|
|
|
// Copyright 2011 the V8 project authors. All rights reserved.
|
|
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
|
|
// found in the LICENSE file.
|
|
|
|
|
|
|
|
#ifndef V8_CONVERSIONS_H_
|
|
|
|
#define V8_CONVERSIONS_H_
|
|
|
|
|
|
|
|
#include <limits>
|
|
|
|
|
|
|
|
#include "checks.h"
|
|
|
|
#include "handles.h"
|
|
|
|
#include "objects.h"
|
|
|
|
#include "utils.h"
|
|
|
|
|
|
|
|
namespace v8 {
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
class UnicodeCache;
|
|
|
|
|
|
|
|
// Maximum number of significant digits in decimal representation.
|
|
|
|
// The longest possible double in decimal representation is
|
|
|
|
// (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
|
|
|
|
// (768 digits). If we parse a number whose first digits are equal to a
|
|
|
|
// mean of 2 adjacent doubles (that could have up to 769 digits) the result
|
|
|
|
// must be rounded to the bigger one unless the tail consists of zeros, so
|
|
|
|
// we don't need to preserve all the digits.
|
|
|
|
const int kMaxSignificantDigits = 772;
|
|
|
|
|
|
|
|
|
|
|
|
inline bool isDigit(int x, int radix) {
|
|
|
|
return (x >= '0' && x <= '9' && x < '0' + radix)
|
|
|
|
|| (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
|
|
|
|
|| (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline bool isBinaryDigit(int x) {
|
|
|
|
return x == '0' || x == '1';
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// The fast double-to-(unsigned-)int conversion routine does not guarantee
|
|
|
|
// rounding towards zero.
|
|
|
|
// For NaN and values outside the int range, return INT_MIN or INT_MAX.
|
|
|
|
inline int FastD2IChecked(double x) {
|
|
|
|
if (!(x >= INT_MIN)) return INT_MIN; // Negation to catch NaNs.
|
|
|
|
if (x > INT_MAX) return INT_MAX;
|
|
|
|
return static_cast<int>(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// The fast double-to-(unsigned-)int conversion routine does not guarantee
|
|
|
|
// rounding towards zero.
|
|
|
|
// The result is unspecified if x is infinite or NaN, or if the rounded
|
|
|
|
// integer value is outside the range of type int.
|
|
|
|
inline int FastD2I(double x) {
|
|
|
|
return static_cast<int32_t>(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline unsigned int FastD2UI(double x);
|
|
|
|
|
|
|
|
|
|
|
|
inline double FastI2D(int x) {
|
|
|
|
// There is no rounding involved in converting an integer to a
|
|
|
|
// double, so this code should compile to a few instructions without
|
|
|
|
// any FPU pipeline stalls.
|
|
|
|
return static_cast<double>(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline double FastUI2D(unsigned x) {
|
|
|
|
// There is no rounding involved in converting an unsigned integer to a
|
|
|
|
// double, so this code should compile to a few instructions without
|
|
|
|
// any FPU pipeline stalls.
|
|
|
|
return static_cast<double>(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// This function should match the exact semantics of ECMA-262 9.4.
|
|
|
|
inline double DoubleToInteger(double x);
|
|
|
|
|
|
|
|
|
|
|
|
// This function should match the exact semantics of ECMA-262 9.5.
|
|
|
|
inline int32_t DoubleToInt32(double x);
|
|
|
|
|
|
|
|
|
|
|
|
// This function should match the exact semantics of ECMA-262 9.6.
|
|
|
|
inline uint32_t DoubleToUint32(double x) {
|
|
|
|
return static_cast<uint32_t>(DoubleToInt32(x));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Enumeration for allowing octals and ignoring junk when converting
|
|
|
|
// strings to numbers.
|
|
|
|
enum ConversionFlags {
|
|
|
|
NO_FLAGS = 0,
|
|
|
|
ALLOW_HEX = 1,
|
|
|
|
ALLOW_OCTAL = 2,
|
|
|
|
ALLOW_IMPLICIT_OCTAL = 4,
|
|
|
|
ALLOW_BINARY = 8,
|
|
|
|
ALLOW_TRAILING_JUNK = 16
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Converts a string into a double value according to ECMA-262 9.3.1
|
|
|
|
double StringToDouble(UnicodeCache* unicode_cache,
|
|
|
|
Vector<const uint8_t> str,
|
|
|
|
int flags,
|
|
|
|
double empty_string_val = 0);
|
|
|
|
double StringToDouble(UnicodeCache* unicode_cache,
|
|
|
|
Vector<const uc16> str,
|
|
|
|
int flags,
|
|
|
|
double empty_string_val = 0);
|
|
|
|
// This version expects a zero-terminated character array.
|
|
|
|
double StringToDouble(UnicodeCache* unicode_cache,
|
|
|
|
const char* str,
|
|
|
|
int flags,
|
|
|
|
double empty_string_val = 0);
|
|
|
|
|
|
|
|
// Converts a string into an integer.
|
|
|
|
double StringToInt(UnicodeCache* unicode_cache,
|
|
|
|
Vector<const uint8_t> vector,
|
|
|
|
int radix);
|
|
|
|
|
|
|
|
|
|
|
|
double StringToInt(UnicodeCache* unicode_cache,
|
|
|
|
Vector<const uc16> vector,
|
|
|
|
int radix);
|
|
|
|
|
|
|
|
const int kDoubleToCStringMinBufferSize = 100;
|
|
|
|
|
|
|
|
// Converts a double to a string value according to ECMA-262 9.8.1.
|
|
|
|
// The buffer should be large enough for any floating point number.
|
|
|
|
// 100 characters is enough.
|
|
|
|
const char* DoubleToCString(double value, Vector<char> buffer);
|
|
|
|
|
|
|
|
// Convert an int to a null-terminated string. The returned string is
|
|
|
|
// located inside the buffer, but not necessarily at the start.
|
|
|
|
const char* IntToCString(int n, Vector<char> buffer);
|
|
|
|
|
|
|
|
// Additional number to string conversions for the number type.
|
|
|
|
// The caller is responsible for calling free on the returned pointer.
|
|
|
|
char* DoubleToFixedCString(double value, int f);
|
|
|
|
char* DoubleToExponentialCString(double value, int f);
|
|
|
|
char* DoubleToPrecisionCString(double value, int f);
|
|
|
|
char* DoubleToRadixCString(double value, int radix);
|
|
|
|
|
|
|
|
|
|
|
|
static inline bool IsMinusZero(double value) {
|
|
|
|
static const DoubleRepresentation minus_zero(-0.0);
|
|
|
|
return DoubleRepresentation(value) == minus_zero;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Integer32 is an integer that can be represented as a signed 32-bit
|
|
|
|
// integer. It has to be in the range [-2^31, 2^31 - 1].
|
|
|
|
// We also have to check for negative 0 as it is not an Integer32.
|
|
|
|
static inline bool IsInt32Double(double value) {
|
|
|
|
return !IsMinusZero(value) &&
|
|
|
|
value >= kMinInt &&
|
|
|
|
value <= kMaxInt &&
|
|
|
|
value == FastI2D(FastD2I(value));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Convert from Number object to C integer.
|
|
|
|
inline int32_t NumberToInt32(Object* number) {
|
|
|
|
if (number->IsSmi()) return Smi::cast(number)->value();
|
|
|
|
return DoubleToInt32(number->Number());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
inline uint32_t NumberToUint32(Object* number) {
|
|
|
|
if (number->IsSmi()) return Smi::cast(number)->value();
|
|
|
|
return DoubleToUint32(number->Number());
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double StringToDouble(UnicodeCache* unicode_cache,
|
|
|
|
String* string,
|
|
|
|
int flags,
|
|
|
|
double empty_string_val = 0.0);
|
|
|
|
|
|
|
|
|
|
|
|
inline bool TryNumberToSize(Isolate* isolate,
|
|
|
|
Object* number, size_t* result) {
|
|
|
|
SealHandleScope shs(isolate);
|
|
|
|
if (number->IsSmi()) {
|
|
|
|
int value = Smi::cast(number)->value();
|
|
|
|
ASSERT(static_cast<unsigned>(Smi::kMaxValue)
|
|
|
|
<= std::numeric_limits<size_t>::max());
|
|
|
|
if (value >= 0) {
|
|
|
|
*result = static_cast<size_t>(value);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
return false;
|
|
|
|
} else {
|
|
|
|
ASSERT(number->IsHeapNumber());
|
|
|
|
double value = HeapNumber::cast(number)->value();
|
|
|
|
if (value >= 0 &&
|
|
|
|
value <= std::numeric_limits<size_t>::max()) {
|
|
|
|
*result = static_cast<size_t>(value);
|
|
|
|
return true;
|
|
|
|
} else {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Converts a number into size_t.
|
|
|
|
inline size_t NumberToSize(Isolate* isolate,
|
|
|
|
Object* number) {
|
|
|
|
size_t result = 0;
|
|
|
|
bool is_valid = TryNumberToSize(isolate, number, &result);
|
|
|
|
CHECK(is_valid);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
} } // namespace v8::internal
|
|
|
|
|
|
|
|
#endif // V8_CONVERSIONS_H_
|