You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1873 lines
54 KiB

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <iostream> // NOLINT(readability/streams)
#include "src/v8.h"
#include "src/base/utils/random-number-generator.h"
#include "src/disassembler.h"
#include "src/factory.h"
#include "src/macro-assembler.h"
#include "src/mips/macro-assembler-mips.h"
#include "src/mips/simulator-mips.h"
#include "test/cctest/cctest.h"
using namespace v8::internal;
// Define these function prototypes to match JSEntryFunction in execution.cc.
typedef Object* (*F1)(int x, int p1, int p2, int p3, int p4);
typedef Object* (*F2)(int x, int y, int p2, int p3, int p4);
typedef Object* (*F3)(void* p, int p1, int p2, int p3, int p4);
// clang-format off
#define __ assm.
TEST(MIPS0) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
// Addition.
__ addu(v0, a0, a1);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 0xab0, 0xc, 0, 0, 0));
CHECK_EQ(static_cast<int32_t>(0xabc), res);
}
TEST(MIPS1) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
Label L, C;
__ mov(a1, a0);
__ li(v0, 0);
__ b(&C);
__ nop();
__ bind(&L);
__ addu(v0, v0, a1);
__ addiu(a1, a1, -1);
__ bind(&C);
__ xori(v1, a1, 0);
__ Branch(&L, ne, v1, Operand(0));
__ nop();
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F1 f = FUNCTION_CAST<F1>(code->entry());
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 50, 0, 0, 0, 0));
CHECK_EQ(1275, res);
}
TEST(MIPS2) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
Label exit, error;
// ----- Test all instructions.
// Test lui, ori, and addiu, used in the li pseudo-instruction.
// This way we can then safely load registers with chosen values.
__ ori(t0, zero_reg, 0);
__ lui(t0, 0x1234);
__ ori(t0, t0, 0);
__ ori(t0, t0, 0x0f0f);
__ ori(t0, t0, 0xf0f0);
__ addiu(t1, t0, 1);
__ addiu(t2, t1, -0x10);
// Load values in temporary registers.
__ li(t0, 0x00000004);
__ li(t1, 0x00001234);
__ li(t2, 0x12345678);
__ li(t3, 0x7fffffff);
__ li(t4, 0xfffffffc);
__ li(t5, 0xffffedcc);
__ li(t6, 0xedcba988);
__ li(t7, 0x80000000);
// SPECIAL class.
__ srl(v0, t2, 8); // 0x00123456
__ sll(v0, v0, 11); // 0x91a2b000
__ sra(v0, v0, 3); // 0xf2345600
__ srav(v0, v0, t0); // 0xff234560
__ sllv(v0, v0, t0); // 0xf2345600
__ srlv(v0, v0, t0); // 0x0f234560
__ Branch(&error, ne, v0, Operand(0x0f234560));
__ nop();
__ addu(v0, t0, t1); // 0x00001238
__ subu(v0, v0, t0); // 0x00001234
__ Branch(&error, ne, v0, Operand(0x00001234));
__ nop();
__ addu(v1, t3, t0);
__ Branch(&error, ne, v1, Operand(0x80000003));
__ nop();
__ subu(v1, t7, t0); // 0x7ffffffc
__ Branch(&error, ne, v1, Operand(0x7ffffffc));
__ nop();
__ and_(v0, t1, t2); // 0x00001230
__ or_(v0, v0, t1); // 0x00001234
__ xor_(v0, v0, t2); // 0x1234444c
__ nor(v0, v0, t2); // 0xedcba987
__ Branch(&error, ne, v0, Operand(0xedcba983));
__ nop();
__ slt(v0, t7, t3);
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ sltu(v0, t7, t3);
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
// End of SPECIAL class.
__ addiu(v0, zero_reg, 0x7421); // 0x00007421
__ addiu(v0, v0, -0x1); // 0x00007420
__ addiu(v0, v0, -0x20); // 0x00007400
__ Branch(&error, ne, v0, Operand(0x00007400));
__ nop();
__ addiu(v1, t3, 0x1); // 0x80000000
__ Branch(&error, ne, v1, Operand(0x80000000));
__ nop();
__ slti(v0, t1, 0x00002000); // 0x1
__ slti(v0, v0, 0xffff8000); // 0x0
__ Branch(&error, ne, v0, Operand(zero_reg));
__ nop();
__ sltiu(v0, t1, 0x00002000); // 0x1
__ sltiu(v0, v0, 0x00008000); // 0x1
__ Branch(&error, ne, v0, Operand(0x1));
__ nop();
__ andi(v0, t1, 0xf0f0); // 0x00001030
__ ori(v0, v0, 0x8a00); // 0x00009a30
__ xori(v0, v0, 0x83cc); // 0x000019fc
__ Branch(&error, ne, v0, Operand(0x000019fc));
__ nop();
__ lui(v1, 0x8123); // 0x81230000
__ Branch(&error, ne, v1, Operand(0x81230000));
__ nop();
// Bit twiddling instructions & conditional moves.
// Uses t0-t7 as set above.
__ Clz(v0, t0); // 29
__ Clz(v1, t1); // 19
__ addu(v0, v0, v1); // 48
__ Clz(v1, t2); // 3
__ addu(v0, v0, v1); // 51
__ Clz(v1, t7); // 0
__ addu(v0, v0, v1); // 51
__ Branch(&error, ne, v0, Operand(51));
__ Movn(a0, t3, t0); // Move a0<-t3 (t0 is NOT 0).
__ Ins(a0, t1, 12, 8); // 0x7ff34fff
__ Branch(&error, ne, a0, Operand(0x7ff34fff));
__ Movz(a0, t6, t7); // a0 not updated (t7 is NOT 0).
__ Ext(a1, a0, 8, 12); // 0x34f
__ Branch(&error, ne, a1, Operand(0x34f));
__ Movz(a0, t6, v1); // a0<-t6, v0 is 0, from 8 instr back.
__ Branch(&error, ne, a0, Operand(t6));
// Everything was correctly executed. Load the expected result.
__ li(v0, 0x31415926);
__ b(&exit);
__ nop();
__ bind(&error);
// Got an error. Return a wrong result.
__ li(v0, 666);
__ bind(&exit);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F2 f = FUNCTION_CAST<F2>(code->entry());
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, 0xab0, 0xc, 0, 0, 0));
CHECK_EQ(static_cast<int32_t>(0x31415926), res);
}
TEST(MIPS3) {
// Test floating point instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
double g;
double h;
double i;
float fa;
float fb;
float fc;
float fd;
float fe;
float ff;
float fg;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0);
Label L, C;
// Double precision floating point instructions.
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, b)) );
__ add_d(f8, f4, f6);
__ sdc1(f8, MemOperand(a0, OFFSET_OF(T, c)) ); // c = a + b.
__ mov_d(f10, f8); // c
__ neg_d(f12, f6); // -b
__ sub_d(f10, f10, f12);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, d)) ); // d = c - (-b).
__ sdc1(f4, MemOperand(a0, OFFSET_OF(T, b)) ); // b = a.
__ li(t0, 120);
__ mtc1(t0, f14);
__ cvt_d_w(f14, f14); // f14 = 120.0.
__ mul_d(f10, f10, f14);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, e)) ); // e = d * 120 = 1.8066e16.
__ div_d(f12, f10, f4);
__ sdc1(f12, MemOperand(a0, OFFSET_OF(T, f)) ); // f = e / a = 120.44.
__ sqrt_d(f14, f12);
__ sdc1(f14, MemOperand(a0, OFFSET_OF(T, g)) );
// g = sqrt(f) = 10.97451593465515908537
if (IsMipsArchVariant(kMips32r2)) {
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, h)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, i)) );
__ madd_d(f14, f6, f4, f6);
__ sdc1(f14, MemOperand(a0, OFFSET_OF(T, h)) );
}
// Single precision floating point instructions.
__ lwc1(f4, MemOperand(a0, OFFSET_OF(T, fa)) );
__ lwc1(f6, MemOperand(a0, OFFSET_OF(T, fb)) );
__ add_s(f8, f4, f6);
__ swc1(f8, MemOperand(a0, OFFSET_OF(T, fc)) ); // fc = fa + fb.
__ neg_s(f10, f6); // -fb
__ sub_s(f10, f8, f10);
__ swc1(f10, MemOperand(a0, OFFSET_OF(T, fd)) ); // fd = fc - (-fb).
__ swc1(f4, MemOperand(a0, OFFSET_OF(T, fb)) ); // fb = fa.
__ li(t0, 120);
__ mtc1(t0, f14);
__ cvt_s_w(f14, f14); // f14 = 120.0.
__ mul_s(f10, f10, f14);
__ swc1(f10, MemOperand(a0, OFFSET_OF(T, fe)) ); // fe = fd * 120
__ div_s(f12, f10, f4);
__ swc1(f12, MemOperand(a0, OFFSET_OF(T, ff)) ); // ff = fe / fa
__ sqrt_s(f14, f12);
__ swc1(f14, MemOperand(a0, OFFSET_OF(T, fg)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
// Double test values.
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 0.0;
t.d = 0.0;
t.e = 0.0;
t.f = 0.0;
t.h = 1.5;
t.i = 2.75;
// Single test values.
t.fa = 1.5e6;
t.fb = 2.75e4;
t.fc = 0.0;
t.fd = 0.0;
t.fe = 0.0;
t.ff = 0.0;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
// Expected double results.
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(1.5e14, t.b);
CHECK_EQ(1.50275e14, t.c);
CHECK_EQ(1.50550e14, t.d);
CHECK_EQ(1.8066e16, t.e);
CHECK_EQ(120.44, t.f);
CHECK_EQ(10.97451593465515908537, t.g);
if (IsMipsArchVariant(kMips32r2)) {
CHECK_EQ(6.875, t.h);
}
// Expected single results.
CHECK_EQ(1.5e6, t.fa);
CHECK_EQ(1.5e6, t.fb);
CHECK_EQ(1.5275e06, t.fc);
CHECK_EQ(1.5550e06, t.fd);
CHECK_EQ(1.866e08, t.fe);
CHECK_EQ(124.40000152587890625, t.ff);
CHECK_EQ(11.1534748077392578125, t.fg);
}
TEST(MIPS4) {
// Test moves between floating point and integer registers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, b)) );
// Swap f4 and f6, by using four integer registers, t0-t3.
if (!IsFp64Mode()) {
__ mfc1(t0, f4);
__ mfc1(t1, f5);
__ mfc1(t2, f6);
__ mfc1(t3, f7);
__ mtc1(t0, f6);
__ mtc1(t1, f7);
__ mtc1(t2, f4);
__ mtc1(t3, f5);
} else {
DCHECK(!IsMipsArchVariant(kMips32r1) && !IsMipsArchVariant(kLoongson));
__ mfc1(t0, f4);
__ mfhc1(t1, f4);
__ mfc1(t2, f6);
__ mfhc1(t3, f6);
__ mtc1(t0, f6);
__ mthc1(t1, f6);
__ mtc1(t2, f4);
__ mthc1(t3, f4);
}
// Store the swapped f4 and f5 back to memory.
__ sdc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ sdc1(f6, MemOperand(a0, OFFSET_OF(T, c)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e22;
t.b = 2.75e11;
t.c = 17.17;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(2.75e11, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1.5e22, t.c);
}
TEST(MIPS5) {
// Test conversions between doubles and integers.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
int i;
int j;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Load all structure elements to registers.
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, b)) );
__ lw(t0, MemOperand(a0, OFFSET_OF(T, i)) );
__ lw(t1, MemOperand(a0, OFFSET_OF(T, j)) );
// Convert double in f4 to int in element i.
__ cvt_w_d(f8, f4);
__ mfc1(t2, f8);
__ sw(t2, MemOperand(a0, OFFSET_OF(T, i)) );
// Convert double in f6 to int in element j.
__ cvt_w_d(f10, f6);
__ mfc1(t3, f10);
__ sw(t3, MemOperand(a0, OFFSET_OF(T, j)) );
// Convert int in original i (t0) to double in a.
__ mtc1(t0, f12);
__ cvt_d_w(f0, f12);
__ sdc1(f0, MemOperand(a0, OFFSET_OF(T, a)) );
// Convert int in original j (t1) to double in b.
__ mtc1(t1, f14);
__ cvt_d_w(f2, f14);
__ sdc1(f2, MemOperand(a0, OFFSET_OF(T, b)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e4;
t.b = 2.75e8;
t.i = 12345678;
t.j = -100000;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(12345678.0, t.a);
CHECK_EQ(-100000.0, t.b);
CHECK_EQ(15000, t.i);
CHECK_EQ(275000000, t.j);
}
TEST(MIPS6) {
// Test simple memory loads and stores.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
uint32_t ui;
int32_t si;
int32_t r1;
int32_t r2;
int32_t r3;
int32_t r4;
int32_t r5;
int32_t r6;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
// Basic word load/store.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, ui)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, r1)) );
// lh with positive data.
__ lh(t1, MemOperand(a0, OFFSET_OF(T, ui)) );
__ sw(t1, MemOperand(a0, OFFSET_OF(T, r2)) );
// lh with negative data.
__ lh(t2, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, r3)) );
// lhu with negative data.
__ lhu(t3, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, r4)) );
// lb with negative data.
__ lb(t4, MemOperand(a0, OFFSET_OF(T, si)) );
__ sw(t4, MemOperand(a0, OFFSET_OF(T, r5)) );
// sh writes only 1/2 of word.
__ lui(t5, 0x3333);
__ ori(t5, t5, 0x3333);
__ sw(t5, MemOperand(a0, OFFSET_OF(T, r6)) );
__ lhu(t5, MemOperand(a0, OFFSET_OF(T, si)) );
__ sh(t5, MemOperand(a0, OFFSET_OF(T, r6)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.ui = 0x11223344;
t.si = 0x99aabbcc;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.r1);
#if __BYTE_ORDER == __LITTLE_ENDIAN
CHECK_EQ(static_cast<int32_t>(0x3344), t.r2);
CHECK_EQ(static_cast<int32_t>(0xffffbbcc), t.r3);
CHECK_EQ(static_cast<int32_t>(0x0000bbcc), t.r4);
CHECK_EQ(static_cast<int32_t>(0xffffffcc), t.r5);
CHECK_EQ(static_cast<int32_t>(0x3333bbcc), t.r6);
#elif __BYTE_ORDER == __BIG_ENDIAN
CHECK_EQ(static_cast<int32_t>(0x1122), t.r2);
CHECK_EQ(static_cast<int32_t>(0xffff99aa), t.r3);
CHECK_EQ(static_cast<int32_t>(0x000099aa), t.r4);
CHECK_EQ(static_cast<int32_t>(0xffffff99), t.r5);
CHECK_EQ(static_cast<int32_t>(0x99aa3333), t.r6);
#else
#error Unknown endianness
#endif
}
TEST(MIPS7) {
// Test floating point compare and branch instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
double c;
double d;
double e;
double f;
int32_t result;
} T;
T t;
// Create a function that accepts &t, and loads, manipulates, and stores
// the doubles t.a ... t.f.
MacroAssembler assm(isolate, NULL, 0);
Label neither_is_nan, less_than, outa_here;
__ ldc1(f4, MemOperand(a0, OFFSET_OF(T, a)) );
__ ldc1(f6, MemOperand(a0, OFFSET_OF(T, b)) );
if (!IsMipsArchVariant(kMips32r6)) {
__ c(UN, D, f4, f6);
__ bc1f(&neither_is_nan);
} else {
__ cmp(UN, L, f2, f4, f6);
__ bc1eqz(&neither_is_nan, f2);
}
__ nop();
__ sw(zero_reg, MemOperand(a0, OFFSET_OF(T, result)) );
__ Branch(&outa_here);
__ bind(&neither_is_nan);
if (IsMipsArchVariant(kLoongson)) {
__ c(OLT, D, f6, f4);
__ bc1t(&less_than);
} else if (IsMipsArchVariant(kMips32r6)) {
__ cmp(OLT, L, f2, f6, f4);
__ bc1nez(&less_than, f2);
} else {
__ c(OLT, D, f6, f4, 2);
__ bc1t(&less_than, 2);
}
__ nop();
__ sw(zero_reg, MemOperand(a0, OFFSET_OF(T, result)) );
__ Branch(&outa_here);
__ bind(&less_than);
__ Addu(t0, zero_reg, Operand(1));
__ sw(t0, MemOperand(a0, OFFSET_OF(T, result)) ); // Set true.
// This test-case should have additional tests.
__ bind(&outa_here);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 1.5e14;
t.b = 2.75e11;
t.c = 2.0;
t.d = -4.0;
t.e = 0.0;
t.f = 0.0;
t.result = 0;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(1.5e14, t.a);
CHECK_EQ(2.75e11, t.b);
CHECK_EQ(1, t.result);
}
TEST(MIPS8) {
// Test ROTR and ROTRV instructions.
if (IsMipsArchVariant(kMips32r2)) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t input;
int32_t result_rotr_4;
int32_t result_rotr_8;
int32_t result_rotr_12;
int32_t result_rotr_16;
int32_t result_rotr_20;
int32_t result_rotr_24;
int32_t result_rotr_28;
int32_t result_rotrv_4;
int32_t result_rotrv_8;
int32_t result_rotrv_12;
int32_t result_rotrv_16;
int32_t result_rotrv_20;
int32_t result_rotrv_24;
int32_t result_rotrv_28;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0);
// Basic word load.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, input)) );
// ROTR instruction (called through the Ror macro).
__ Ror(t1, t0, 0x0004);
__ Ror(t2, t0, 0x0008);
__ Ror(t3, t0, 0x000c);
__ Ror(t4, t0, 0x0010);
__ Ror(t5, t0, 0x0014);
__ Ror(t6, t0, 0x0018);
__ Ror(t7, t0, 0x001c);
// Basic word store.
__ sw(t1, MemOperand(a0, OFFSET_OF(T, result_rotr_4)) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, result_rotr_8)) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, result_rotr_12)) );
__ sw(t4, MemOperand(a0, OFFSET_OF(T, result_rotr_16)) );
__ sw(t5, MemOperand(a0, OFFSET_OF(T, result_rotr_20)) );
__ sw(t6, MemOperand(a0, OFFSET_OF(T, result_rotr_24)) );
__ sw(t7, MemOperand(a0, OFFSET_OF(T, result_rotr_28)) );
// ROTRV instruction (called through the Ror macro).
__ li(t7, 0x0004);
__ Ror(t1, t0, t7);
__ li(t7, 0x0008);
__ Ror(t2, t0, t7);
__ li(t7, 0x000C);
__ Ror(t3, t0, t7);
__ li(t7, 0x0010);
__ Ror(t4, t0, t7);
__ li(t7, 0x0014);
__ Ror(t5, t0, t7);
__ li(t7, 0x0018);
__ Ror(t6, t0, t7);
__ li(t7, 0x001C);
__ Ror(t7, t0, t7);
// Basic word store.
__ sw(t1, MemOperand(a0, OFFSET_OF(T, result_rotrv_4)) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, result_rotrv_8)) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, result_rotrv_12)) );
__ sw(t4, MemOperand(a0, OFFSET_OF(T, result_rotrv_16)) );
__ sw(t5, MemOperand(a0, OFFSET_OF(T, result_rotrv_20)) );
__ sw(t6, MemOperand(a0, OFFSET_OF(T, result_rotrv_24)) );
__ sw(t7, MemOperand(a0, OFFSET_OF(T, result_rotrv_28)) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.input = 0x12345678;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0x0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotr_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotr_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotr_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotr_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotr_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotr_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotr_28);
CHECK_EQ(static_cast<int32_t>(0x81234567), t.result_rotrv_4);
CHECK_EQ(static_cast<int32_t>(0x78123456), t.result_rotrv_8);
CHECK_EQ(static_cast<int32_t>(0x67812345), t.result_rotrv_12);
CHECK_EQ(static_cast<int32_t>(0x56781234), t.result_rotrv_16);
CHECK_EQ(static_cast<int32_t>(0x45678123), t.result_rotrv_20);
CHECK_EQ(static_cast<int32_t>(0x34567812), t.result_rotrv_24);
CHECK_EQ(static_cast<int32_t>(0x23456781), t.result_rotrv_28);
}
}
TEST(MIPS9) {
// Test BRANCH improvements.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
Label exit, exit2, exit3;
__ Branch(&exit, ge, a0, Operand(zero_reg));
__ Branch(&exit2, ge, a0, Operand(0x00001FFF));
__ Branch(&exit3, ge, a0, Operand(0x0001FFFF));
__ bind(&exit);
__ bind(&exit2);
__ bind(&exit3);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
}
TEST(MIPS10) {
// Test conversions between doubles and long integers.
// Test hos the long ints map to FP regs pairs.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double a;
double b;
int32_t dbl_mant;
int32_t dbl_exp;
int32_t word;
int32_t b_word;
} T;
T t;
Assembler assm(isolate, NULL, 0);
Label L, C;
if (!IsMipsArchVariant(kMips32r2)) return;
// Load all structure elements to registers.
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, a)));
// Save the raw bits of the double.
__ mfc1(t0, f0);
__ mfc1(t1, f1);
__ sw(t0, MemOperand(a0, OFFSET_OF(T, dbl_mant)));
__ sw(t1, MemOperand(a0, OFFSET_OF(T, dbl_exp)));
// Convert double in f0 to long, save hi/lo parts.
__ cvt_w_d(f0, f0);
__ mfc1(t0, f0); // f0 has a 32-bits word.
__ sw(t0, MemOperand(a0, OFFSET_OF(T, word)));
// Convert the b long integers to double b.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, b_word)));
__ mtc1(t0, f8); // f8 has a 32-bits word.
__ cvt_d_w(f10, f8);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, b)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.a = 2.147483646e+09; // 0x7FFFFFFE -> 0xFF80000041DFFFFF as double.
t.b_word = 0x0ff00ff0; // 0x0FF00FF0 -> 0x as double.
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(static_cast<int32_t>(0x41DFFFFF), t.dbl_exp);
CHECK_EQ(static_cast<int32_t>(0xFF800000), t.dbl_mant);
CHECK_EQ(static_cast<int32_t>(0x7FFFFFFE), t.word);
// 0x0FF00FF0 -> 2.6739096+e08
CHECK_EQ(2.6739096e08, t.b);
}
TEST(MIPS11) {
// Do not run test on MIPS32r6, as these instructions are removed.
if (IsMipsArchVariant(kMips32r6)) return;
// Test LWL, LWR, SWL and SWR instructions.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t reg_init;
int32_t mem_init;
int32_t lwl_0;
int32_t lwl_1;
int32_t lwl_2;
int32_t lwl_3;
int32_t lwr_0;
int32_t lwr_1;
int32_t lwr_2;
int32_t lwr_3;
int32_t swl_0;
int32_t swl_1;
int32_t swl_2;
int32_t swl_3;
int32_t swr_0;
int32_t swr_1;
int32_t swr_2;
int32_t swr_3;
} T;
T t;
Assembler assm(isolate, NULL, 0);
// Test all combinations of LWL and vAddr.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(t0, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, lwl_0)) );
__ lw(t1, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(t1, MemOperand(a0, OFFSET_OF(T, mem_init) + 1) );
__ sw(t1, MemOperand(a0, OFFSET_OF(T, lwl_1)) );
__ lw(t2, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(t2, MemOperand(a0, OFFSET_OF(T, mem_init) + 2) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, lwl_2)) );
__ lw(t3, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwl(t3, MemOperand(a0, OFFSET_OF(T, mem_init) + 3) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, lwl_3)) );
// Test all combinations of LWR and vAddr.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(t0, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, lwr_0)) );
__ lw(t1, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(t1, MemOperand(a0, OFFSET_OF(T, mem_init) + 1) );
__ sw(t1, MemOperand(a0, OFFSET_OF(T, lwr_1)) );
__ lw(t2, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(t2, MemOperand(a0, OFFSET_OF(T, mem_init) + 2) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, lwr_2)) );
__ lw(t3, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ lwr(t3, MemOperand(a0, OFFSET_OF(T, mem_init) + 3) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, lwr_3)) );
// Test all combinations of SWL and vAddr.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, swl_0)) );
__ lw(t0, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(t0, MemOperand(a0, OFFSET_OF(T, swl_0)) );
__ lw(t1, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t1, MemOperand(a0, OFFSET_OF(T, swl_1)) );
__ lw(t1, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(t1, MemOperand(a0, OFFSET_OF(T, swl_1) + 1) );
__ lw(t2, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, swl_2)) );
__ lw(t2, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(t2, MemOperand(a0, OFFSET_OF(T, swl_2) + 2) );
__ lw(t3, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, swl_3)) );
__ lw(t3, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swl(t3, MemOperand(a0, OFFSET_OF(T, swl_3) + 3) );
// Test all combinations of SWR and vAddr.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t0, MemOperand(a0, OFFSET_OF(T, swr_0)) );
__ lw(t0, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(t0, MemOperand(a0, OFFSET_OF(T, swr_0)) );
__ lw(t1, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t1, MemOperand(a0, OFFSET_OF(T, swr_1)) );
__ lw(t1, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(t1, MemOperand(a0, OFFSET_OF(T, swr_1) + 1) );
__ lw(t2, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t2, MemOperand(a0, OFFSET_OF(T, swr_2)) );
__ lw(t2, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(t2, MemOperand(a0, OFFSET_OF(T, swr_2) + 2) );
__ lw(t3, MemOperand(a0, OFFSET_OF(T, mem_init)) );
__ sw(t3, MemOperand(a0, OFFSET_OF(T, swr_3)) );
__ lw(t3, MemOperand(a0, OFFSET_OF(T, reg_init)) );
__ swr(t3, MemOperand(a0, OFFSET_OF(T, swr_3) + 3) );
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.reg_init = 0xaabbccdd;
t.mem_init = 0x11223344;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
#if __BYTE_ORDER == __LITTLE_ENDIAN
CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_3);
#elif __BYTE_ORDER == __BIG_ENDIAN
11223344, t.lwl_0);
CHECK_EQ(static_cast<int32_t>(0x223344dd), t.lwl_1);
CHECK_EQ(static_cast<int32_t>(0x3344ccdd), t.lwl_2);
CHECK_EQ(static_cast<int32_t>(0x44bbccdd), t.lwl_3);
CHECK_EQ(static_cast<int32_t>(0xaabbcc11), t.lwr_0);
CHECK_EQ(static_cast<int32_t>(0xaabb1122), t.lwr_1);
CHECK_EQ(static_cast<int32_t>(0xaa112233), t.lwr_2);
CHECK_EQ(static_cast<int32_t>(0x11223344), t.lwr_3);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swl_0);
CHECK_EQ(static_cast<int32_t>(0x11aabbcc), t.swl_1);
CHECK_EQ(static_cast<int32_t>(0x1122aabb), t.swl_2);
CHECK_EQ(static_cast<int32_t>(0x112233aa), t.swl_3);
CHECK_EQ(static_cast<int32_t>(0xdd223344), t.swr_0);
CHECK_EQ(static_cast<int32_t>(0xccdd3344), t.swr_1);
CHECK_EQ(static_cast<int32_t>(0xbbccdd44), t.swr_2);
CHECK_EQ(static_cast<int32_t>(0xaabbccdd), t.swr_3);
#else
#error Unknown endianness
#endif
}
TEST(MIPS12) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
int32_t x;
int32_t y;
int32_t y1;
int32_t y2;
int32_t y3;
int32_t y4;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0);
__ mov(t6, fp); // Save frame pointer.
__ mov(fp, a0); // Access struct T by fp.
__ lw(t0, MemOperand(a0, OFFSET_OF(T, y)) );
__ lw(t3, MemOperand(a0, OFFSET_OF(T, y4)) );
__ addu(t1, t0, t3);
__ subu(t4, t0, t3);
__ nop();
__ push(t0); // These instructions disappear after opt.
__ Pop();
__ addu(t0, t0, t0);
__ nop();
__ Pop(); // These instructions disappear after opt.
__ push(t3);
__ nop();
__ push(t3); // These instructions disappear after opt.
__ pop(t3);
__ nop();
__ push(t3);
__ pop(t4);
__ nop();
__ sw(t0, MemOperand(fp, OFFSET_OF(T, y)) );
__ lw(t0, MemOperand(fp, OFFSET_OF(T, y)) );
__ nop();
__ sw(t0, MemOperand(fp, OFFSET_OF(T, y)) );
__ lw(t1, MemOperand(fp, OFFSET_OF(T, y)) );
__ nop();
__ push(t1);
__ lw(t1, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(t1);
__ nop();
__ push(t1);
__ lw(t2, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(t1);
__ nop();
__ push(t1);
__ lw(t2, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(t2);
__ nop();
__ push(t2);
__ lw(t2, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(t1);
__ nop();
__ push(t1);
__ lw(t2, MemOperand(fp, OFFSET_OF(T, y)) );
__ pop(t3);
__ nop();
__ mov(fp, t6);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.x = 1;
t.y = 2;
t.y1 = 3;
t.y2 = 4;
t.y3 = 0XBABA;
t.y4 = 0xDEDA;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(3, t.y1);
}
TEST(MIPS13) {
// Test Cvt_d_uw and Trunc_uw_d macros.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
typedef struct {
double cvt_big_out;
double cvt_small_out;
uint32_t trunc_big_out;
uint32_t trunc_small_out;
uint32_t cvt_big_in;
uint32_t cvt_small_in;
} T;
T t;
MacroAssembler assm(isolate, NULL, 0);
__ sw(t0, MemOperand(a0, OFFSET_OF(T, cvt_small_in)));
__ Cvt_d_uw(f10, t0, f22);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(T, cvt_small_out)));
__ Trunc_uw_d(f10, f10, f22);
__ swc1(f10, MemOperand(a0, OFFSET_OF(T, trunc_small_out)));
__ sw(t0, MemOperand(a0, OFFSET_OF(T, cvt_big_in)));
__ Cvt_d_uw(f8, t0, f22);
__ sdc1(f8, MemOperand(a0, OFFSET_OF(T, cvt_big_out)));
__ Trunc_uw_d(f8, f8, f22);
__ swc1(f8, MemOperand(a0, OFFSET_OF(T, trunc_big_out)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.cvt_big_in = 0xFFFFFFFF;
t.cvt_small_in = 333;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
CHECK_EQ(t.cvt_big_out, static_cast<double>(t.cvt_big_in));
CHECK_EQ(t.cvt_small_out, static_cast<double>(t.cvt_small_in));
CHECK_EQ(static_cast<int>(t.trunc_big_out), static_cast<int>(t.cvt_big_in));
CHECK_EQ(static_cast<int>(t.trunc_small_out),
static_cast<int>(t.cvt_small_in));
}
TEST(MIPS14) {
// Test round, floor, ceil, trunc, cvt.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
#define ROUND_STRUCT_ELEMENT(x) \
int32_t x##_up_out; \
int32_t x##_down_out; \
int32_t neg_##x##_up_out; \
int32_t neg_##x##_down_out; \
uint32_t x##_err1_out; \
uint32_t x##_err2_out; \
uint32_t x##_err3_out; \
uint32_t x##_err4_out; \
int32_t x##_invalid_result;
typedef struct {
double round_up_in;
double round_down_in;
double neg_round_up_in;
double neg_round_down_in;
double err1_in;
double err2_in;
double err3_in;
double err4_in;
ROUND_STRUCT_ELEMENT(round)
ROUND_STRUCT_ELEMENT(floor)
ROUND_STRUCT_ELEMENT(ceil)
ROUND_STRUCT_ELEMENT(trunc)
ROUND_STRUCT_ELEMENT(cvt)
} T;
T t;
#undef ROUND_STRUCT_ELEMENT
MacroAssembler assm(isolate, NULL, 0);
// Save FCSR.
__ cfc1(a1, FCSR);
// Disable FPU exceptions.
__ ctc1(zero_reg, FCSR);
#define RUN_ROUND_TEST(x) \
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, round_up_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, x##_up_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, round_down_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, x##_down_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, neg_round_up_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, neg_##x##_up_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, neg_round_down_in))); \
__ x##_w_d(f0, f0); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, neg_##x##_down_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err1_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err1_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err2_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err2_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err3_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err3_out))); \
\
__ ldc1(f0, MemOperand(a0, OFFSET_OF(T, err4_in))); \
__ ctc1(zero_reg, FCSR); \
__ x##_w_d(f0, f0); \
__ cfc1(a2, FCSR); \
__ sw(a2, MemOperand(a0, OFFSET_OF(T, x##_err4_out))); \
__ swc1(f0, MemOperand(a0, OFFSET_OF(T, x##_invalid_result)));
RUN_ROUND_TEST(round)
RUN_ROUND_TEST(floor)
RUN_ROUND_TEST(ceil)
RUN_ROUND_TEST(trunc)
RUN_ROUND_TEST(cvt)
// Restore FCSR.
__ ctc1(a1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
t.round_up_in = 123.51;
t.round_down_in = 123.49;
t.neg_round_up_in = -123.5;
t.neg_round_down_in = -123.49;
t.err1_in = 123.51;
t.err2_in = 1;
t.err3_in = static_cast<double>(1) + 0xFFFFFFFF;
t.err4_in = NAN;
Object* dummy = CALL_GENERATED_CODE(f, &t, 0, 0, 0, 0);
USE(dummy);
#define GET_FPU_ERR(x) (static_cast<int>(x & kFCSRFlagMask))
#define CHECK_ROUND_RESULT(type) \
CHECK(GET_FPU_ERR(t.type##_err1_out) & kFCSRInexactFlagMask); \
CHECK_EQ(0, GET_FPU_ERR(t.type##_err2_out)); \
CHECK(GET_FPU_ERR(t.type##_err3_out) & kFCSRInvalidOpFlagMask); \
CHECK(GET_FPU_ERR(t.type##_err4_out) & kFCSRInvalidOpFlagMask); \
CHECK_EQ(kFPUInvalidResult, static_cast<uint>(t.type##_invalid_result));
CHECK_ROUND_RESULT(round);
CHECK_ROUND_RESULT(floor);
CHECK_ROUND_RESULT(ceil);
CHECK_ROUND_RESULT(cvt);
}
TEST(MIPS15) {
// Test chaining of label usages within instructions (issue 1644).
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, NULL, 0);
Label target;
__ beq(v0, v1, &target);
__ nop();
__ bne(v0, v1, &target);
__ nop();
__ bind(&target);
__ nop();
}
TEST(MIPS16) {
if (IsMipsArchVariant(kMips32r6)) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
typedef struct test {
int a;
int b;
int c;
int d;
double e;
double f;
double g;
double h;
} Test;
Test test;
// Integer part of test.
__ addiu(t1, zero_reg, 1); // t1 = 1
__ seleqz(t3, t1, zero_reg); // t3 = 1
__ sw(t3, MemOperand(a0, OFFSET_OF(Test, a))); // a = 1
__ seleqz(t2, t1, t1); // t2 = 0
__ sw(t2, MemOperand(a0, OFFSET_OF(Test, b))); // b = 0
__ selnez(t3, t1, zero_reg); // t3 = 1;
__ sw(t3, MemOperand(a0, OFFSET_OF(Test, c))); // c = 0
__ selnez(t3, t1, t1); // t3 = 1
__ sw(t3, MemOperand(a0, OFFSET_OF(Test, d))); // d = 1
// Floating point part of test.
__ ldc1(f0, MemOperand(a0, OFFSET_OF(Test, e)) ); // src
__ ldc1(f2, MemOperand(a0, OFFSET_OF(Test, f)) ); // test
__ seleqz(D, f4, f0, f2);
__ selnez(D, f6, f0, f2);
__ sdc1(f4, MemOperand(a0, OFFSET_OF(Test, g)) ); // src
__ sdc1(f6, MemOperand(a0, OFFSET_OF(Test, h)) ); // src
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.a, 1);
CHECK_EQ(test.b, 0);
CHECK_EQ(test.c, 0);
CHECK_EQ(test.d, 1);
const int test_size = 3;
const int input_size = 5;
double inputs[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double outputs[input_size] = {0.0, 65.2, -70.32,
18446744073709551621.0, -18446744073709551621.0};
double tests[test_size*2] = {2.8, 2.9, -2.8, -2.9,
18446744073709551616.0, 18446744073709555712.0};
for (int j=0; j < test_size; j+=2) {
for (int i=0; i < input_size; i++) {
test.e = inputs[i];
test.f = tests[j];
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.g, outputs[i]);
CHECK_EQ(test.h, 0);
test.f = tests[j+1];
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.g, 0);
CHECK_EQ(test.h, outputs[i]);
}
}
}
}
TEST(MIPS17) {
if (IsMipsArchVariant(kMips32r6)) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
typedef struct test_float {
double a;
double b;
double c;
double d;
} TestFloat;
TestFloat test;
__ ldc1(f4, MemOperand(a0, OFFSET_OF(TestFloat, a)));
__ ldc1(f8, MemOperand(a0, OFFSET_OF(TestFloat, b)));
__ min_d(f10, f4, f8);
__ max_d(f12, f4, f8);
__ sdc1(f10, MemOperand(a0, OFFSET_OF(TestFloat, c)));
__ sdc1(f12, MemOperand(a0, OFFSET_OF(TestFloat, d)));
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
test.a = 2.0; // a goes to fs
test.b = 3.0; // b goes to ft
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 2.0);
CHECK_EQ(test.d, 3.0);
test.a = 3.0; // a goes to fs
test.b = 2.0; // b goes to ft
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 2.0);
CHECK_EQ(test.d, 3.0);
test.a = std::numeric_limits<double>::quiet_NaN();
test.b = 3.0; // b goes to ft
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 3.0);
CHECK_EQ(test.d, 3.0);
test.b = std::numeric_limits<double>::quiet_NaN();
test.a = 3.0; // b goes to ft
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.c, 3.0);
CHECK_EQ(test.d, 3.0);
test.a = std::numeric_limits<double>::quiet_NaN();
test.b = std::numeric_limits<double>::quiet_NaN();
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
DCHECK(std::isnan(test.c));
DCHECK(std::isnan(test.d));
}
}
TEST(MIPS18) {
if (IsMipsArchVariant(kMips32r6)) {
const int tableLength = 30;
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
typedef struct test_float {
double a;
double b;
int fcsr;
}TestFloat;
TestFloat test;
double inputs[tableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E+308, 6.27463370218383111104242366943E-307,
309485009821345068724781056.89,
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RN[tableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RZ[tableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RP[tableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 1,
309485009821345068724781057.0,
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
double outputs_RM[tableLength] = {18446744073709551617.0,
4503599627370496.0, -4503599627370496.0,
1.26782468584154733584017312973E30, 1.44860108245951772690707170478E147,
1.7976931348623157E308, 0,
309485009821345068724781057.0,
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
37778931862957161709568.0, 37778931862957161709569.0,
37778931862957161709580.0, 37778931862957161709581.0,
37778931862957161709582.0, 37778931862957161709583.0,
37778931862957161709584.0, 37778931862957161709585.0,
37778931862957161709586.0, 37778931862957161709587.0};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ ldc1(f4, MemOperand(a0, OFFSET_OF(TestFloat, a)) );
__ lw(t0, MemOperand(a0, OFFSET_OF(TestFloat, fcsr)) );
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ rint_d(f8, f4);
__ sdc1(f8, MemOperand(a0, OFFSET_OF(TestFloat, b)) );
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < tableLength; i++) {
test.a = inputs[i];
std::cout << j << " " << i << "\n";
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
}
TEST(MIPS19) {
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
MacroAssembler assm(isolate, NULL, 0);
typedef struct test_float {
double a;
int32_t b;
int32_t fcsr;
}Test;
const int tableLength = 24;
double inputs[tableLength] = {
2.1, 2.6, 2.5, 3.1, 3.6, 3.5,
-2.1, -2.6, -2.5, -3.1, -3.6, -3.5,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, 2147483653.0
};
double outputs_RN[tableLength] = {
2.0, 3.0, 2.0, 3.0, 4.0, 4.0,
-2.0, -3.0, -2.0, -3.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RZ[tableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RP[tableLength] = {
3.0, 3.0, 3.0, 4.0, 4.0, 4.0,
-2.0, -2.0, -2.0, -3.0, -3.0, -3.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
double outputs_RM[tableLength] = {
2.0, 2.0, 2.0, 3.0, 3.0, 3.0,
-3.0, -3.0, -3.0, -4.0, -4.0, -4.0,
2147483637.0, 2147483638.0, 2147483639.0,
2147483640.0, 2147483641.0, 2147483642.0,
2147483643.0, 2147483644.0, 2147483645.0,
2147483646.0, 2147483647.0, kFPUInvalidResult};
int fcsr_inputs[4] =
{kRoundToNearest, kRoundToZero, kRoundToPlusInf, kRoundToMinusInf};
double* outputs[4] = {outputs_RN, outputs_RZ, outputs_RP, outputs_RM};
__ ldc1(f4, MemOperand(a0, OFFSET_OF(Test, a)) );
__ lw(t0, MemOperand(a0, OFFSET_OF(Test, fcsr)) );
__ cfc1(t1, FCSR);
__ ctc1(t0, FCSR);
__ cvt_w_d(f8, f4);
__ swc1(f8, MemOperand(a0, OFFSET_OF(Test, b)) );
__ ctc1(t1, FCSR);
__ jr(ra);
__ nop();
Test test;
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
F3 f = FUNCTION_CAST<F3>(code->entry());
for (int j = 0; j < 4; j++) {
test.fcsr = fcsr_inputs[j];
for (int i = 0; i < tableLength; i++) {
test.a = inputs[i];
std::cout << i << " " << j << "\n";
(CALL_GENERATED_CODE(f, &test, 0, 0, 0, 0));
CHECK_EQ(test.b, outputs[j][i]);
}
}
}
TEST(jump_tables1) {
// Test jump tables with forward jumps.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
__ addiu(sp, sp, -4);
__ sw(ra, MemOperand(sp));
Label done;
{
__ BlockTrampolinePoolFor(kNumCases + 7);
PredictableCodeSizeScope predictable(
&assm, (kNumCases + 7) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ nop();
__ bind(&here);
__ sll(at, a0, 2);
__ addu(at, at, ra);
__ lw(at, MemOperand(at, 5 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ b(&done);
__ nop();
}
__ bind(&done);
__ lw(ra, MemOperand(sp));
__ addiu(sp, sp, 4);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables2) {
// Test jump tables with backward jumps.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
const int kNumCases = 512;
int values[kNumCases];
isolate->random_number_generator()->NextBytes(values, sizeof(values));
Label labels[kNumCases];
__ addiu(sp, sp, -4);
__ sw(ra, MemOperand(sp));
Label done, dispatch;
__ b(&dispatch);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
__ lui(v0, (values[i] >> 16) & 0xffff);
__ ori(v0, v0, values[i] & 0xffff);
__ b(&done);
__ nop();
}
__ bind(&dispatch);
{
__ BlockTrampolinePoolFor(kNumCases + 7);
PredictableCodeSizeScope predictable(
&assm, (kNumCases + 7) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ nop();
__ bind(&here);
__ sll(at, a0, 2);
__ addu(at, at, ra);
__ lw(at, MemOperand(at, 5 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
__ bind(&done);
__ lw(ra, MemOperand(sp));
__ addiu(sp, sp, 4);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
int res = reinterpret_cast<int>(CALL_GENERATED_CODE(f, i, 0, 0, 0, 0));
::printf("f(%d) = %d\n", i, res);
CHECK_EQ(values[i], res);
}
}
TEST(jump_tables3) {
// Test jump tables with backward jumps and embedded heap objects.
CcTest::InitializeVM();
Isolate* isolate = CcTest::i_isolate();
HandleScope scope(isolate);
Assembler assm(isolate, nullptr, 0);
const int kNumCases = 256;
Handle<Object> values[kNumCases];
for (int i = 0; i < kNumCases; ++i) {
double value = isolate->random_number_generator()->NextDouble();
values[i] = isolate->factory()->NewHeapNumber(value, IMMUTABLE, TENURED);
}
Label labels[kNumCases];
Object* obj;
int32_t imm32;
__ addiu(sp, sp, -4);
__ sw(ra, MemOperand(sp));
Label done, dispatch;
__ b(&dispatch);
for (int i = 0; i < kNumCases; ++i) {
__ bind(&labels[i]);
obj = *values[i];
imm32 = reinterpret_cast<intptr_t>(obj);
__ lui(v0, (imm32 >> 16) & 0xffff);
__ ori(v0, v0, imm32 & 0xffff);
__ b(&done);
__ nop();
}
__ bind(&dispatch);
{
__ BlockTrampolinePoolFor(kNumCases + 7);
PredictableCodeSizeScope predictable(
&assm, (kNumCases + 7) * Assembler::kInstrSize);
Label here;
__ bal(&here);
__ nop();
__ bind(&here);
__ sll(at, a0, 2);
__ addu(at, at, ra);
__ lw(at, MemOperand(at, 5 * Assembler::kInstrSize));
__ jr(at);
__ nop();
for (int i = 0; i < kNumCases; ++i) {
__ dd(&labels[i]);
}
}
__ bind(&done);
__ lw(ra, MemOperand(sp));
__ addiu(sp, sp, 4);
__ jr(ra);
__ nop();
CodeDesc desc;
assm.GetCode(&desc);
Handle<Code> code = isolate->factory()->NewCode(
desc, Code::ComputeFlags(Code::STUB), Handle<Code>());
#ifdef OBJECT_PRINT
code->Print(std::cout);
#endif
F1 f = FUNCTION_CAST<F1>(code->entry());
for (int i = 0; i < kNumCases; ++i) {
Handle<Object> result(CALL_GENERATED_CODE(f, i, 0, 0, 0, 0), isolate);
#ifdef OBJECT_PRINT
::printf("f(%d) = ", i);
result->Print(std::cout);
::printf("\n");
#endif
CHECK(values[i].is_identical_to(result));
}
}
#undef __