|
|
// hash += hash << 10;
|
|
|
|
__ sll(at, hash, 10);
|
|
|
|
__ addu(hash, hash, at);
|
|
|
|
// hash ^= hash >> 6;
|
|
|
|
__ srl(at, hash, 6);
|
|
|
|
__ xor_(hash, hash, at);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
|
|
|
|
Register hash) {
|
|
|
|
// hash += hash << 3;
|
|
|
|
__ sll(at, hash, 3);
|
|
|
|
__ addu(hash, hash, at);
|
|
|
|
// hash ^= hash >> 11;
|
|
|
|
__ srl(at, hash, 11);
|
|
|
|
__ xor_(hash, hash, at);
|
|
|
|
// hash += hash << 15;
|
|
|
|
__ sll(at, hash, 15);
|
|
|
|
__ addu(hash, hash, at);
|
|
|
|
|
|
|
|
uint32_t kHashShiftCutOffMask = (1 << (32 - String::kHashShift)) - 1;
|
|
|
|
__ li(at, Operand(kHashShiftCutOffMask));
|
|
|
|
__ and_(hash, hash, at);
|
|
|
|
|
|
|
|
// if (hash == 0) hash = 27;
|
|
|
|
__ ori(at, zero_reg, 27);
|
|
|
|
__ movz(hash, at, hash);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void SubStringStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label runtime;
|
|
|
|
// Stack frame on entry.
|
|
|
|
// ra: return address
|
|
|
|
// sp[0]: to
|
|
|
|
// sp[4]: from
|
|
|
|
// sp[8]: string
|
|
|
|
|
|
|
|
// This stub is called from the native-call %_SubString(...), so
|
|
|
|
// nothing can be assumed about the arguments. It is tested that:
|
|
|
|
// "string" is a sequential string,
|
|
|
|
// both "from" and "to" are smis, and
|
|
|
|
// 0 <= from <= to <= string.length.
|
|
|
|
// If any of these assumptions fail, we call the runtime system.
|
|
|
|
|
|
|
|
static const int kToOffset = 0 * kPointerSize;
|
|
|
|
static const int kFromOffset = 1 * kPointerSize;
|
|
|
|
static const int kStringOffset = 2 * kPointerSize;
|
|
|
|
|
|
|
|
__ lw(a2, MemOperand(sp, kToOffset));
|
|
|
|
__ lw(a3, MemOperand(sp, kFromOffset));
|
|
|
|
STATIC_ASSERT(kFromOffset == kToOffset + 4);
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1);
|
|
|
|
|
|
|
|
// Utilize delay slots. SmiUntag doesn't emit a jump, everything else is
|
|
|
|
// safe in this case.
|
|
|
|
__ JumpIfSmi(a2, &runtime, at, USE_DELAY_SLOT);
|
|
|
|
__ SmiUntag(a2);
|
|
|
|
__ JumpIfSmi(a3, &runtime, at, USE_DELAY_SLOT);
|
|
|
|
__ SmiUntag(a3);
|
|
|
|
|
|
|
|
// Both a2 and a3 are untagged integers.
|
|
|
|
|
|
|
|
__ Branch(&runtime, lt, a3, Operand(zero_reg)); // From < 0.
|
|
|
|
|
|
|
|
__ subu(a2, t5, a3);
|
|
|
|
__ Branch(&runtime, gt, a3, Operand(t5)); // Fail if from > to.
|
|
|
|
|
|
|
|
// Make sure first argument is a string.
|
|
|
|
__ lw(v0, MemOperand(sp, kStringOffset));
|
|
|
|
__ Branch(&runtime, eq, v0, Operand(kSmiTagMask));
|
|
|
|
|
|
|
|
__ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
|
|
|
|
__ And(t4, v0, Operand(kIsNotStringMask));
|
|
|
|
|
|
|
|
__ Branch(&runtime, ne, t4, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Short-cut for the case of trivial substring.
|
|
|
|
Label return_v0;
|
|
|
|
// v0: original string
|
|
|
|
// a2: result string length
|
|
|
|
__ lw(t0, FieldMemOperand(v0, String::kLengthOffset));
|
|
|
|
__ sra(t0, t0, 1);
|
|
|
|
__ Branch(&return_v0, eq, a2, Operand(t0));
|
|
|
|
|
|
|
|
|
|
|
|
Label result_longer_than_two;
|
|
|
|
// Check for special case of two character ascii string, in which case
|
|
|
|
// we do a lookup in the symbol table first.
|
|
|
|
__ li(t0, 2);
|
|
|
|
__ Branch(&result_longer_than_two, gt, a2, Operand(t0));
|
|
|
|
__ Branch(&runtime, lt, a2, Operand(t0));
|
|
|
|
|
|
|
|
__ JumpIfInstanceTypeIsNotSequentialAscii(a1, a1, &runtime);
|
|
|
|
|
|
|
|
// Get the two characters forming the sub string.
|
|
|
|
__ Addu(v0, v0, Operand(a3));
|
|
|
|
__ lbu(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
|
|
|
|
__ lbu(t0, FieldMemOperand(v0, SeqAsciiString::kHeaderSize + 1));
|
|
|
|
|
|
|
|
// Try to lookup two character string in symbol table.
|
|
|
|
Label make_two_character_string;
|
|
|
|
StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
|
|
|
masm, a3, t0, a1, t1, t2, t3, t4, &make_two_character_string);
|
|
|
|
__ jmp(&return_v0);
|
|
|
|
|
|
|
|
// a2: result string length.
|
|
|
|
// a3: two characters combined into halfword in little endian byte order.
|
|
|
|
__ bind(&make_two_character_string);
|
|
|
|
__ AllocateAsciiString(v0, a2, t0, t1, t4, &runtime);
|
|
|
|
__ sh(a3, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
|
|
|
|
__ jmp(&return_v0);
|
|
|
|
|
|
|
|
__ bind(&result_longer_than_two);
|
|
|
|
|
|
|
|
// Deal with different string types: update the index if necessary
|
|
|
|
// and put the underlying string into t1.
|
|
|
|
// v0: original string
|
|
|
|
// a1: instance type
|
|
|
|
// a2: length
|
|
|
|
// a3: from index (untagged)
|
|
|
|
Label underlying_unpacked, sliced_string, seq_or_external_string;
|
|
|
|
// If the string is not indirect, it can only be sequential or external.
|
|
|
|
STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag));
|
|
|
|
STATIC_ASSERT(kIsIndirectStringMask != 0);
|
|
|
|
__ And(t0, a1, Operand(kIsIndirectStringMask));
|
|
|
|
__ Branch(USE_DELAY_SLOT, &seq_or_external_string, eq, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ And(t0, a1, Operand(kSlicedNotConsMask));
|
|
|
|
__ Branch(&sliced_string, ne, t0, Operand(zero_reg));
|
|
|
|
// Cons string. Check whether it is flat, then fetch first part.
|
|
|
|
__ lw(t1, FieldMemOperand(v0, ConsString::kSecondOffset));
|
|
|
|
__ LoadRoot(t0, Heap::kEmptyStringRootIndex);
|
|
|
|
__ Branch(&runtime, ne, t1, Operand(t0));
|
|
|
|
__ lw(t1, FieldMemOperand(v0, ConsString::kFirstOffset));
|
|
|
|
// Update instance type.
|
|
|
|
__ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
|
|
|
|
__ jmp(&underlying_unpacked);
|
|
|
|
|
|
|
|
__ bind(&sliced_string);
|
|
|
|
// Sliced string. Fetch parent and correct start index by offset.
|
|
|
|
__ lw(t1, FieldMemOperand(v0, SlicedString::kOffsetOffset));
|
|
|
|
__ sra(t1, t1, 1);
|
|
|
|
__ Addu(a3, a3, t1);
|
|
|
|
__ lw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
|
|
|
|
// Update instance type.
|
|
|
|
__ lw(a1, FieldMemOperand(t1, HeapObject::kMapOffset));
|
|
|
|
__ lbu(a1, FieldMemOperand(a1, Map::kInstanceTypeOffset));
|
|
|
|
__ jmp(&underlying_unpacked);
|
|
|
|
|
|
|
|
__ bind(&seq_or_external_string);
|
|
|
|
// Sequential or external string. Just move string to the expected register.
|
|
|
|
__ mov(t1, v0);
|
|
|
|
|
|
|
|
__ bind(&underlying_unpacked);
|
|
|
|
|
|
|
|
if (FLAG_string_slices) {
|
|
|
|
Label copy_routine;
|
|
|
|
// t1: underlying subject string
|
|
|
|
// a1: instance type of underlying subject string
|
|
|
|
// a2: length
|
|
|
|
// a3: adjusted start index (untagged)
|
|
|
|
// Short slice. Copy instead of slicing.
|
|
|
|
__ Branch(©_routine, lt, a2, Operand(SlicedString::kMinLength));
|
|
|
|
// Allocate new sliced string. At this point we do not reload the instance
|
|
|
|
// type including the string encoding because we simply rely on the info
|
|
|
|
// provided by the original string. It does not matter if the original
|
|
|
|
// string's encoding is wrong because we always have to recheck encoding of
|
|
|
|
// the newly created string's parent anyways due to externalized strings.
|
|
|
|
Label two_byte_slice, set_slice_header;
|
|
|
|
STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0);
|
|
|
|
STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0);
|
|
|
|
__ And(t0, a1, Operand(kStringEncodingMask));
|
|
|
|
__ Branch(&two_byte_slice, eq, t0, Operand(zero_reg));
|
|
|
|
__ AllocateAsciiSlicedString(v0, a2, t2, t3, &runtime);
|
|
|
|
__ jmp(&set_slice_header);
|
|
|
|
__ bind(&two_byte_slice);
|
|
|
|
__ AllocateTwoByteSlicedString(v0, a2, t2, t3, &runtime);
|
|
|
|
__ bind(&set_slice_header);
|
|
|
|
__ sll(a3, a3, 1);
|
|
|
|
__ sw(a3, FieldMemOperand(v0, SlicedString::kOffsetOffset));
|
|
|
|
__ sw(t1, FieldMemOperand(v0, SlicedString::kParentOffset));
|
|
|
|
__ jmp(&return_v0);
|
|
|
|
|
|
|
|
__ bind(©_routine);
|
|
|
|
}
|
|
|
|
|
|
|
|
// t1: underlying subject string
|
|
|
|
// a1: instance type of underlying subject string
|
|
|
|
// a2: length
|
|
|
|
// a3: adjusted start index (untagged)
|
|
|
|
Label two_byte_sequential, sequential_string, allocate_result;
|
|
|
|
STATIC_ASSERT(kExternalStringTag != 0);
|
|
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
|
|
__ And(t0, a1, Operand(kExternalStringTag));
|
|
|
|
__ Branch(&sequential_string, eq, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Handle external string.
|
|
|
|
// Rule out short external strings.
|
|
|
|
STATIC_CHECK(kShortExternalStringTag != 0);
|
|
|
|
__ And(t0, a1, Operand(kShortExternalStringTag));
|
|
|
|
__ Branch(&runtime, ne, t0, Operand(zero_reg));
|
|
|
|
__ lw(t1, FieldMemOperand(t1, ExternalString::kResourceDataOffset));
|
|
|
|
// t1 already points to the first character of underlying string.
|
|
|
|
__ jmp(&allocate_result);
|
|
|
|
|
|
|
|
__ bind(&sequential_string);
|
|
|
|
// Locate first character of underlying subject string.
|
|
|
|
STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize);
|
|
|
|
__ Addu(t1, t1, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
|
|
|
|
|
|
|
__ bind(&allocate_result);
|
|
|
|
// Sequential acii string. Allocate the result.
|
|
|
|
STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0);
|
|
|
|
__ And(t0, a1, Operand(kStringEncodingMask));
|
|
|
|
__ Branch(&two_byte_sequential, eq, t0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Allocate and copy the resulting ascii string.
|
|
|
|
__ AllocateAsciiString(v0, a2, t0, t2, t3, &runtime);
|
|
|
|
|
|
|
|
// Locate first character of substring to copy.
|
|
|
|
__ Addu(t1, t1, a3);
|
|
|
|
|
|
|
|
// Locate first character of result.
|
|
|
|
__ Addu(a1, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
|
|
|
|
|
|
|
// v0: result string
|
|
|
|
// a1: first character of result string
|
|
|
|
// a2: result string length
|
|
|
|
// t1: first character of substring to copy
|
|
|
|
STATIC_ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
|
|
|
|
StringHelper::GenerateCopyCharactersLong(
|
|
|
|
masm, a1, t1, a2, a3, t0, t2, t3, t4, COPY_ASCII | DEST_ALWAYS_ALIGNED);
|
|
|
|
__ jmp(&return_v0);
|
|
|
|
|
|
|
|
// Allocate and copy the resulting two-byte string.
|
|
|
|
__ bind(&two_byte_sequential);
|
|
|
|
__ AllocateTwoByteString(v0, a2, t0, t2, t3, &runtime);
|
|
|
|
|
|
|
|
// Locate first character of substring to copy.
|
|
|
|
STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
|
|
|
|
__ sll(t0, a3, 1);
|
|
|
|
__ Addu(t1, t1, t0);
|
|
|
|
// Locate first character of result.
|
|
|
|
__ Addu(a1, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
|
|
|
|
|
|
|
// v0: result string.
|
|
|
|
// a1: first character of result.
|
|
|
|
// a2: result length.
|
|
|
|
// t1: first character of substring to copy.
|
|
|
|
STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
|
|
|
|
StringHelper::GenerateCopyCharactersLong(
|
|
|
|
masm, a1, t1, a2, a3, t0, t2, t3, t4, DEST_ALWAYS_ALIGNED);
|
|
|
|
|
|
|
|
__ bind(&return_v0);
|
|
|
|
Counters* counters = masm->isolate()->counters();
|
|
|
|
__ IncrementCounter(counters->sub_string_native(), 1, a3, t0);
|
|
|
|
__ DropAndRet(3);
|
|
|
|
|
|
|
|
// Just jump to runtime to create the sub string.
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ TailCallRuntime(Runtime::kSubString, 3, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm,
|
|
|
|
Register left,
|
|
|
|
Register right,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3) {
|
|
|
|
Register length = scratch1;
|
|
|
|
|
|
|
|
// Compare lengths.
|
|
|
|
Label strings_not_equal, check_zero_length;
|
|
|
|
__ lw(length, FieldMemOperand(left, String::kLengthOffset));
|
|
|
|
__ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
|
|
|
|
__ Branch(&check_zero_length, eq, length, Operand(scratch2));
|
|
|
|
__ bind(&strings_not_equal);
|
|
|
|
__ li(v0, Operand(Smi::FromInt(NOT_EQUAL)));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Check if the length is zero.
|
|
|
|
Label compare_chars;
|
|
|
|
__ bind(&check_zero_length);
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ Branch(&compare_chars, ne, length, Operand(zero_reg));
|
|
|
|
__ li(v0, Operand(Smi::FromInt(EQUAL)));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
// Compare characters.
|
|
|
|
__ bind(&compare_chars);
|
|
|
|
|
|
|
|
GenerateAsciiCharsCompareLoop(masm,
|
|
|
|
left, right, length, scratch2, scratch3, v0,
|
|
|
|
&strings_not_equal);
|
|
|
|
|
|
|
|
// Characters are equal.
|
|
|
|
__ li(v0, Operand(Smi::FromInt(EQUAL)));
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
|
|
|
|
Register left,
|
|
|
|
Register right,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Register scratch4) {
|
|
|
|
Label result_not_equal, compare_lengths;
|
|
|
|
// Find minimum length and length difference.
|
|
|
|
__ lw(scratch1, FieldMemOperand(left, String::kLengthOffset));
|
|
|
|
__ lw(scratch2, FieldMemOperand(right, String::kLengthOffset));
|
|
|
|
__ Subu(scratch3, scratch1, Operand(scratch2));
|
|
|
|
Register length_delta = scratch3;
|
|
|
|
__ slt(scratch4, scratch2, scratch1);
|
|
|
|
__ movn(scratch1, scratch2, scratch4);
|
|
|
|
Register min_length = scratch1;
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ Branch(&compare_lengths, eq, min_length, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Compare loop.
|
|
|
|
GenerateAsciiCharsCompareLoop(masm,
|
|
|
|
left, right, min_length, scratch2, scratch4, v0,
|
|
|
|
&result_not_equal);
|
|
|
|
|
|
|
|
// Compare lengths - strings up to min-length are equal.
|
|
|
|
__ bind(&compare_lengths);
|
|
|
|
ASSERT(Smi::FromInt(EQUAL) == static_cast<Smi*>(0));
|
|
|
|
// Use length_delta as result if it's zero.
|
|
|
|
__ mov(scratch2, length_delta);
|
|
|
|
__ mov(scratch4, zero_reg);
|
|
|
|
__ mov(v0, zero_reg);
|
|
|
|
|
|
|
|
__ bind(&result_not_equal);
|
|
|
|
// Conditionally update the result based either on length_delta or
|
|
|
|
// the last comparion performed in the loop above.
|
|
|
|
Label ret;
|
|
|
|
__ Branch(&ret, eq, scratch2, Operand(scratch4));
|
|
|
|
__ li(v0, Operand(Smi::FromInt(GREATER)));
|
|
|
|
__ Branch(&ret, gt, scratch2, Operand(scratch4));
|
|
|
|
__ li(v0, Operand(Smi::FromInt(LESS)));
|
|
|
|
__ bind(&ret);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCompareStub::GenerateAsciiCharsCompareLoop(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
Register left,
|
|
|
|
Register right,
|
|
|
|
Register length,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Label* chars_not_equal) {
|
|
|
|
// Change index to run from -length to -1 by adding length to string
|
|
|
|
// start. This means that loop ends when index reaches zero, which
|
|
|
|
// doesn't need an additional compare.
|
|
|
|
__ SmiUntag(length);
|
|
|
|
__ Addu(scratch1, length,
|
|
|
|
Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ Addu(left, left, Operand(scratch1));
|
|
|
|
__ Addu(right, right, Operand(scratch1));
|
|
|
|
__ Subu(length, zero_reg, length);
|
|
|
|
Register index = length; // index = -length;
|
|
|
|
|
|
|
|
|
|
|
|
// Compare loop.
|
|
|
|
Label loop;
|
|
|
|
__ bind(&loop);
|
|
|
|
__ Addu(scratch3, left, index);
|
|
|
|
__ lbu(scratch1, MemOperand(scratch3));
|
|
|
|
__ Addu(scratch3, right, index);
|
|
|
|
__ lbu(scratch2, MemOperand(scratch3));
|
|
|
|
__ Branch(chars_not_equal, ne, scratch1, Operand(scratch2));
|
|
|
|
__ Addu(index, index, 1);
|
|
|
|
__ Branch(&loop, ne, index, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringCompareStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label runtime;
|
|
|
|
|
|
|
|
Counters* counters = masm->isolate()->counters();
|
|
|
|
|
|
|
|
// Stack frame on entry.
|
|
|
|
// sp[0]: right string
|
|
|
|
// sp[4]: left string
|
|
|
|
__ lw(a1, MemOperand(sp, 1 * kPointerSize)); // Left.
|
|
|
|
__ lw(a0, MemOperand(sp, 0 * kPointerSize)); // Right.
|
|
|
|
|
|
|
|
Label not_same;
|
|
|
|
__ Branch(¬_same, ne, a0, Operand(a1));
|
|
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ li(v0, Operand(Smi::FromInt(EQUAL)));
|
|
|
|
__ IncrementCounter(counters->string_compare_native(), 1, a1, a2);
|
|
|
|
__ Addu(sp, sp, Operand(2 * kPointerSize));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(¬_same);
|
|
|
|
|
|
|
|
// Check that both objects are sequential ASCII strings.
|
|
|
|
__ JumpIfNotBothSequentialAsciiStrings(a1, a0, a2, a3, &runtime);
|
|
|
|
|
|
|
|
// Compare flat ASCII strings natively. Remove arguments from stack first.
|
|
|
|
__ IncrementCounter(counters->string_compare_native(), 1, a2, a3);
|
|
|
|
__ Addu(sp, sp, Operand(2 * kPointerSize));
|
|
|
|
GenerateCompareFlatAsciiStrings(masm, a1, a0, a2, a3, t0, t1);
|
|
|
|
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringAddStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label call_runtime, call_builtin;
|
|
|
|
Builtins::JavaScript builtin_id = Builtins::ADD;
|
|
|
|
|
|
|
|
Counters* counters = masm->isolate()->counters();
|
|
|
|
|
|
|
|
// Stack on entry:
|
|
|
|
// sp[0]: second argument (right).
|
|
|
|
// sp[4]: first argument (left).
|
|
|
|
|
|
|
|
// Load the two arguments.
|
|
|
|
__ lw(a0, MemOperand(sp, 1 * kPointerSize)); // First argument.
|
|
|
|
__ lw(a1, MemOperand(sp, 0 * kPointerSize)); // Second argument.
|
|
|
|
|
|
|
|
// Make sure that both arguments are strings if not known in advance.
|
|
|
|
if (flags_ == NO_STRING_ADD_FLAGS) {
|
|
|
|
__ JumpIfEitherSmi(a0, a1, &call_runtime);
|
|
|
|
// Load instance types.
|
|
|
|
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
|
|
|
|
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
|
|
|
|
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
|
|
|
|
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
|
|
|
|
STATIC_ASSERT(kStringTag == 0);
|
|
|
|
// If either is not a string, go to runtime.
|
|
|
|
__ Or(t4, t0, Operand(t1));
|
|
|
|
__ And(t4, t4, Operand(kIsNotStringMask));
|
|
|
|
__ Branch(&call_runtime, ne, t4, Operand(zero_reg));
|
|
|
|
} else {
|
|
|
|
// Here at least one of the arguments is definitely a string.
|
|
|
|
// We convert the one that is not known to be a string.
|
|
|
|
if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) {
|
|
|
|
ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0);
|
|
|
|
GenerateConvertArgument(
|
|
|
|
masm, 1 * kPointerSize, a0, a2, a3, t0, t1, &call_builtin);
|
|
|
|
builtin_id = Builtins::STRING_ADD_RIGHT;
|
|
|
|
} else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) {
|
|
|
|
ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0);
|
|
|
|
GenerateConvertArgument(
|
|
|
|
masm, 0 * kPointerSize, a1, a2, a3, t0, t1, &call_builtin);
|
|
|
|
builtin_id = Builtins::STRING_ADD_LEFT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Both arguments are strings.
|
|
|
|
// a0: first string
|
|
|
|
// a1: second string
|
|
|
|
// t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
|
|
|
|
// t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
|
|
|
|
{
|
|
|
|
Label strings_not_empty;
|
|
|
|
// Check if either of the strings are empty. In that case return the other.
|
|
|
|
// These tests use zero-length check on string-length whch is an Smi.
|
|
|
|
// Assert that Smi::FromInt(0) is really 0.
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
ASSERT(Smi::FromInt(0) == 0);
|
|
|
|
__ lw(a2, FieldMemOperand(a0, String::kLengthOffset));
|
|
|
|
__ lw(a3, FieldMemOperand(a1, String::kLengthOffset));
|
|
|
|
__ mov(v0, a0); // Assume we'll return first string (from a0).
|
|
|
|
__ movz(v0, a1, a2); // If first is empty, return second (from a1).
|
|
|
|
__ slt(t4, zero_reg, a2); // if (a2 > 0) t4 = 1.
|
|
|
|
__ slt(t5, zero_reg, a3); // if (a3 > 0) t5 = 1.
|
|
|
|
__ and_(t4, t4, t5); // Branch if both strings were non-empty.
|
|
|
|
__ Branch(&strings_not_empty, ne, t4, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
|
|
|
|
__ DropAndRet(2);
|
|
|
|
|
|
|
|
__ bind(&strings_not_empty);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Untag both string-lengths.
|
|
|
|
__ sra(a2, a2, kSmiTagSize);
|
|
|
|
__ sra(a3, a3, kSmiTagSize);
|
|
|
|
|
|
|
|
// Both strings are non-empty.
|
|
|
|
// a0: first string
|
|
|
|
// a1: second string
|
|
|
|
// a2: length of first string
|
|
|
|
// a3: length of second string
|
|
|
|
// t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
|
|
|
|
// t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
|
|
|
|
// Look at the length of the result of adding the two strings.
|
|
|
|
Label string_add_flat_result, longer_than_two;
|
|
|
|
// Adding two lengths can't overflow.
|
|
|
|
STATIC_ASSERT(String::kMaxLength < String::kMaxLength * 2);
|
|
|
|
__ Addu(t2, a2, Operand(a3));
|
|
|
|
// Use the symbol table when adding two one character strings, as it
|
|
|
|
// helps later optimizations to return a symbol here.
|
|
|
|
__ Branch(&longer_than_two, ne, t2, Operand(2));
|
|
|
|
|
|
|
|
// Check that both strings are non-external ASCII strings.
|
|
|
|
if (flags_ != NO_STRING_ADD_FLAGS) {
|
|
|
|
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
|
|
|
|
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
|
|
|
|
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
|
|
|
|
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
|
|
|
|
}
|
|
|
|
__ JumpIfBothInstanceTypesAreNotSequentialAscii(t0, t1, t2, t3,
|
|
|
|
&call_runtime);
|
|
|
|
|
|
|
|
// Get the two characters forming the sub string.
|
|
|
|
__ lbu(a2, FieldMemOperand(a0, SeqAsciiString::kHeaderSize));
|
|
|
|
__ lbu(a3, FieldMemOperand(a1, SeqAsciiString::kHeaderSize));
|
|
|
|
|
|
|
|
// Try to lookup two character string in symbol table. If it is not found
|
|
|
|
// just allocate a new one.
|
|
|
|
Label make_two_character_string;
|
|
|
|
StringHelper::GenerateTwoCharacterSymbolTableProbe(
|
|
|
|
masm, a2, a3, t2, t3, t0, t1, t5, &make_two_character_string);
|
|
|
|
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
|
|
|
|
__ DropAndRet(2);
|
|
|
|
|
|
|
|
__ bind(&make_two_character_string);
|
|
|
|
// Resulting string has length 2 and first chars of two strings
|
|
|
|
// are combined into single halfword in a2 register.
|
|
|
|
// So we can fill resulting string without two loops by a single
|
|
|
|
// halfword store instruction (which assumes that processor is
|
|
|
|
// in a little endian mode).
|
|
|
|
__ li(t2, Operand(2));
|
|
|
|
__ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
|
|
|
|
__ sh(a2, FieldMemOperand(v0, SeqAsciiString::kHeaderSize));
|
|
|
|
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
|
|
|
|
__ DropAndRet(2);
|
|
|
|
|
|
|
|
__ bind(&longer_than_two);
|
|
|
|
// Check if resulting string will be flat.
|
|
|
|
__ Branch(&string_add_flat_result, lt, t2,
|
|
|
|
Operand(String::kMinNonFlatLength));
|
|
|
|
// Handle exceptionally long strings in the runtime system.
|
|
|
|
STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
|
|
|
|
ASSERT(IsPowerOf2(String::kMaxLength + 1));
|
|
|
|
// kMaxLength + 1 is representable as shifted literal, kMaxLength is not.
|
|
|
|
__ Branch(&call_runtime, hs, t2, Operand(String::kMaxLength + 1));
|
|
|
|
|
|
|
|
// If result is not supposed to be flat, allocate a cons string object.
|
|
|
|
// If both strings are ASCII the result is an ASCII cons string.
|
|
|
|
if (flags_ != NO_STRING_ADD_FLAGS) {
|
|
|
|
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
|
|
|
|
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
|
|
|
|
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
|
|
|
|
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
|
|
|
|
}
|
|
|
|
Label non_ascii, allocated, ascii_data;
|
|
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
|
|
// Branch to non_ascii if either string-encoding field is zero (non-ascii).
|
|
|
|
__ And(t4, t0, Operand(t1));
|
|
|
|
__ And(t4, t4, Operand(kStringEncodingMask));
|
|
|
|
__ Branch(&non_ascii, eq, t4, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Allocate an ASCII cons string.
|
|
|
|
__ bind(&ascii_data);
|
|
|
|
__ AllocateAsciiConsString(v0, t2, t0, t1, &call_runtime);
|
|
|
|
__ bind(&allocated);
|
|
|
|
// Fill the fields of the cons string.
|
|
|
|
__ sw(a0, FieldMemOperand(v0, ConsString::kFirstOffset));
|
|
|
|
__ sw(a1, FieldMemOperand(v0, ConsString::kSecondOffset));
|
|
|
|
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
|
|
|
|
__ DropAndRet(2);
|
|
|
|
|
|
|
|
__ bind(&non_ascii);
|
|
|
|
// At least one of the strings is two-byte. Check whether it happens
|
|
|
|
// to contain only ASCII characters.
|
|
|
|
// t0: first instance type.
|
|
|
|
// t1: second instance type.
|
|
|
|
// Branch to if _both_ instances have kAsciiDataHintMask set.
|
|
|
|
__ And(at, t0, Operand(kAsciiDataHintMask));
|
|
|
|
__ and_(at, at, t1);
|
|
|
|
__ Branch(&ascii_data, ne, at, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ xor_(t0, t0, t1);
|
|
|
|
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
|
|
|
|
__ And(t0, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
|
|
|
|
__ Branch(&ascii_data, eq, t0, Operand(kAsciiStringTag | kAsciiDataHintTag));
|
|
|
|
|
|
|
|
// Allocate a two byte cons string.
|
|
|
|
__ AllocateTwoByteConsString(v0, t2, t0, t1, &call_runtime);
|
|
|
|
__ Branch(&allocated);
|
|
|
|
|
|
|
|
// We cannot encounter sliced strings or cons strings here since:
|
|
|
|
STATIC_ASSERT(SlicedString::kMinLength >= String::kMinNonFlatLength);
|
|
|
|
// Handle creating a flat result from either external or sequential strings.
|
|
|
|
// Locate the first characters' locations.
|
|
|
|
// a0: first string
|
|
|
|
// a1: second string
|
|
|
|
// a2: length of first string
|
|
|
|
// a3: length of second string
|
|
|
|
// t0: first string instance type (if flags_ == NO_STRING_ADD_FLAGS)
|
|
|
|
// t1: second string instance type (if flags_ == NO_STRING_ADD_FLAGS)
|
|
|
|
// t2: sum of lengths.
|
|
|
|
Label first_prepared, second_prepared;
|
|
|
|
__ bind(&string_add_flat_result);
|
|
|
|
if (flags_ != NO_STRING_ADD_FLAGS) {
|
|
|
|
__ lw(t0, FieldMemOperand(a0, HeapObject::kMapOffset));
|
|
|
|
__ lw(t1, FieldMemOperand(a1, HeapObject::kMapOffset));
|
|
|
|
__ lbu(t0, FieldMemOperand(t0, Map::kInstanceTypeOffset));
|
|
|
|
__ lbu(t1, FieldMemOperand(t1, Map::kInstanceTypeOffset));
|
|
|
|
}
|
|
|
|
// Check whether both strings have same encoding
|
|
|
|
__ Xor(t3, t0, Operand(t1));
|
|
|
|
__ And(t3, t3, Operand(kStringEncodingMask));
|
|
|
|
__ Branch(&call_runtime, ne, t3, Operand(zero_reg));
|
|
|
|
|
|
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
|
|
__ And(t4, t0, Operand(kStringRepresentationMask));
|
|
|
|
|
|
|
|
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
|
|
|
|
Label skip_first_add;
|
|
|
|
__ Branch(&skip_first_add, ne, t4, Operand(zero_reg));
|
|
|
|
__ Branch(USE_DELAY_SLOT, &first_prepared);
|
|
|
|
__ addiu(t3, a0, SeqAsciiString::kHeaderSize - kHeapObjectTag);
|
|
|
|
__ bind(&skip_first_add);
|
|
|
|
// External string: rule out short external string and load string resource.
|
|
|
|
STATIC_ASSERT(kShortExternalStringTag != 0);
|
|
|
|
__ And(t4, t0, Operand(kShortExternalStringMask));
|
|
|
|
__ Branch(&call_runtime, ne, t4, Operand(zero_reg));
|
|
|
|
__ lw(t3, FieldMemOperand(a0, ExternalString::kResourceDataOffset));
|
|
|
|
__ bind(&first_prepared);
|
|
|
|
|
|
|
|
STATIC_ASSERT(kSeqStringTag == 0);
|
|
|
|
__ And(t4, t1, Operand(kStringRepresentationMask));
|
|
|
|
STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize);
|
|
|
|
Label skip_second_add;
|
|
|
|
__ Branch(&skip_second_add, ne, t4, Operand(zero_reg));
|
|
|
|
__ Branch(USE_DELAY_SLOT, &second_prepared);
|
|
|
|
__ addiu(a1, a1, SeqAsciiString::kHeaderSize - kHeapObjectTag);
|
|
|
|
__ bind(&skip_second_add);
|
|
|
|
// External string: rule out short external string and load string resource.
|
|
|
|
STATIC_ASSERT(kShortExternalStringTag != 0);
|
|
|
|
__ And(t4, t1, Operand(kShortExternalStringMask));
|
|
|
|
__ Branch(&call_runtime, ne, t4, Operand(zero_reg));
|
|
|
|
__ lw(a1, FieldMemOperand(a1, ExternalString::kResourceDataOffset));
|
|
|
|
__ bind(&second_prepared);
|
|
|
|
|
|
|
|
Label non_ascii_string_add_flat_result;
|
|
|
|
// t3: first character of first string
|
|
|
|
// a1: first character of second string
|
|
|
|
// a2: length of first string
|
|
|
|
// a3: length of second string
|
|
|
|
// t2: sum of lengths.
|
|
|
|
// Both strings have the same encoding.
|
|
|
|
STATIC_ASSERT(kTwoByteStringTag == 0);
|
|
|
|
__ And(t4, t1, Operand(kStringEncodingMask));
|
|
|
|
__ Branch(&non_ascii_string_add_flat_result, eq, t4, Operand(zero_reg));
|
|
|
|
|
|
|
|
__ AllocateAsciiString(v0, t2, t0, t1, t5, &call_runtime);
|
|
|
|
__ Addu(t2, v0, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
|
|
|
|
// v0: result string.
|
|
|
|
// t3: first character of first string.
|
|
|
|
// a1: first character of second string
|
|
|
|
// a2: length of first string.
|
|
|
|
// a3: length of second string.
|
|
|
|
// t2: first character of result.
|
|
|
|
|
|
|
|
StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, true);
|
|
|
|
// t2: next character of result.
|
|
|
|
StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, true);
|
|
|
|
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
|
|
|
|
__ DropAndRet(2);
|
|
|
|
|
|
|
|
__ bind(&non_ascii_string_add_flat_result);
|
|
|
|
__ AllocateTwoByteString(v0, t2, t0, t1, t5, &call_runtime);
|
|
|
|
__ Addu(t2, v0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
|
|
|
|
// v0: result string.
|
|
|
|
// t3: first character of first string.
|
|
|
|
// a1: first character of second string.
|
|
|
|
// a2: length of first string.
|
|
|
|
// a3: length of second string.
|
|
|
|
// t2: first character of result.
|
|
|
|
StringHelper::GenerateCopyCharacters(masm, t2, t3, a2, t0, false);
|
|
|
|
// t2: next character of result.
|
|
|
|
StringHelper::GenerateCopyCharacters(masm, t2, a1, a3, t0, false);
|
|
|
|
|
|
|
|
__ IncrementCounter(counters->string_add_native(), 1, a2, a3);
|
|
|
|
__ DropAndRet(2);
|
|
|
|
|
|
|
|
// Just jump to runtime to add the two strings.
|
|
|
|
__ bind(&call_runtime);
|
|
|
|
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
|
|
|
|
|
|
|
|
if (call_builtin.is_linked()) {
|
|
|
|
__ bind(&call_builtin);
|
|
|
|
__ InvokeBuiltin(builtin_id, JUMP_FUNCTION);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringAddStub::GenerateConvertArgument(MacroAssembler* masm,
|
|
|
|
int stack_offset,
|
|
|
|
Register arg,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2,
|
|
|
|
Register scratch3,
|
|
|
|
Register scratch4,
|
|
|
|
Label* slow) {
|
|
|
|
// First check if the argument is already a string.
|
|
|
|
Label not_string, done;
|
|
|
|
__ JumpIfSmi(arg, ¬_string);
|
|
|
|
__ GetObjectType(arg, scratch1, scratch1);
|
|
|
|
__ Branch(&done, lt, scratch1, Operand(FIRST_NONSTRING_TYPE));
|
|
|
|
|
|
|
|
// Check the number to string cache.
|
|
|
|
Label not_cached;
|
|
|
|
__ bind(¬_string);
|
|
|
|
// Puts the cached result into scratch1.
|
|
|
|
NumberToStringStub::GenerateLookupNumberStringCache(masm,
|
|
|
|
arg,
|
|
|
|
scratch1,
|
|
|
|
scratch2,
|
|
|
|
scratch3,
|
|
|
|
scratch4,
|
|
|
|
false,
|
|
|
|
¬_cached);
|
|
|
|
__ mov(arg, scratch1);
|
|
|
|
__ sw(arg, MemOperand(sp, stack_offset));
|
|
|
|
__ jmp(&done);
|
|
|
|
|
|
|
|
// Check if the argument is a safe string wrapper.
|
|
|
|
__ bind(¬_cached);
|
|
|
|
__ JumpIfSmi(arg, slow);
|
|
|
|
__ GetObjectType(arg, scratch1, scratch2); // map -> scratch1.
|
|
|
|
__ Branch(slow, ne, scratch2, Operand(JS_VALUE_TYPE));
|
|
|
|
__ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitField2Offset));
|
|
|
|
__ li(scratch4, 1 << Map::kStringWrapperSafeForDefaultValueOf);
|
|
|
|
__ And(scratch2, scratch2, scratch4);
|
|
|
|
__ Branch(slow, ne, scratch2, Operand(scratch4));
|
|
|
|
__ lw(arg, FieldMemOperand(arg, JSValue::kValueOffset));
|
|
|
|
__ sw(arg, MemOperand(sp, stack_offset));
|
|
|
|
|
|
|
|
__ bind(&done);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
|
|
|
|
ASSERT(state_ == CompareIC::SMIS);
|
|
|
|
Label miss;
|
|
|
|
__ Or(a2, a1, a0);
|
|
|
|
__ JumpIfNotSmi(a2, &miss);
|
|
|
|
|
|
|
|
if (GetCondition() == eq) {
|
|
|
|
// For equality we do not care about the sign of the result.
|
|
|
|
__ Subu(v0, a0, a1);
|
|
|
|
} else {
|
|
|
|
// Untag before subtracting to avoid handling overflow.
|
|
|
|
__ SmiUntag(a1);
|
|
|
|
__ SmiUntag(a0);
|
|
|
|
__ Subu(v0, a1, a0);
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&miss);
|
|
|
|
GenerateMiss(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
|
|
|
|
ASSERT(state_ == CompareIC::HEAP_NUMBERS);
|
|
|
|
|
|
|
|
Label generic_stub;
|
|
|
|
Label unordered;
|
|
|
|
Label miss;
|
|
|
|
__ And(a2, a1, Operand(a0));
|
|
|
|
__ JumpIfSmi(a2, &generic_stub);
|
|
|
|
|
|
|
|
__ GetObjectType(a0, a2, a2);
|
|
|
|
__ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
__ GetObjectType(a1, a2, a2);
|
|
|
|
__ Branch(&miss, ne, a2, Operand(HEAP_NUMBER_TYPE));
|
|
|
|
|
|
|
|
// Inlining the double comparison and falling back to the general compare
|
|
|
|
// stub if NaN is involved or FPU is unsupported.
|
|
|
|
if (CpuFeatures::IsSupported(FPU)) {
|
|
|
|
CpuFeatures::Scope scope(FPU);
|
|
|
|
|
|
|
|
// Load left and right operand.
|
|
|
|
__ Subu(a2, a1, Operand(kHeapObjectTag));
|
|
|
|
__ ldc1(f0, MemOperand(a2, HeapNumber::kValueOffset));
|
|
|
|
__ Subu(a2, a0, Operand(kHeapObjectTag));
|
|
|
|
__ ldc1(f2, MemOperand(a2, HeapNumber::kValueOffset));
|
|
|
|
|
|
|
|
// Return a result of -1, 0, or 1, or use CompareStub for NaNs.
|
|
|
|
Label fpu_eq, fpu_lt;
|
|
|
|
// Test if equal, and also handle the unordered/NaN case.
|
|
|
|
__ BranchF(&fpu_eq, &unordered, eq, f0, f2);
|
|
|
|
|
|
|
|
// Test if less (unordered case is already handled).
|
|
|
|
__ BranchF(&fpu_lt, NULL, lt, f0, f2);
|
|
|
|
|
|
|
|
// Otherwise it's greater, so just fall thru, and return.
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ li(v0, Operand(GREATER)); // In delay slot.
|
|
|
|
|
|
|
|
__ bind(&fpu_eq);
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ li(v0, Operand(EQUAL)); // In delay slot.
|
|
|
|
|
|
|
|
__ bind(&fpu_lt);
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ li(v0, Operand(LESS)); // In delay slot.
|
|
|
|
|
|
|
|
__ bind(&unordered);
|
|
|
|
}
|
|
|
|
|
|
|
|
CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, a1, a0);
|
|
|
|
__ bind(&generic_stub);
|
|
|
|
__ Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
|
|
|
|
|
|
|
|
__ bind(&miss);
|
|
|
|
GenerateMiss(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ICCompareStub::GenerateSymbols(MacroAssembler* masm) {
|
|
|
|
ASSERT(state_ == CompareIC::SYMBOLS);
|
|
|
|
Label miss;
|
|
|
|
|
|
|
|
// Registers containing left and right operands respectively.
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
Register tmp1 = a2;
|
|
|
|
Register tmp2 = a3;
|
|
|
|
|
|
|
|
// Check that both operands are heap objects.
|
|
|
|
__ JumpIfEitherSmi(left, right, &miss);
|
|
|
|
|
|
|
|
// Check that both operands are symbols.
|
|
|
|
__ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
|
|
|
|
__ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
|
|
|
|
__ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
|
|
|
|
__ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
|
|
|
|
STATIC_ASSERT(kSymbolTag != 0);
|
|
|
|
__ And(tmp1, tmp1, Operand(tmp2));
|
|
|
|
__ And(tmp1, tmp1, kIsSymbolMask);
|
|
|
|
__ Branch(&miss, eq, tmp1, Operand(zero_reg));
|
|
|
|
// Make sure a0 is non-zero. At this point input operands are
|
|
|
|
// guaranteed to be non-zero.
|
|
|
|
ASSERT(right.is(a0));
|
|
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ mov(v0, right);
|
|
|
|
// Symbols are compared by identity.
|
|
|
|
__ Ret(ne, left, Operand(right));
|
|
|
|
__ li(v0, Operand(Smi::FromInt(EQUAL)));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&miss);
|
|
|
|
GenerateMiss(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ICCompareStub::GenerateStrings(MacroAssembler* masm) {
|
|
|
|
ASSERT(state_ == CompareIC::STRINGS);
|
|
|
|
Label miss;
|
|
|
|
|
|
|
|
// Registers containing left and right operands respectively.
|
|
|
|
Register left = a1;
|
|
|
|
Register right = a0;
|
|
|
|
Register tmp1 = a2;
|
|
|
|
Register tmp2 = a3;
|
|
|
|
Register tmp3 = t0;
|
|
|
|
Register tmp4 = t1;
|
|
|
|
Register tmp5 = t2;
|
|
|
|
|
|
|
|
// Check that both operands are heap objects.
|
|
|
|
__ JumpIfEitherSmi(left, right, &miss);
|
|
|
|
|
|
|
|
// Check that both operands are strings. This leaves the instance
|
|
|
|
// types loaded in tmp1 and tmp2.
|
|
|
|
__ lw(tmp1, FieldMemOperand(left, HeapObject::kMapOffset));
|
|
|
|
__ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
|
|
|
|
__ lbu(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset));
|
|
|
|
__ lbu(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset));
|
|
|
|
STATIC_ASSERT(kNotStringTag != 0);
|
|
|
|
__ Or(tmp3, tmp1, tmp2);
|
|
|
|
__ And(tmp5, tmp3, Operand(kIsNotStringMask));
|
|
|
|
__ Branch(&miss, ne, tmp5, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Fast check for identical strings.
|
|
|
|
Label left_ne_right;
|
|
|
|
STATIC_ASSERT(EQUAL == 0);
|
|
|
|
STATIC_ASSERT(kSmiTag == 0);
|
|
|
|
__ Branch(&left_ne_right, ne, left, Operand(right), USE_DELAY_SLOT);
|
|
|
|
__ mov(v0, zero_reg); // In the delay slot.
|
|
|
|
__ Ret();
|
|
|
|
__ bind(&left_ne_right);
|
|
|
|
|
|
|
|
// Handle not identical strings.
|
|
|
|
|
|
|
|
// Check that both strings are symbols. If they are, we're done
|
|
|
|
// because we already know they are not identical.
|
|
|
|
ASSERT(GetCondition() == eq);
|
|
|
|
STATIC_ASSERT(kSymbolTag != 0);
|
|
|
|
__ And(tmp3, tmp1, Operand(tmp2));
|
|
|
|
__ And(tmp5, tmp3, Operand(kIsSymbolMask));
|
|
|
|
Label is_symbol;
|
|
|
|
__ Branch(&is_symbol, eq, tmp5, Operand(zero_reg), USE_DELAY_SLOT);
|
|
|
|
__ mov(v0, a0); // In the delay slot.
|
|
|
|
// Make sure a0 is non-zero. At this point input operands are
|
|
|
|
// guaranteed to be non-zero.
|
|
|
|
ASSERT(right.is(a0));
|
|
|
|
__ Ret();
|
|
|
|
__ bind(&is_symbol);
|
|
|
|
|
|
|
|
// Check that both strings are sequential ASCII.
|
|
|
|
Label runtime;
|
|
|
|
__ JumpIfBothInstanceTypesAreNotSequentialAscii(tmp1, tmp2, tmp3, tmp4,
|
|
|
|
&runtime);
|
|
|
|
|
|
|
|
// Compare flat ASCII strings. Returns when done.
|
|
|
|
StringCompareStub::GenerateFlatAsciiStringEquals(
|
|
|
|
masm, left, right, tmp1, tmp2, tmp3);
|
|
|
|
|
|
|
|
// Handle more complex cases in runtime.
|
|
|
|
__ bind(&runtime);
|
|
|
|
__ Push(left, right);
|
|
|
|
__ TailCallRuntime(Runtime::kStringEquals, 2, 1);
|
|
|
|
|
|
|
|
__ bind(&miss);
|
|
|
|
GenerateMiss(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
|
|
|
|
ASSERT(state_ == CompareIC::OBJECTS);
|
|
|
|
Label miss;
|
|
|
|
__ And(a2, a1, Operand(a0));
|
|
|
|
__ JumpIfSmi(a2, &miss);
|
|
|
|
|
|
|
|
__ GetObjectType(a0, a2, a2);
|
|
|
|
__ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
|
|
|
|
__ GetObjectType(a1, a2, a2);
|
|
|
|
__ Branch(&miss, ne, a2, Operand(JS_OBJECT_TYPE));
|
|
|
|
|
|
|
|
ASSERT(GetCondition() == eq);
|
|
|
|
__ Subu(v0, a0, Operand(a1));
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&miss);
|
|
|
|
GenerateMiss(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) {
|
|
|
|
Label miss;
|
|
|
|
__ And(a2, a1, a0);
|
|
|
|
__ JumpIfSmi(a2, &miss);
|
|
|
|
__ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
|
|
|
|
__ lw(a3, FieldMemOperand(a1, HeapObject::kMapOffset));
|
|
|
|
__ Branch(&miss, ne, a2, Operand(known_map_));
|
|
|
|
__ Branch(&miss, ne, a3, Operand(known_map_));
|
|
|
|
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ subu(v0, a0, a1);
|
|
|
|
|
|
|
|
__ bind(&miss);
|
|
|
|
GenerateMiss(masm);
|
|
|
|
}
|
|
|
|
|
|
|
|
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
|
|
|
|
{
|
|
|
|
// Call the runtime system in a fresh internal frame.
|
|
|
|
ExternalReference miss =
|
|
|
|
ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate());
|
|
|
|
FrameScope scope(masm, StackFrame::INTERNAL);
|
|
|
|
__ Push(a1, a0);
|
|
|
|
__ push(ra);
|
|
|
|
__ Push(a1, a0);
|
|
|
|
__ li(t0, Operand(Smi::FromInt(op_)));
|
|
|
|
__ push(t0);
|
|
|
|
__ CallExternalReference(miss, 3);
|
|
|
|
// Compute the entry point of the rewritten stub.
|
|
|
|
__ Addu(a2, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
|
|
|
|
// Restore registers.
|
|
|
|
__ Pop(a1, a0, ra);
|
|
|
|
}
|
|
|
|
__ Jump(a2);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void DirectCEntryStub::Generate(MacroAssembler* masm) {
|
|
|
|
// No need to pop or drop anything, LeaveExitFrame will restore the old
|
|
|
|
// stack, thus dropping the allocated space for the return value.
|
|
|
|
// The saved ra is after the reserved stack space for the 4 args.
|
|
|
|
__ lw(t9, MemOperand(sp, kCArgsSlotsSize));
|
|
|
|
|
|
|
|
if (FLAG_debug_code && FLAG_enable_slow_asserts) {
|
|
|
|
// In case of an error the return address may point to a memory area
|
|
|
|
// filled with kZapValue by the GC.
|
|
|
|
// Dereference the address and check for this.
|
|
|
|
__ lw(t0, MemOperand(t9));
|
|
|
|
__ Assert(ne, "Received invalid return address.", t0,
|
|
|
|
Operand(reinterpret_cast<uint32_t>(kZapValue)));
|
|
|
|
}
|
|
|
|
__ Jump(t9);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
|
|
|
|
ExternalReference function) {
|
|
|
|
__ li(t9, Operand(function));
|
|
|
|
this->GenerateCall(masm, t9);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void DirectCEntryStub::GenerateCall(MacroAssembler* masm,
|
|
|
|
Register target) {
|
|
|
|
__ Move(t9, target);
|
|
|
|
__ AssertStackIsAligned();
|
|
|
|
// Allocate space for arg slots.
|
|
|
|
__ Subu(sp, sp, kCArgsSlotsSize);
|
|
|
|
|
|
|
|
// Block the trampoline pool through the whole function to make sure the
|
|
|
|
// number of generated instructions is constant.
|
|
|
|
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm);
|
|
|
|
|
|
|
|
// We need to get the current 'pc' value, which is not available on MIPS.
|
|
|
|
Label find_ra;
|
|
|
|
masm->bal(&find_ra); // ra = pc + 8.
|
|
|
|
masm->nop(); // Branch delay slot nop.
|
|
|
|
masm->bind(&find_ra);
|
|
|
|
|
|
|
|
const int kNumInstructionsToJump = 6;
|
|
|
|
masm->addiu(ra, ra, kNumInstructionsToJump * kPointerSize);
|
|
|
|
// Push return address (accessible to GC through exit frame pc).
|
|
|
|
// This spot for ra was reserved in EnterExitFrame.
|
|
|
|
masm->sw(ra, MemOperand(sp, kCArgsSlotsSize));
|
|
|
|
masm->li(ra, Operand(reinterpret_cast<intptr_t>(GetCode().location()),
|
|
|
|
RelocInfo::CODE_TARGET), true);
|
|
|
|
// Call the function.
|
|
|
|
masm->Jump(t9);
|
|
|
|
// Make sure the stored 'ra' points to this position.
|
|
|
|
ASSERT_EQ(kNumInstructionsToJump, masm->InstructionsGeneratedSince(&find_ra));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm,
|
|
|
|
Label* miss,
|
|
|
|
Label* done,
|
|
|
|
Register receiver,
|
|
|
|
Register properties,
|
|
|
|
Handle<String> name,
|
|
|
|
Register scratch0) {
|
|
|
|
// If names of slots in range from 1 to kProbes - 1 for the hash value are
|
|
|
|
// not equal to the name and kProbes-th slot is not used (its name is the
|
|
|
|
// undefined value), it guarantees the hash table doesn't contain the
|
|
|
|
// property. It's true even if some slots represent deleted properties
|
|
|
|
// (their names are the null value).
|
|
|
|
for (int i = 0; i < kInlinedProbes; i++) {
|
|
|
|
// scratch0 points to properties hash.
|
|
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
|
|
Register index = scratch0;
|
|
|
|
// Capacity is smi 2^n.
|
|
|
|
__ lw(index, FieldMemOperand(properties, kCapacityOffset));
|
|
|
|
__ Subu(index, index, Operand(1));
|
|
|
|
__ And(index, index, Operand(
|
|
|
|
Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
|
|
|
|
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
|
|
ASSERT(StringDictionary::kEntrySize == 3);
|
|
|
|
__ sll(at, index, 1);
|
|
|
|
__ Addu(index, index, at);
|
|
|
|
|
|
|
|
Register entity_name = scratch0;
|
|
|
|
// Having undefined at this place means the name is not contained.
|
|
|
|
ASSERT_EQ(kSmiTagSize, 1);
|
|
|
|
Register tmp = properties;
|
|
|
|
__ sll(scratch0, index, 1);
|
|
|
|
__ Addu(tmp, properties, scratch0);
|
|
|
|
__ lw(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
|
|
|
|
|
|
|
|
ASSERT(!tmp.is(entity_name));
|
|
|
|
__ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
|
|
|
|
__ Branch(done, eq, entity_name, Operand(tmp));
|
|
|
|
|
|
|
|
if (i != kInlinedProbes - 1) {
|
|
|
|
// Stop if found the property.
|
|
|
|
__ Branch(miss, eq, entity_name, Operand(Handle<String>(name)));
|
|
|
|
|
|
|
|
// Check if the entry name is not a symbol.
|
|
|
|
__ lw(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
|
|
|
|
__ lbu(entity_name,
|
|
|
|
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
|
|
|
|
__ And(scratch0, entity_name, Operand(kIsSymbolMask));
|
|
|
|
__ Branch(miss, eq, scratch0, Operand(zero_reg));
|
|
|
|
|
|
|
|
// Restore the properties.
|
|
|
|
__ lw(properties,
|
|
|
|
FieldMemOperand(receiver, JSObject::kPropertiesOffset));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
const int spill_mask =
|
|
|
|
(ra.bit() | t2.bit() | t1.bit() | t0.bit() | a3.bit() |
|
|
|
|
a2.bit() | a1.bit() | a0.bit() | v0.bit());
|
|
|
|
|
|
|
|
__ MultiPush(spill_mask);
|
|
|
|
__ lw(a0, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
|
|
|
|
__ li(a1, Operand(Handle<String>(name)));
|
|
|
|
StringDictionaryLookupStub stub(NEGATIVE_LOOKUP);
|
|
|
|
__ CallStub(&stub);
|
|
|
|
__ mov(at, v0);
|
|
|
|
__ MultiPop(spill_mask);
|
|
|
|
|
|
|
|
__ Branch(done, eq, at, Operand(zero_reg));
|
|
|
|
__ Branch(miss, ne, at, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Probe the string dictionary in the |elements| register. Jump to the
|
|
|
|
// |done| label if a property with the given name is found. Jump to
|
|
|
|
// the |miss| label otherwise.
|
|
|
|
// If lookup was successful |scratch2| will be equal to elements + 4 * index.
|
|
|
|
void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm,
|
|
|
|
Label* miss,
|
|
|
|
Label* done,
|
|
|
|
Register elements,
|
|
|
|
Register name,
|
|
|
|
Register scratch1,
|
|
|
|
Register scratch2) {
|
|
|
|
ASSERT(!elements.is(scratch1));
|
|
|
|
ASSERT(!elements.is(scratch2));
|
|
|
|
ASSERT(!name.is(scratch1));
|
|
|
|
ASSERT(!name.is(scratch2));
|
|
|
|
|
|
|
|
// Assert that name contains a string.
|
|
|
|
if (FLAG_debug_code) __ AbortIfNotString(name);
|
|
|
|
|
|
|
|
// Compute the capacity mask.
|
|
|
|
__ lw(scratch1, FieldMemOperand(elements, kCapacityOffset));
|
|
|
|
__ sra(scratch1, scratch1, kSmiTagSize); // convert smi to int
|
|
|
|
__ Subu(scratch1, scratch1, Operand(1));
|
|
|
|
|
|
|
|
// Generate an unrolled loop that performs a few probes before
|
|
|
|
// giving up. Measurements done on Gmail indicate that 2 probes
|
|
|
|
// cover ~93% of loads from dictionaries.
|
|
|
|
for (int i = 0; i < kInlinedProbes; i++) {
|
|
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
|
|
__ lw(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
|
|
|
|
if (i > 0) {
|
|
|
|
// Add the probe offset (i + i * i) left shifted to avoid right shifting
|
|
|
|
// the hash in a separate instruction. The value hash + i + i * i is right
|
|
|
|
// shifted in the following and instruction.
|
|
|
|
ASSERT(StringDictionary::GetProbeOffset(i) <
|
|
|
|
1 << (32 - String::kHashFieldOffset));
|
|
|
|
__ Addu(scratch2, scratch2, Operand(
|
|
|
|
StringDictionary::GetProbeOffset(i) << String::kHashShift));
|
|
|
|
}
|
|
|
|
__ srl(scratch2, scratch2, String::kHashShift);
|
|
|
|
__ And(scratch2, scratch1, scratch2);
|
|
|
|
|
|
|
|
// Scale the index by multiplying by the element size.
|
|
|
|
ASSERT(StringDictionary::kEntrySize == 3);
|
|
|
|
// scratch2 = scratch2 * 3.
|
|
|
|
|
|
|
|
__ sll(at, scratch2, 1);
|
|
|
|
__ Addu(scratch2, scratch2, at);
|
|
|
|
|
|
|
|
// Check if the key is identical to the name.
|
|
|
|
__ sll(at, scratch2, 2);
|
|
|
|
__ Addu(scratch2, elements, at);
|
|
|
|
__ lw(at, FieldMemOperand(scratch2, kElementsStartOffset));
|
|
|
|
__ Branch(done, eq, name, Operand(at));
|
|
|
|
}
|
|
|
|
|
|
|
|
const int spill_mask =
|
|
|
|
(ra.bit() | t2.bit() | t1.bit() | t0.bit() |
|
|
|
|
a3.bit() | a2.bit() | a1.bit() | a0.bit() | v0.bit()) &
|
|
|
|
~(scratch1.bit() | scratch2.bit());
|
|
|
|
|
|
|
|
__ MultiPush(spill_mask);
|
|
|
|
if (name.is(a0)) {
|
|
|
|
ASSERT(!elements.is(a1));
|
|
|
|
__ Move(a1, name);
|
|
|
|
__ Move(a0, elements);
|
|
|
|
} else {
|
|
|
|
__ Move(a0, elements);
|
|
|
|
__ Move(a1, name);
|
|
|
|
}
|
|
|
|
StringDictionaryLookupStub stub(POSITIVE_LOOKUP);
|
|
|
|
__ CallStub(&stub);
|
|
|
|
__ mov(scratch2, a2);
|
|
|
|
__ mov(at, v0);
|
|
|
|
__ MultiPop(spill_mask);
|
|
|
|
|
|
|
|
__ Branch(done, ne, at, Operand(zero_reg));
|
|
|
|
__ Branch(miss, eq, at, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StringDictionaryLookupStub::Generate(MacroAssembler* masm) {
|
|
|
|
// This stub overrides SometimesSetsUpAFrame() to return false. That means
|
|
|
|
// we cannot call anything that could cause a GC from this stub.
|
|
|
|
// Registers:
|
|
|
|
// result: StringDictionary to probe
|
|
|
|
// a1: key
|
|
|
|
// : StringDictionary to probe.
|
|
|
|
// index_: will hold an index of entry if lookup is successful.
|
|
|
|
// might alias with result_.
|
|
|
|
// Returns:
|
|
|
|
// result_ is zero if lookup failed, non zero otherwise.
|
|
|
|
|
|
|
|
Register result = v0;
|
|
|
|
Register dictionary = a0;
|
|
|
|
Register key = a1;
|
|
|
|
Register index = a2;
|
|
|
|
Register mask = a3;
|
|
|
|
Register hash = t0;
|
|
|
|
Register undefined = t1;
|
|
|
|
Register entry_key = t2;
|
|
|
|
|
|
|
|
Label in_dictionary, maybe_in_dictionary, not_in_dictionary;
|
|
|
|
|
|
|
|
__ lw(mask, FieldMemOperand(dictionary, kCapacityOffset));
|
|
|
|
__ sra(mask, mask, kSmiTagSize);
|
|
|
|
__ Subu(mask, mask, Operand(1));
|
|
|
|
|
|
|
|
__ lw(hash, FieldMemOperand(key, String::kHashFieldOffset));
|
|
|
|
|
|
|
|
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
|
|
|
|
|
|
|
|
for (int i = kInlinedProbes; i < kTotalProbes; i++) {
|
|
|
|
// Compute the masked index: (hash + i + i * i) & mask.
|
|
|
|
// Capacity is smi 2^n.
|
|
|
|
if (i > 0) {
|
|
|
|
// Add the probe offset (i + i * i) left shifted to avoid right shifting
|
|
|
|
// the hash in a separate instruction. The value hash + i + i * i is right
|
|
|
|
// shifted in the following and instruction.
|
|
|
|
ASSERT(StringDictionary::GetProbeOffset(i) <
|
|
|
|
1 << (32 - String::kHashFieldOffset));
|
|
|
|
__ Addu(index, hash, Operand(
|
|
|
|
StringDictionary::GetProbeOffset(i) << String::kHashShift));
|
|
|
|
} else {
|
|
|
|
__ mov(index, hash);
|
|
|
|
}
|
|
|
|
__ srl(index, index, String::kHashShift);
|
|
|
|
__ And(index, mask, index);
|
|
|
|
|
|
|
|
// Scale the index by multiplying by the entry size.
|
|
|
|
ASSERT(StringDictionary::kEntrySize == 3);
|
|
|
|
// index *= 3.
|
|
|
|
__ mov(at, index);
|
|
|
|
__ sll(index, index, 1);
|
|
|
|
__ Addu(index, index, at);
|
|
|
|
|
|
|
|
|
|
|
|
ASSERT_EQ(kSmiTagSize, 1);
|
|
|
|
__ sll(index, index, 2);
|
|
|
|
__ Addu(index, index, dictionary);
|
|
|
|
__ lw(entry_key, FieldMemOperand(index, kElementsStartOffset));
|
|
|
|
|
|
|
|
// Having undefined at this place means the name is not contained.
|
|
|
|
__ Branch(¬_in_dictionary, eq, entry_key, Operand(undefined));
|
|
|
|
|
|
|
|
// Stop if found the property.
|
|
|
|
__ Branch(&in_dictionary, eq, entry_key, Operand(key));
|
|
|
|
|
|
|
|
if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) {
|
|
|
|
// Check if the entry name is not a symbol.
|
|
|
|
__ lw(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset));
|
|
|
|
__ lbu(entry_key,
|
|
|
|
FieldMemOperand(entry_key, Map::kInstanceTypeOffset));
|
|
|
|
__ And(result, entry_key, Operand(kIsSymbolMask));
|
|
|
|
__ Branch(&maybe_in_dictionary, eq, result, Operand(zero_reg));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&maybe_in_dictionary);
|
|
|
|
// If we are doing negative lookup then probing failure should be
|
|
|
|
// treated as a lookup success. For positive lookup probing failure
|
|
|
|
// should be treated as lookup failure.
|
|
|
|
if (mode_ == POSITIVE_LOOKUP) {
|
|
|
|
__ mov(result, zero_reg);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&in_dictionary);
|
|
|
|
__ li(result, 1);
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(¬_in_dictionary);
|
|
|
|
__ mov(result, zero_reg);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
struct AheadOfTimeWriteBarrierStubList {
|
|
|
|
Register object, value, address;
|
|
|
|
RememberedSetAction action;
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
struct AheadOfTimeWriteBarrierStubList kAheadOfTime[] = {
|
|
|
|
// Used in RegExpExecStub.
|
|
|
|
{ s2, s0, t3, EMIT_REMEMBERED_SET },
|
|
|
|
{ s2, a2, t3, EMIT_REMEMBERED_SET },
|
|
|
|
// Used in CompileArrayPushCall.
|
|
|
|
// Also used in StoreIC::GenerateNormal via GenerateDictionaryStore.
|
|
|
|
// Also used in KeyedStoreIC::GenerateGeneric.
|
|
|
|
{ a3, t0, t1, EMIT_REMEMBERED_SET },
|
|
|
|
// Used in CompileStoreGlobal.
|
|
|
|
{ t0, a1, a2, OMIT_REMEMBERED_SET },
|
|
|
|
// Used in StoreStubCompiler::CompileStoreField via GenerateStoreField.
|
|
|
|
{ a1, a2, a3, EMIT_REMEMBERED_SET },
|
|
|
|
{ a3, a2, a1, EMIT_REMEMBERED_SET },
|
|
|
|
// Used in KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField.
|
|
|
|
{ a2, a1, a3, EMIT_REMEMBERED_SET },
|
|
|
|
{ a3, a1, a2, EMIT_REMEMBERED_SET },
|
|
|
|
// KeyedStoreStubCompiler::GenerateStoreFastElement.
|
|
|
|
{ t0, a2, a3, EMIT_REMEMBERED_SET },
|
|
|
|
// ElementsTransitionGenerator::GenerateSmiOnlyToObject
|
|
|
|
// and ElementsTransitionGenerator::GenerateSmiOnlyToDouble
|
|
|
|
// and ElementsTransitionGenerator::GenerateDoubleToObject
|
|
|
|
{ a2, a3, t5, EMIT_REMEMBERED_SET },
|
|
|
|
// ElementsTransitionGenerator::GenerateDoubleToObject
|
|
|
|
{ t2, a2, a0, EMIT_REMEMBERED_SET },
|
|
|
|
{ a2, t2, t5, EMIT_REMEMBERED_SET },
|
|
|
|
// StoreArrayLiteralElementStub::Generate
|
|
|
|
{ t1, a0, t2, EMIT_REMEMBERED_SET },
|
|
|
|
// Null termination.
|
|
|
|
{ no_reg, no_reg, no_reg, EMIT_REMEMBERED_SET}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
bool RecordWriteStub::IsPregenerated() {
|
|
|
|
for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
|
|
|
|
!entry->object.is(no_reg);
|
|
|
|
entry++) {
|
|
|
|
if (object_.is(entry->object) &&
|
|
|
|
value_.is(entry->value) &&
|
|
|
|
address_.is(entry->address) &&
|
|
|
|
remembered_set_action_ == entry->action &&
|
|
|
|
save_fp_regs_mode_ == kDontSaveFPRegs) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
bool StoreBufferOverflowStub::IsPregenerated() {
|
|
|
|
return save_doubles_ == kDontSaveFPRegs || ISOLATE->fp_stubs_generated();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() {
|
|
|
|
StoreBufferOverflowStub stub1(kDontSaveFPRegs);
|
|
|
|
stub1.GetCode()->set_is_pregenerated(true);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() {
|
|
|
|
for (AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime;
|
|
|
|
!entry->object.is(no_reg);
|
|
|
|
entry++) {
|
|
|
|
RecordWriteStub stub(entry->object,
|
|
|
|
entry->value,
|
|
|
|
entry->address,
|
|
|
|
entry->action,
|
|
|
|
kDontSaveFPRegs);
|
|
|
|
stub.GetCode()->set_is_pregenerated(true);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Takes the input in 3 registers: address_ value_ and object_. A pointer to
|
|
|
|
// the value has just been written into the object, now this stub makes sure
|
|
|
|
// we keep the GC informed. The word in the object where the value has been
|
|
|
|
// written is in the address register.
|
|
|
|
void RecordWriteStub::Generate(MacroAssembler* masm) {
|
|
|
|
Label skip_to_incremental_noncompacting;
|
|
|
|
Label skip_to_incremental_compacting;
|
|
|
|
|
|
|
|
// The first two branch+nop instructions are generated with labels so as to
|
|
|
|
// get the offset fixed up correctly by the bind(Label*) call. We patch it
|
|
|
|
// back and forth between a "bne zero_reg, zero_reg, ..." (a nop in this
|
|
|
|
// position) and the "beq zero_reg, zero_reg, ..." when we start and stop
|
|
|
|
// incremental heap marking.
|
|
|
|
// See RecordWriteStub::Patch for details.
|
|
|
|
__ beq(zero_reg, zero_reg, &skip_to_incremental_noncompacting);
|
|
|
|
__ nop();
|
|
|
|
__ beq(zero_reg, zero_reg, &skip_to_incremental_compacting);
|
|
|
|
__ nop();
|
|
|
|
|
|
|
|
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
|
|
|
__ RememberedSetHelper(object_,
|
|
|
|
address_,
|
|
|
|
value_,
|
|
|
|
save_fp_regs_mode_,
|
|
|
|
MacroAssembler::kReturnAtEnd);
|
|
|
|
}
|
|
|
|
__ Ret();
|
|
|
|
|
|
|
|
__ bind(&skip_to_incremental_noncompacting);
|
|
|
|
GenerateIncremental(masm, INCREMENTAL);
|
|
|
|
|
|
|
|
__ bind(&skip_to_incremental_compacting);
|
|
|
|
GenerateIncremental(masm, INCREMENTAL_COMPACTION);
|
|
|
|
|
|
|
|
// Initial mode of the stub is expected to be STORE_BUFFER_ONLY.
|
|
|
|
// Will be checked in IncrementalMarking::ActivateGeneratedStub.
|
|
|
|
|
|
|
|
PatchBranchIntoNop(masm, 0);
|
|
|
|
PatchBranchIntoNop(masm, 2 * Assembler::kInstrSize);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) {
|
|
|
|
regs_.Save(masm);
|
|
|
|
|
|
|
|
if (remembered_set_action_ == EMIT_REMEMBERED_SET) {
|
|
|
|
Label dont_need_remembered_set;
|
|
|
|
|
|
|
|
__ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
|
|
|
|
__ JumpIfNotInNewSpace(regs_.scratch0(), // Value.
|
|
|
|
regs_.scratch0(),
|
|
|
|
&dont_need_remembered_set);
|
|
|
|
|
|
|
|
__ CheckPageFlag(regs_.object(),
|
|
|
|
regs_.scratch0(),
|
|
|
|
1 << MemoryChunk::SCAN_ON_SCAVENGE,
|
|
|
|
ne,
|
|
|
|
&dont_need_remembered_set);
|
|
|
|
|
|
|
|
// First notify the incremental marker if necessary, then update the
|
|
|
|
// remembered set.
|
|
|
|
CheckNeedsToInformIncrementalMarker(
|
|
|
|
masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode);
|
|
|
|
InformIncrementalMarker(masm, mode);
|
|
|
|
regs_.Restore(masm);
|
|
|
|
__ RememberedSetHelper(object_,
|
|
|
|
address_,
|
|
|
|
value_,
|
|
|
|
save_fp_regs_mode_,
|
|
|
|
MacroAssembler::kReturnAtEnd);
|
|
|
|
|
|
|
|
__ bind(&dont_need_remembered_set);
|
|
|
|
}
|
|
|
|
|
|
|
|
CheckNeedsToInformIncrementalMarker(
|
|
|
|
masm, kReturnOnNoNeedToInformIncrementalMarker, mode);
|
|
|
|
InformIncrementalMarker(masm, mode);
|
|
|
|
regs_.Restore(masm);
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) {
|
|
|
|
regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_);
|
|
|
|
int argument_count = 3;
|
|
|
|
__ PrepareCallCFunction(argument_count, regs_.scratch0());
|
|
|
|
Register address =
|
|
|
|
a0.is(regs_.address()) ? regs_.scratch0() : regs_.address();
|
|
|
|
ASSERT(!address.is(regs_.object()));
|
|
|
|
ASSERT(!address.is(a0));
|
|
|
|
__ Move(address, regs_.address());
|
|
|
|
__ Move(a0, regs_.object());
|
|
|
|
if (mode == INCREMENTAL_COMPACTION) {
|
|
|
|
__ Move(a1, address);
|
|
|
|
} else {
|
|
|
|
ASSERT(mode == INCREMENTAL);
|
|
|
|
__ lw(a1, MemOperand(address, 0));
|
|
|
|
}
|
|
|
|
__ li(a2, Operand(ExternalReference::isolate_address()));
|
|
|
|
|
|
|
|
AllowExternalCallThatCantCauseGC scope(masm);
|
|
|
|
if (mode == INCREMENTAL_COMPACTION) {
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::incremental_evacuation_record_write_function(
|
|
|
|
masm->isolate()),
|
|
|
|
argument_count);
|
|
|
|
} else {
|
|
|
|
ASSERT(mode == INCREMENTAL);
|
|
|
|
__ CallCFunction(
|
|
|
|
ExternalReference::incremental_marking_record_write_function(
|
|
|
|
masm->isolate()),
|
|
|
|
argument_count);
|
|
|
|
}
|
|
|
|
regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void RecordWriteStub::CheckNeedsToInformIncrementalMarker(
|
|
|
|
MacroAssembler* masm,
|
|
|
|
OnNoNeedToInformIncrementalMarker on_no_need,
|
|
|
|
Mode mode) {
|
|
|
|
Label on_black;
|
|
|
|
Label need_incremental;
|
|
|
|
Label need_incremental_pop_scratch;
|
|
|
|
|
|
|
|
// Let's look at the color of the object: If it is not black we don't have
|
|
|
|
// to inform the incremental marker.
|
|
|
|
__ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black);
|
|
|
|
|
|
|
|
regs_.Restore(masm);
|
|
|
|
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
|
|
|
__ RememberedSetHelper(object_,
|
|
|
|
address_,
|
|
|
|
value_,
|
|
|
|
save_fp_regs_mode_,
|
|
|
|
MacroAssembler::kReturnAtEnd);
|
|
|
|
} else {
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&on_black);
|
|
|
|
|
|
|
|
// Get the value from the slot.
|
|
|
|
__ lw(regs_.scratch0(), MemOperand(regs_.address(), 0));
|
|
|
|
|
|
|
|
if (mode == INCREMENTAL_COMPACTION) {
|
|
|
|
Label ensure_not_white;
|
|
|
|
|
|
|
|
__ CheckPageFlag(regs_.scratch0(), // Contains value.
|
|
|
|
regs_.scratch1(), // Scratch.
|
|
|
|
MemoryChunk::kEvacuationCandidateMask,
|
|
|
|
eq,
|
|
|
|
&ensure_not_white);
|
|
|
|
|
|
|
|
__ CheckPageFlag(regs_.object(),
|
|
|
|
regs_.scratch1(), // Scratch.
|
|
|
|
MemoryChunk::kSkipEvacuationSlotsRecordingMask,
|
|
|
|
eq,
|
|
|
|
&need_incremental);
|
|
|
|
|
|
|
|
__ bind(&ensure_not_white);
|
|
|
|
}
|
|
|
|
|
|
|
|
// We need extra registers for this, so we push the object and the address
|
|
|
|
// register temporarily.
|
|
|
|
__ Push(regs_.object(), regs_.address());
|
|
|
|
__ EnsureNotWhite(regs_.scratch0(), // The value.
|
|
|
|
regs_.scratch1(), // Scratch.
|
|
|
|
regs_.object(), // Scratch.
|
|
|
|
regs_.address(), // Scratch.
|
|
|
|
&need_incremental_pop_scratch);
|
|
|
|
__ Pop(regs_.object(), regs_.address());
|
|
|
|
|
|
|
|
regs_.Restore(masm);
|
|
|
|
if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) {
|
|
|
|
__ RememberedSetHelper(object_,
|
|
|
|
address_,
|
|
|
|
value_,
|
|
|
|
save_fp_regs_mode_,
|
|
|
|
MacroAssembler::kReturnAtEnd);
|
|
|
|
} else {
|
|
|
|
__ Ret();
|
|
|
|
}
|
|
|
|
|
|
|
|
__ bind(&need_incremental_pop_scratch);
|
|
|
|
__ Pop(regs_.object(), regs_.address());
|
|
|
|
|
|
|
|
__ bind(&need_incremental);
|
|
|
|
|
|
|
|
// Fall through when we need to inform the incremental marker.
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) {
|
|
|
|
// ----------- S t a t e -------------
|
|
|
|
// -- a0 : element value to store
|
|
|
|
// -- a1 : array literal
|
|
|
|
// -- a2 : map of array literal
|
|
|
|
// -- a3 : element index as smi
|
|
|
|
// -- t0 : array literal index in function as smi
|
|
|
|
// -----------------------------------
|
|
|
|
|
|
|
|
Label element_done;
|
|
|
|
Label double_elements;
|
|
|
|
Label smi_element;
|
|
|
|
Label slow_elements;
|
|
|
|
Label fast_elements;
|
|
|
|
|
|
|
|
__ CheckFastElements(a2, t1, &double_elements);
|
|
|
|
// FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS
|
|
|
|
__ JumpIfSmi(a0, &smi_element);
|
|
|
|
__ CheckFastSmiOnlyElements(a2, t1, &fast_elements);
|
|
|
|
|
|
|
|
// Store into the array literal requires a elements transition. Call into
|
|
|
|
// the runtime.
|
|
|
|
__ bind(&slow_elements);
|
|
|
|
// call.
|
|
|
|
__ Push(a1, a3, a0);
|
|
|
|
__ lw(t1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
|
|
|
|
__ lw(t1, FieldMemOperand(t1, JSFunction::kLiteralsOffset));
|
|
|
|
__ Push(t1, t0);
|
|
|
|
__ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1);
|
|
|
|
|
|
|
|
// Array literal has ElementsKind of FAST_ELEMENTS and value is an object.
|
|
|
|
__ bind(&fast_elements);
|
|
|
|
__ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
|
|
|
|
__ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(t2, t1, t2);
|
|
|
|
__ Addu(t2, t2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
|
|
|
|
__ sw(a0, MemOperand(t2, 0));
|
|
|
|
// Update the write barrier for the array store.
|
|
|
|
__ RecordWrite(t1, t2, a0, kRAHasNotBeenSaved, kDontSaveFPRegs,
|
|
|
|
EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ mov(v0, a0);
|
|
|
|
|
|
|
|
// Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or
|
|
|
|
// FAST_ELEMENTS, and value is Smi.
|
|
|
|
__ bind(&smi_element);
|
|
|
|
__ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
|
|
|
|
__ sll(t2, a3, kPointerSizeLog2 - kSmiTagSize);
|
|
|
|
__ Addu(t2, t1, t2);
|
|
|
|
__ sw(a0, FieldMemOperand(t2, FixedArray::kHeaderSize));
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ mov(v0, a0);
|
|
|
|
|
|
|
|
// Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS.
|
|
|
|
__ bind(&double_elements);
|
|
|
|
__ lw(t1, FieldMemOperand(a1, JSObject::kElementsOffset));
|
|
|
|
__ StoreNumberToDoubleElements(a0, a3, a1, t1, t2, t3, t5, t6,
|
|
|
|
&slow_elements);
|
|
|
|
__ Ret(USE_DELAY_SLOT);
|
|
|
|
__ mov(v0, a0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#undef __
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_TARGET_ARCH_MIPS
|